ardupilot/libraries/AP_DCM/AP_DCM.cpp
Andrew Tridgell 045b49c4c4 DCM: removed update_DCM_fast
this combines the functionality of the 'fast' DCM with the normal one,
and also speeds up both the yaw drift correction and the matrix update
code
2012-03-10 10:34:31 +11:00

536 lines
16 KiB
C++

/*
APM_DCM.cpp - DCM AHRS Library, fixed wing version, for Ardupilot Mega
Code by Doug Weibel, Jordi Muñoz and Jose Julio. DIYDrones.com
This library works with the ArduPilot Mega and "Oilpan"
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Methods:
update_DCM() : Updates the AHRS by integrating the rotation matrix over time using the IMU object data
get_gyro() : Returns gyro vector corrected for bias
get_accel() : Returns accelerometer vector
get_dcm_matrix() : Returns dcm matrix
*/
#include <AP_DCM.h>
// this is the speed in cm/s above which we first get a yaw lock with
// the GPS
#define GPS_SPEED_MIN 300
// this is the speed in cm/s at which we stop using drift correction
// from the GPS and wait for the ground speed to get above GPS_SPEED_MIN
#define GPS_SPEED_RESET 100
void
AP_DCM::set_compass(Compass *compass)
{
_compass = compass;
}
// run a full DCM update round
// the drift_correction_frequency is how many steps of the algorithm
// to run before doing an accelerometer drift correction step
void
AP_DCM::update_DCM(uint8_t drift_correction_frequency)
{
float delta_t;
Vector3f accel;
// tell the IMU to grab some data
_imu->update();
// ask the IMU how much time this sensor reading represents
delta_t = _imu->get_delta_time();
// Get current values for gyros
_gyro_vector = _imu->get_gyro();
// accumulate some more accelerometer data
accel = _imu->get_accel();
_accel_sum += accel;
_drift_correction_time += delta_t;
// Integrate the DCM matrix using gyro inputs
matrix_update(delta_t);
if (_dcm_matrix.is_nan()) {
SITL_debug("NaN matrix\n");
}
// add up the omega vector so we pass a value to the drift
// correction averaged over the same time period as the
// accelerometers
_omega_sum += _omega_integ_corr;
// Normalize the DCM matrix
normalize();
// see if we will perform drift correction on this call
_drift_correction_count++;
if (_drift_correction_count == drift_correction_frequency) {
// calculate the average accelerometer vector over
// this time
float scale = 1.0 / _drift_correction_count;
_accel_vector = _accel_sum * scale;
_accel_sum.zero();
// calculate the average omega value over this time
_omega_smoothed = _omega_sum * scale;
_omega_sum.zero();
// Perform drift correction
drift_correction(_drift_correction_time);
_drift_correction_time = 0;
_drift_correction_count = 0;
}
// paranoid check for bad values in the DCM matrix
check_matrix();
// Calculate pitch, roll, yaw for stabilization and navigation
euler_angles();
}
// update the DCM matrix using only the gyros
void
AP_DCM::matrix_update(float _G_Dt)
{
// Used for _centripetal correction (theoretically better than _omega)
_omega_integ_corr = _gyro_vector + _omega_I;
// Equation 16, adding proportional and integral correction terms
_omega = _omega_integ_corr + _omega_P;
float tmpx = _G_Dt * _omega.x;
float tmpy = _G_Dt * _omega.y;
float tmpz = _G_Dt * _omega.z;
// this is an expansion of the DCM matrix multiply, with known
// zero elements removed
_dcm_matrix.a.x += _dcm_matrix.a.y * tmpz - _dcm_matrix.a.z * tmpy;
_dcm_matrix.a.y += _dcm_matrix.a.z * tmpx - _dcm_matrix.a.x * tmpz;
_dcm_matrix.a.z += _dcm_matrix.a.x * tmpy - _dcm_matrix.a.y * tmpx;
_dcm_matrix.b.x += _dcm_matrix.b.y * tmpz - _dcm_matrix.b.z * tmpy;
_dcm_matrix.b.y += _dcm_matrix.b.z * tmpx - _dcm_matrix.b.x * tmpz;
_dcm_matrix.b.z += _dcm_matrix.b.x * tmpy - _dcm_matrix.b.y * tmpx;
_dcm_matrix.c.x += _dcm_matrix.c.y * tmpz - _dcm_matrix.c.z * tmpy;
_dcm_matrix.c.y += _dcm_matrix.c.z * tmpx - _dcm_matrix.c.x * tmpz;
_dcm_matrix.c.z += _dcm_matrix.c.x * tmpy - _dcm_matrix.c.y * tmpx;
}
// adjust an accelerometer vector for known acceleration forces
void
AP_DCM::accel_adjust(Vector3f &accel)
{
float veloc;
// compensate for linear acceleration, limited to 1g
float acceleration = _gps->acceleration();
acceleration = constrain(acceleration, 0, 9.8);
accel.x -= acceleration;
// compensate for centripetal acceleration
veloc = _gps->ground_speed / 100;
// We are working with a modified version of equation 26 as
// our IMU object reports acceleration in the positive axis
// direction as positive
// Equation 26 broken up into separate pieces
accel.y -= _omega_smoothed.z * veloc;
accel.z += _omega_smoothed.y * veloc;
}
/*
reset the DCM matrix and omega. Used on ground start, and on
extreme errors in the matrix
*/
void
AP_DCM::matrix_reset(bool recover_eulers)
{
if (_compass != NULL) {
_compass->null_offsets_disable();
}
// reset the integration terms
_omega_I.x = 0.0f;
_omega_I.y = 0.0f;
_omega_I.z = 0.0f;
_omega_P = _omega_I;
_omega_integ_corr = _omega_I;
_omega_smoothed = _omega_I;
_omega = _omega_I;
// if the caller wants us to try to recover to the current
// attitude then calculate the dcm matrix from the current
// roll/pitch/yaw values
if (recover_eulers && !isnan(roll) && !isnan(pitch) && !isnan(yaw)) {
rotation_matrix_from_euler(_dcm_matrix, roll, pitch, yaw);
} else {
// otherwise make it flat
rotation_matrix_from_euler(_dcm_matrix, 0, 0, 0);
}
if (_compass != NULL) {
_compass->null_offsets_enable(); // This call is needed to restart the nulling
// Otherwise the reset in the DCM matrix can mess up
// the nulling
}
}
/*
check the DCM matrix for pathological values
*/
void
AP_DCM::check_matrix(void)
{
if (_dcm_matrix.is_nan()) {
//Serial.printf("ERROR: DCM matrix NAN\n");
SITL_debug("ERROR: DCM matrix NAN\n");
renorm_blowup_count++;
matrix_reset(true);
return;
}
// some DCM matrix values can lead to an out of range error in
// the pitch calculation via asin(). These NaN values can
// feed back into the rest of the DCM matrix via the
// error_course value.
if (!(_dcm_matrix.c.x < 1.0 &&
_dcm_matrix.c.x > -1.0)) {
// We have an invalid matrix. Force a normalisation.
renorm_range_count++;
normalize();
if (_dcm_matrix.is_nan() ||
fabs(_dcm_matrix.c.x) > 10) {
// normalisation didn't fix the problem! We're
// in real trouble. All we can do is reset
//Serial.printf("ERROR: DCM matrix error. _dcm_matrix.c.x=%f\n",
// _dcm_matrix.c.x);
SITL_debug("ERROR: DCM matrix error. _dcm_matrix.c.x=%f\n",
_dcm_matrix.c.x);
renorm_blowup_count++;
matrix_reset(true);
}
}
}
/**************************************************/
bool
AP_DCM::renorm(Vector3f const &a, Vector3f &result)
{
float renorm_val;
// numerical errors will slowly build up over time in DCM,
// causing inaccuracies. We can keep ahead of those errors
// using the renormalization technique from the DCM IMU paper
// (see equations 18 to 21).
// For APM we don't bother with the taylor expansion
// optimisation from the paper as on our 2560 CPU the cost of
// the sqrt() is 44 microseconds, and the small time saving of
// the taylor expansion is not worth the potential of
// additional error buildup.
// Note that we can get significant renormalisation values
// when we have a larger delta_t due to a glitch eleswhere in
// APM, such as a I2c timeout or a set of EEPROM writes. While
// we would like to avoid these if possible, if it does happen
// we don't want to compound the error by making DCM less
// accurate.
renorm_val = 1.0 / a.length();
// keep the average for reporting
_renorm_val_sum += renorm_val;
_renorm_val_count++;
if (!(renorm_val < 2.0 && renorm_val > 0.5)) {
// this is larger than it should get - log it as a warning
renorm_range_count++;
if (!(renorm_val < 1.0e6 && renorm_val > 1.0e-6)) {
// we are getting values which are way out of
// range, we will reset the matrix and hope we
// can recover our attitude using drift
// correction before we hit the ground!
//Serial.printf("ERROR: DCM renormalisation error. renorm_val=%f\n",
// renorm_val);
SITL_debug("ERROR: DCM renormalisation error. renorm_val=%f\n",
renorm_val);
renorm_blowup_count++;
return false;
}
}
result = a * renorm_val;
return true;
}
/*************************************************
Direction Cosine Matrix IMU: Theory
William Premerlani and Paul Bizard
Numerical errors will gradually reduce the orthogonality conditions expressed by equation 5
to approximations rather than identities. In effect, the axes in the two frames of reference no
longer describe a rigid body. Fortunately, numerical error accumulates very slowly, so it is a
simple matter to stay ahead of it.
We call the process of enforcing the orthogonality conditions ÒrenormalizationÓ.
*/
void
AP_DCM::normalize(void)
{
float error;
Vector3f t0, t1, t2;
error = _dcm_matrix.a * _dcm_matrix.b; // eq.18
t0 = _dcm_matrix.a - (_dcm_matrix.b * (0.5f * error)); // eq.19
t1 = _dcm_matrix.b - (_dcm_matrix.a * (0.5f * error)); // eq.19
t2 = t0 % t1; // c= a x b // eq.20
if (!renorm(t0, _dcm_matrix.a) ||
!renorm(t1, _dcm_matrix.b) ||
!renorm(t2, _dcm_matrix.c)) {
// Our solution is blowing up and we will force back
// to last euler angles
matrix_reset(true);
}
}
/**************************************************/
void
AP_DCM::drift_correction(float deltat)
{
float error_course = 0;
Vector3f accel;
Vector3f error;
float error_norm = 0;
const float gravity_squared = (9.80665*9.80665);
float yaw_deltat = 0;
accel = _accel_vector;
// if enabled, use the GPS to correct our accelerometer vector
// for centripetal forces
if(_centripetal &&
_gps != NULL &&
_gps->status() == GPS::GPS_OK) {
accel_adjust(accel);
}
//*****Roll and Pitch***************
// calculate the z component of the accel vector assuming it
// has a length of 9.8. This discards the z accelerometer
// sensor reading completely. Logs show that the z accel is
// the noisest, plus it has a disproportionate impact on the
// drift correction result because of the geometry when we are
// mostly flat
float zsquared = gravity_squared - ((accel.x * accel.x) + (accel.y * accel.y));
if (zsquared < 0) {
_omega_P.zero();
} else {
if (accel.z > 0) {
accel.z = sqrt(zsquared);
} else {
accel.z = -sqrt(zsquared);
}
error = _dcm_matrix.c % accel;
// error is in m/s^2 units
// Limit max error to limit max omega_P and omega_I
error_norm = error.length();
if (error_norm > 2) {
error *= (2 / error_norm);
}
// scale the error for the time over which we are
// applying it
error *= deltat;
// calculate the new proportional offset
_omega_P = error * _kp_roll_pitch;
// we limit the change in the integrator to the
// maximum gyro drift rate on each axis
float drift_limit = ToRad(_gyro_drift_rate) * deltat / _ki_roll_pitch;
error.x = constrain(error.x, -drift_limit, drift_limit);
error.y = constrain(error.y, -drift_limit, drift_limit);
error.z = constrain(error.z, -drift_limit, drift_limit);
// update gyro drift estimate
_omega_I += error * _ki_roll_pitch;
}
// these sums support the reporting of the DCM state via MAVLink
_error_rp_sum += error_norm;
_error_rp_count++;
// yaw drift correction
if (_compass && _compass->use_for_yaw() &&
_compass->last_update != _compass_last_update) {
if (_have_initial_yaw) {
// Equation 23, Calculating YAW error
// We make the gyro YAW drift correction based
// on compass magnetic heading
error_course = (_dcm_matrix.a.x * _compass->heading_y) - (_dcm_matrix.b.x * _compass->heading_x);
yaw_deltat = 1.0e-6*(_compass->last_update - _compass_last_update);
_compass_last_update = _compass->last_update;
} else {
// this is our first estimate of the yaw,
// construct a DCM matrix based on the current
// roll/pitch and the compass heading, but
// first ensure the compass heading has been
// calculated
_compass->calculate(_dcm_matrix);
// now construct a new DCM matrix
_compass->null_offsets_disable();
rotation_matrix_from_euler(_dcm_matrix, roll, pitch, _compass->heading);
_compass->null_offsets_enable();
_have_initial_yaw = true;
_compass_last_update = _compass->last_update;
}
} else if (_gps && _gps->status() == GPS::GPS_OK &&
_gps->last_fix_time != _gps_last_update) {
// Use GPS Ground course to correct yaw gyro drift
if (_gps->ground_speed >= GPS_SPEED_MIN) {
if (_have_initial_yaw) {
float course_over_ground_x = cos(ToRad(_gps->ground_course/100.0));
float course_over_ground_y = sin(ToRad(_gps->ground_course/100.0));
// Equation 23, Calculating YAW error
error_course = (_dcm_matrix.a.x * course_over_ground_y) - (_dcm_matrix.b.x * course_over_ground_x);
yaw_deltat = 1.0e-3*(_gps->last_fix_time - _gps_last_update);
_gps_last_update = _gps->last_fix_time;
} else {
// when we first start moving, set the
// DCM matrix to the current
// roll/pitch values, but with yaw
// from the GPS
if (_compass) {
_compass->null_offsets_disable();
}
rotation_matrix_from_euler(_dcm_matrix, roll, pitch, ToRad(_gps->ground_course));
if (_compass) {
_compass->null_offsets_enable();
}
_have_initial_yaw = true;
error_course = 0;
_gps_last_update = _gps->last_fix_time;
}
} else if (_gps->ground_speed >= GPS_SPEED_RESET) {
// we are not going fast enough to use GPS for
// course correction, but we won't reset
// _have_initial_yaw yet, instead we just let
// the gyro handle yaw
error_course = 0;
} else {
// we are moving very slowly. Reset
// _have_initial_yaw and adjust our heading
// rapidly next time we get a good GPS ground
// speed
error_course = 0;
_have_initial_yaw = false;
}
}
if (yaw_deltat == 0 || error_course == 0) {
// nothing to do
return;
}
// Equation 24, Applys the yaw correction to the XYZ rotation of the aircraft
error = _dcm_matrix.c * error_course;
// Adding yaw correction to proportional correction vector.
_omega_P += error * _kp_yaw;
// limit maximum gyro drift
float drift_limit = ToRad(_gyro_drift_rate) * yaw_deltat / _ki_yaw;
error.z = constrain(error.z, -drift_limit, drift_limit);
// add yaw correction to integrator correction vector, but
// only for the z gyro. We rely on the accelerometers for x
// and y gyro drift correction. Using the compass for x/y drift
// correction is too inaccurate, and can lead to incorrect builups in
// the x/y drift
_omega_I.z += error.z * _ki_yaw;
_error_yaw_sum += error_course;
_error_yaw_count++;
//Serial.print("*");
}
/**************************************************/
void
AP_DCM::euler_angles(void)
{
calculate_euler_angles(_dcm_matrix, &roll, &pitch, &yaw);
roll_sensor = degrees(roll) * 100;
pitch_sensor = degrees(pitch) * 100;
yaw_sensor = degrees(yaw) * 100;
if (yaw_sensor < 0)
yaw_sensor += 36000;
}
/* reporting of DCM state for MAVLink */
// average accel_weight since last call
float AP_DCM::get_accel_weight(void)
{
return 1.0;
}
// average renorm_val since last call
float AP_DCM::get_renorm_val(void)
{
float ret;
if (_renorm_val_count == 0) {
return 0;
}
ret = _renorm_val_sum / _renorm_val_count;
_renorm_val_sum = 0;
_renorm_val_count = 0;
return ret;
}
// average error_roll_pitch since last call
float AP_DCM::get_error_rp(void)
{
float ret;
if (_error_rp_count == 0) {
return 0;
}
ret = _error_rp_sum / _error_rp_count;
_error_rp_sum = 0;
_error_rp_count = 0;
return ret;
}
// average error_yaw since last call
float AP_DCM::get_error_yaw(void)
{
float ret;
if (_error_yaw_count == 0) {
return 0;
}
ret = _error_yaw_sum / _error_yaw_count;
_error_yaw_sum = 0;
_error_yaw_count = 0;
return ret;
}