ardupilot/libraries/AP_Common/examples/AP_Var/AP_Var.pde
DrZiplok@gmail.com ff5ce694a2 Add a template AP_VarA that defines a variable that is an array of some basic type. This is like AP_VarT for arrays, with minor changes in behaviour consistent with the difference between regular variables and arrays.
Note that AP_VarA arrays are still limited by the constraints on the total size of a variable (AP_Var::k_size_max).

Add a basic unit test for arrays; more are needed.

git-svn-id: https://arducopter.googlecode.com/svn/trunk@1579 f9c3cf11-9bcb-44bc-f272-b75c42450872
2011-01-30 20:58:34 +00:00

335 lines
7.0 KiB
Plaintext

//
// Unit tests for the AP_Meta_class and AP_Var classes.
//
#include <FastSerial.h>
#include <AP_Common.h>
#include <AP_Test.h>
#include <string.h>
// we need to do this, even though normally it's a bad idea
#pragma GCC diagnostic ignored "-Wfloat-equal"
FastSerialPort(Serial, 0);
//
// Unit tests
//
void
setup(void)
{
Serial.begin(115200);
Serial.println("AP_Var unit tests.\n");
// MetaClass: test type ID
{
TEST(meta_type_id);
AP_Float f1(0);
AP_Float f2(0);
AP_Int8 i1(0);
uint16_t m1 = f1.meta_type_id();
uint16_t m2 = f2.meta_type_id();
uint16_t m3 = i1.meta_type_id();
uint16_t m4 = AP_Meta_class::meta_type_id<AP_Float>();
REQUIRE(m1 != 0);
REQUIRE(m1 == m2);
REQUIRE(m1 != m3);
REQUIRE(m1 == m4);
}
// MetaClass: meta_type_equivalent
{
TEST(meta_type_equivalent);
AP_Float f1;
AP_Float f2;
AP_Int8 i1;
REQUIRE(AP_Meta_class::meta_type_equivalent(&f1, &f2));
REQUIRE(!AP_Meta_class::meta_type_equivalent(&f1, &i1));
}
// MetaClass: external handles
{
TEST(meta_handle);
AP_Float f(0);
AP_Meta_class::Meta_handle h = f.meta_get_handle();
REQUIRE(0 != h);
REQUIRE(NULL != AP_Meta_class::meta_validate_handle(h));
REQUIRE(NULL == AP_Meta_class::meta_validate_handle(h + 1));
}
// MetaClass: test meta_cast
{
TEST(meta_cast);
AP_Float f(0);
REQUIRE(NULL != AP_Meta_class::meta_cast<AP_Float>(&f));
REQUIRE(NULL == AP_Meta_class::meta_cast<AP_Int8>(&f));
}
// MetaClass: ... insert tests here ...
// AP_Var: constants
{
TEST(var_constants);
REQUIRE(AP_Float_zero == 0);
REQUIRE(AP_Float_unity == 1.0);
REQUIRE(AP_Float_negative_unity = -1.0);
}
// AP_Var: type IDs
{
TEST(var_type_ids);
AP_Float f;
AP_Float16 fs;
AP_Int32 l;
AP_Int16 s;
AP_Int8 b;
REQUIRE(f.meta_type_id() == AP_Var::k_typeid_float);
REQUIRE(fs.meta_type_id() == AP_Var::k_typeid_float16);
REQUIRE(l.meta_type_id() == AP_Var::k_typeid_int32);
REQUIRE(s.meta_type_id() == AP_Var::k_typeid_int16);
REQUIRE(b.meta_type_id() == AP_Var::k_typeid_int8);
REQUIRE(AP_Var::k_typeid_float != AP_Var::k_typeid_int32);
}
// AP_Var: initial value
{
TEST(var_initial_value);
AP_Float f1(12.345);
AP_Float f2;
REQUIRE(f1 == 12.345);
REQUIRE(f2 == 0);
}
// AP_Var: set, get, assignment
{
TEST(var_set_get);
AP_Float f(1.0);
REQUIRE(f == 1.0);
REQUIRE(f.get() == 1.0);
f.set(10.0);
REQUIRE(f == 10.0);
REQUIRE(f.get() == 10.0);
}
// AP_Var: cast to type
{
TEST(var_cast_to_type);
AP_Float f(1.0);
f *= 2.0;
REQUIRE(f == 2.0);
f /= 4;
REQUIRE(f == 0.5);
f += f;
REQUIRE(f == 1.0);
}
// AP_Var: equality
{
TEST(var_equality);
AP_Float f1(1.0);
AP_Float f2(1.0);
AP_Float f3(2.0);
REQUIRE(f1 == f2);
REQUIRE(f2 != f3);
}
// AP_Var: naming
{
TEST(var_naming);
AP_Float f(0, AP_Var::k_key_none, PSTR("test"));
char name_buffer[16];
f.copy_name(name_buffer, sizeof(name_buffer));
REQUIRE(!strcmp(name_buffer, "test"));
}
// AP_Var: arrays
{
TEST(var_array);
AP_VarA<float,4> fa;
fa[0] = 1.0;
fa[1] = 10.0;
fa.set(2, 100.0);
fa[3] = -1000.0;
REQUIRE(fa.get(0) == 1.0);
REQUIRE(fa.get(1) == 10.0);
REQUIRE(fa.get(2) == 100.0);
REQUIRE(fa.get(3) == -1000.0);
}
// AP_Var: serialize
// note that this presumes serialisation to the native in-memory format
{
TEST(var_serialize);
float b = 0;
AP_Float f(10.0);
size_t s;
s = f.serialize(&b, sizeof(b));
REQUIRE(s == sizeof(b));
REQUIRE(b == 10.0);
}
// AP_Var: unserialize
{
TEST(var_unserialize);
float b = 10;
AP_Float f(0);
size_t s;
s = f.unserialize(&b, sizeof(b));
REQUIRE(s == sizeof(b));
REQUIRE(f == 10);
}
// AP_Var: groups and names
{
TEST(group_names);
AP_Var_group group(AP_Var::k_key_none, PSTR("group_"));
AP_Float f(&group, 1, 1.0, PSTR("test"));
char name_buffer[16];
f.copy_name(name_buffer, sizeof(name_buffer));
REQUIRE(!strcmp(name_buffer, "group_test"));
}
// AP_Var: enumeration
{
TEST(empty_variables);
REQUIRE(AP_Var::first() == NULL);
}
{
TEST(enumerate_variables);
AP_Float f1;
REQUIRE(AP_Var::first() == &f1);
{
AP_Var_group group;
AP_Var f2(&group, 0, 0);
AP_Var f3(&group, 1, 0);
AP_Var *vp;
vp = AP_Var::first();
REQUIRE(vp == &group); // XXX presumes FIFO insertion
vp = vp->next();
REQUIRE(vp == &f1); // XXX presumes FIFO insertion
vp = vp->next();
REQUIRE(vp == &f2); // first variable in the grouped list
vp = AP_Var::first_member(&group);
REQUIRE(vp == &f2);
vp = vp->next_member();
REQUIRE(vp == &f3);
}
}
// AP_Var: save and load
{
TEST(var_save_load);
AP_Float f1(10.0, 1);
AP_Var::erase_all();
REQUIRE(true == f1.save());
REQUIRE(f1 == 10.0);
f1 = 0;
REQUIRE(true == f1.load());
REQUIRE(f1 == 10.0);
}
// AP_Var: reload
{
TEST(var_reload);
AP_Float f1(0, 1);
REQUIRE(true == f1.load());
REQUIRE(f1 == 10.0);
AP_Var::erase_all();
}
// AP_Var: save/load all
{
TEST(var_save_load_all);
AP_Float f1(10.0, 1);
AP_Float f2(123.0, 2);
AP_Int8 i(17, 3);
REQUIRE(true == AP_Var::save_all());
f1 = 0;
f2 = 0;
i = 0;
REQUIRE(true == AP_Var::load_all());
REQUIRE(f1 == 10.0);
REQUIRE(f2 == 123.0);
REQUIRE(i == 17);
AP_Var::erase_all();
}
// AP_Var: group load/save
{
TEST(var_group_save_load);
AP_Var_group group(10);
AP_Float f1(&group, 0, 10.0);
AP_Float f2(&group, 0, 123.0);
AP_Float f3(-1.0);
REQUIRE(true == group.save());
f1 = 0;
f2 = 0;
f3 = 0;
REQUIRE(true == group.load());
REQUIRE(f1 == 10.0);
REQUIRE(f2 == 123.0);
REQUIRE(f3 == 0);
AP_Var::erase_all();
}
Test::report();
}
void
loop(void)
{
}