mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-04 23:18:28 -04:00
6e45ce12b2
* still need to fix system io register inits to do it like bootloader would
356 lines
10 KiB
C++
356 lines
10 KiB
C++
|
|
#include <avr/io.h>
|
|
#include <avr/interrupt.h>
|
|
|
|
#include "HAL_AVR.h"
|
|
#include "Scheduler.h"
|
|
using namespace AP_HAL_AVR;
|
|
|
|
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
|
|
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
static volatile uint32_t timer0_overflow_count = 0;
|
|
static volatile uint32_t timer0_millis = 0;
|
|
static uint8_t timer0_fract = 0;
|
|
|
|
/* AVRScheduler timer interrupt period is controlled by TCNT2.
|
|
* 256-62 gives a 1kHz period. */
|
|
#define RESET_TCNT2_VALUE (256 - 62)
|
|
|
|
/* Static AVRScheduler variables: */
|
|
AP_HAL::TimedProc AVRScheduler::_failsafe = NULL;
|
|
volatile bool AVRScheduler::_timer_suspended = false;
|
|
AP_HAL::TimedProc AVRScheduler::_timer_proc[AVR_SCHEDULER_MAX_TIMER_PROCS] = {NULL};
|
|
AP_HAL::TimedProc AVRScheduler::_defered_timer_proc = NULL;
|
|
uint8_t AVRScheduler::_num_timer_procs = 0;
|
|
bool AVRScheduler::_in_timer_proc = false;
|
|
|
|
|
|
AVRScheduler::AVRScheduler() :
|
|
_delay_cb(NULL),
|
|
_min_delay_cb_ms(65535),
|
|
_nested_atomic_ctr(0)
|
|
{}
|
|
|
|
void AVRScheduler::init(void* _isrregistry) {
|
|
ISRRegistry* isrregistry = (ISRRegistry*) _isrregistry;
|
|
|
|
// this needs to be called before setup() or some functions won't
|
|
// work there
|
|
sei();
|
|
|
|
// set timer 0 prescale factor to 64
|
|
// this combination is for the standard 168/328/1280/2560
|
|
sbi(TCCR0B, CS01);
|
|
sbi(TCCR0B, CS00);
|
|
// enable timer 0 overflow interrupt
|
|
sbi(TIMSK0, TOIE0);
|
|
|
|
// timers 1 and 2 are used for phase-correct hardware pwm
|
|
// this is better for motors as it ensures an even waveform
|
|
// note, however, that fast pwm mode can achieve a frequency of up
|
|
// 8 MHz (with a 16 MHz clock) at 50% duty cycle
|
|
|
|
TCCR1B = 0;
|
|
|
|
// set timer 1 prescale factor to 64
|
|
sbi(TCCR1B, CS11);
|
|
sbi(TCCR1B, CS10);
|
|
// put timer 1 in 8-bit phase correct pwm mode
|
|
sbi(TCCR1A, WGM10);
|
|
|
|
sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64
|
|
sbi(TCCR3B, CS30);
|
|
sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode
|
|
|
|
sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64
|
|
sbi(TCCR4B, CS40);
|
|
sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode
|
|
|
|
sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64
|
|
sbi(TCCR5B, CS50);
|
|
sbi(TCCR5A, WGM50); // put timer 5 in 8-bit phase correct pwm mode
|
|
|
|
// set a2d prescale factor to 128
|
|
// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
|
|
// XXX: this will not work properly for other clock speeds, and
|
|
// this code should use F_CPU to determine the prescale factor.
|
|
sbi(ADCSRA, ADPS2);
|
|
sbi(ADCSRA, ADPS1);
|
|
sbi(ADCSRA, ADPS0);
|
|
|
|
// enable a2d conversions
|
|
sbi(ADCSRA, ADEN);
|
|
|
|
// the bootloader connects pins 0 and 1 to the USART; disconnect them
|
|
// here so they can be used as normal digital i/o; they will be
|
|
// reconnected in Serial.begin()
|
|
UCSR0B = 0;
|
|
|
|
/* TIMER2: Setup the overflow interrupt to occur at 1khz. */
|
|
TIMSK2 = 0; /* Disable timer interrupt */
|
|
TCCR2A = 0; /* Normal counting mode */
|
|
TCCR2B = _BV(CS21) | _BV(CS22); /* Prescaler to clk/256 */
|
|
TCNT2 = 0; /* Set count to 0 */
|
|
TIFR2 = _BV(TOV2); /* Clear pending interrupts */
|
|
TIMSK2 = _BV(TOIE2); /* Enable overflow interrupt*/
|
|
/* Register _timer_event to trigger on overflow */
|
|
isrregistry->register_signal(ISR_REGISTRY_TIMER2_OVF, _timer_event);
|
|
}
|
|
|
|
#define clockCyclesPerMicrosecond() ( F_CPU / 1000000L )
|
|
#define clockCyclesToMicroseconds(a) ( ((a) * 1000L) / (F_CPU / 1000L) )
|
|
|
|
// the prescaler is set so that timer0 ticks every 64 clock cycles, and the
|
|
// the overflow handler is called every 256 ticks.
|
|
#define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))
|
|
|
|
// the whole number of milliseconds per timer0 overflow
|
|
#define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)
|
|
|
|
// the fractional number of milliseconds per timer0 overflow. we shift right
|
|
// by three to fit these numbers into a byte. (for the clock speeds we care
|
|
// about - 8 and 16 MHz - this doesn't lose precision.)
|
|
#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
|
|
#define FRACT_MAX (1000 >> 3)
|
|
|
|
|
|
SIGNAL(TIMER0_OVF_vect)
|
|
{
|
|
// copy these to local variables so they can be stored in registers
|
|
// (volatile variables must be read from memory on every access)
|
|
uint32_t m = timer0_millis;
|
|
uint8_t f = timer0_fract;
|
|
|
|
m += MILLIS_INC;
|
|
f += FRACT_INC;
|
|
if (f >= FRACT_MAX) {
|
|
f -= FRACT_MAX;
|
|
m += 1;
|
|
}
|
|
|
|
timer0_fract = f;
|
|
timer0_millis = m;
|
|
timer0_overflow_count++;
|
|
}
|
|
|
|
uint32_t AVRScheduler::millis()
|
|
{
|
|
uint32_t m;
|
|
uint8_t oldSREG = SREG;
|
|
|
|
// disable interrupts while we read timer0_millis or we might get an
|
|
// inconsistent value (e.g. in the middle of a write to timer0_millis)
|
|
cli();
|
|
m = timer0_millis;
|
|
SREG = oldSREG;
|
|
|
|
return m;
|
|
}
|
|
|
|
/* micros() is essentially a static method, but we need it to be available
|
|
* via virtual dispatch through the hal. */
|
|
uint32_t AVRScheduler::micros() {
|
|
return _micros();
|
|
}
|
|
|
|
/* _micros() is the implementation of micros() as a static private method
|
|
* so we can use it from inside _timer_event() without virtual dispatch. */
|
|
uint32_t AVRScheduler::_micros() {
|
|
uint32_t m;
|
|
uint8_t oldSREG = SREG, t;
|
|
|
|
cli();
|
|
m = timer0_overflow_count;
|
|
t = TCNT0;
|
|
|
|
if ((TIFR0 & _BV(TOV0)) && (t < 255))
|
|
m++;
|
|
|
|
SREG = oldSREG;
|
|
|
|
return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
|
|
}
|
|
|
|
void AVRScheduler::delay(uint32_t ms)
|
|
{
|
|
uint16_t start = (uint16_t)micros();
|
|
|
|
while (ms > 0) {
|
|
if (((uint16_t)micros() - start) >= 1000) {
|
|
ms--;
|
|
start += 1000;
|
|
if (_min_delay_cb_ms >= ms) {
|
|
if (_delay_cb) {
|
|
_delay_cb();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Delay for the given number of microseconds. Assumes a 16 MHz clock. */
|
|
void AVRScheduler::delay_microseconds(uint16_t us)
|
|
{
|
|
// for the 16 MHz clock on most Arduino boards
|
|
// for a one-microsecond delay, simply return. the overhead
|
|
// of the function call yields a delay of approximately 1 1/8 us.
|
|
if (--us == 0)
|
|
return;
|
|
|
|
// the following loop takes a quarter of a microsecond (4 cycles)
|
|
// per iteration, so execute it four times for each microsecond of
|
|
// delay requested.
|
|
us <<= 2;
|
|
|
|
// account for the time taken in the preceeding commands.
|
|
us -= 2;
|
|
|
|
// busy wait
|
|
__asm__ __volatile__ (
|
|
"1: sbiw %0,1" "\n\t" // 2 cycles
|
|
"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
|
|
);
|
|
}
|
|
|
|
void AVRScheduler::register_delay_callback(AP_HAL::Proc proc,
|
|
uint16_t min_time_ms) {
|
|
_delay_cb = proc;
|
|
_min_delay_cb_ms = min_time_ms;
|
|
}
|
|
|
|
void AVRScheduler::register_timer_process(AP_HAL::TimedProc proc) {
|
|
for (int i = 0; i < _num_timer_procs; i++) {
|
|
if (_timer_proc[i] == proc) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (_num_timer_procs < AVR_SCHEDULER_MAX_TIMER_PROCS) {
|
|
/* this write to _timer_proc can be outside the critical section
|
|
* because that memory won't be used until _num_timer_procs is
|
|
* incremented. */
|
|
_timer_proc[_num_timer_procs] = proc;
|
|
/* _num_timer_procs is used from interrupt, and multiple bytes long. */
|
|
cli();
|
|
_num_timer_procs++;
|
|
sei();
|
|
}
|
|
|
|
}
|
|
|
|
bool AVRScheduler::defer_timer_process(AP_HAL::TimedProc proc) {
|
|
if ( _in_timer_proc || _timer_suspended ) {
|
|
_defered_timer_proc = proc;
|
|
return false;
|
|
} else {
|
|
_timer_suspended = true;
|
|
proc(micros());
|
|
_timer_suspended = false;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void AVRScheduler::register_timer_failsafe(
|
|
AP_HAL::TimedProc failsafe, uint32_t period_us) {
|
|
/* XXX Assert period_us == 1000 */
|
|
_failsafe = failsafe;
|
|
}
|
|
|
|
void AVRScheduler::suspend_timer_procs() {
|
|
_timer_suspended = true;
|
|
}
|
|
|
|
void AVRScheduler::resume_timer_procs() {
|
|
_timer_suspended = false;
|
|
}
|
|
|
|
void AVRScheduler::_timer_event() {
|
|
// we enable the interrupt again immediately and also enable
|
|
// interrupts. This allows other time critical interrupts to
|
|
// run (such as the serial receive interrupt). We catch the
|
|
// timer calls taking too long using _in_timer_call.
|
|
// This approach also gives us a nice uniform spacing between
|
|
// timer calls
|
|
|
|
TCNT2 = RESET_TCNT2_VALUE;
|
|
sei();
|
|
|
|
uint32_t tnow = _micros();
|
|
if (_in_timer_proc) {
|
|
// the timer calls took longer than the period of the
|
|
// timer. This is bad, and may indicate a serious
|
|
// driver failure. We can't just call the drivers
|
|
// again, as we could run out of stack. So we only
|
|
// call the _failsafe call. It's job is to detect if
|
|
// the drivers or the main loop are indeed dead and to
|
|
// activate whatever failsafe it thinks may help if
|
|
// need be. We assume the failsafe code can't
|
|
// block. If it does then we will recurse and die when
|
|
// we run out of stack
|
|
if (_failsafe != NULL) {
|
|
_failsafe(tnow);
|
|
}
|
|
return;
|
|
}
|
|
_in_timer_proc = true;
|
|
|
|
if (!_timer_suspended) {
|
|
// now call the timer based drivers
|
|
for (int i = 0; i < _num_timer_procs; i++) {
|
|
if (_timer_proc[i] != NULL) {
|
|
_timer_proc[i](tnow);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Run any defered procedures, if they exist.*/
|
|
cli();
|
|
/* Atomic read and clear: */
|
|
AP_HAL::TimedProc defered = _defered_timer_proc;
|
|
_defered_timer_proc = NULL;
|
|
sei();
|
|
if (defered != NULL) {
|
|
_timer_suspended = true;
|
|
defered(tnow);
|
|
_timer_suspended = false;
|
|
}
|
|
|
|
// and the failsafe, if one is setup
|
|
if (_failsafe != NULL) {
|
|
_failsafe(tnow);
|
|
}
|
|
|
|
_in_timer_proc = false;
|
|
}
|
|
|
|
void AVRScheduler::begin_atomic() {
|
|
_nested_atomic_ctr++;
|
|
cli();
|
|
}
|
|
|
|
void AVRScheduler::end_atomic() {
|
|
_nested_atomic_ctr--;
|
|
if (_nested_atomic_ctr == 0) {
|
|
sei();
|
|
}
|
|
}
|
|
|
|
void AVRScheduler::reboot() {
|
|
hal.uartA->println_P(PSTR("GOING DOWN FOR A REBOOT\r\n"));
|
|
hal.scheduler->delay(100);
|
|
|
|
cli();
|
|
/* Making a null pointer call will cause all AVRs to reboot
|
|
* but they may not come back alive properly - we need to setup
|
|
* the IO the way the bootloader would.
|
|
* pch will go back and fix this.
|
|
*/
|
|
void (*fn)(void) = NULL;
|
|
fn();
|
|
|
|
for(;;);
|
|
}
|