ardupilot/libraries/AP_Motors/AP_MotorsHeli_Swash.h
Peter Barker 90af3043bc AP_Motors: avoid use of AP_Logger.h in library headers
this pulls in many more headers, we should avoid using it whereever we can
2024-09-04 09:51:49 +10:00

105 lines
4.2 KiB
C++

/// @file AP_MotorsHeli_Swash.h
/// @brief Swashplate Library for traditional heli
#pragma once
#include <AP_Common/AP_Common.h>
#include <AP_Math/AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <AP_Param/AP_Param.h>
#include <AP_Logger/AP_Logger_config.h>
// swashplate types
enum SwashPlateType {
SWASHPLATE_TYPE_H3 = 0,
SWASHPLATE_TYPE_H1,
SWASHPLATE_TYPE_H3_140,
SWASHPLATE_TYPE_H3_120,
SWASHPLATE_TYPE_H4_90,
SWASHPLATE_TYPE_H4_45
};
class AP_MotorsHeli_Swash {
public:
AP_MotorsHeli_Swash(uint8_t mot_0, uint8_t mot_1, uint8_t mot_2, uint8_t mot_3, uint8_t instance);
// configure - configure the swashplate settings for any updated parameters
void configure();
// get_swash_type - gets swashplate type
SwashPlateType get_swash_type() const { return _swash_type; }
// calculates servo output
void calculate(float roll, float pitch, float collective);
// Output calculated values to servos
void output();
// get_phase_angle - returns the rotor phase angle
int16_t get_phase_angle() const { return _phase_angle; }
// Get function output mask
uint32_t get_output_mask() const;
#if HAL_LOGGING_ENABLED
// Write SWSH log for this instance of swashplate
void write_log(float cyclic_scaler, float col_ang_min, float col_ang_max, int16_t col_min, int16_t col_max) const;
#endif
// var_info
static const struct AP_Param::GroupInfo var_info[];
private:
// linearize mechanical output of swashplate servo
float get_linear_servo_output(float input) const;
// CCPM Mixers - calculate mixing scale factors by swashplate type
void calculate_roll_pitch_collective_factors();
// Setup a servo
void add_servo_angle(uint8_t num, float angle, float collective);
void add_servo_raw(uint8_t num, float roll, float pitch, float collective);
// write to a swash servo. output value is pwm
void rc_write(uint8_t chan, float swash_in);
enum CollectiveDirection {
COLLECTIVE_DIRECTION_NORMAL = 0,
COLLECTIVE_DIRECTION_REVERSED
};
static const uint8_t _max_num_servos {4};
// Currently configured setup
SwashPlateType _swash_type; // Swashplate type
CollectiveDirection _collective_direction; // Collective control direction, normal or reversed
bool _make_servo_linear; // Sets servo output to be linearized
// Internal variables
bool _enabled[_max_num_servos]; // True if this output servo is enabled
float _rollFactor[_max_num_servos]; // Roll axis scaling of servo output based on servo position
float _pitchFactor[_max_num_servos]; // Pitch axis scaling of servo output based on servo position
float _collectiveFactor[_max_num_servos]; // Collective axis scaling of servo output based on servo position
float _output[_max_num_servos]; // Servo output value
const uint8_t _motor_num[_max_num_servos]; // Motor function to use for output
const uint8_t _instance; // Swashplate instance. Used for logging.
// Variables stored for logging
float _roll_input;
float _pitch_input;
float _collective_input_scaled;
// parameters
AP_Int8 _swashplate_type; // Swash Type Setting
AP_Int8 _swash_coll_dir; // Collective control direction, normal or reversed
AP_Int8 _linear_swash_servo; // linearize swashplate output
AP_Int8 enable;
AP_Int16 _servo1_pos; // servo1 azimuth position on swashplate with front of heli being 0 deg
AP_Int16 _servo2_pos; // servo2 azimuth position on swashplate with front of heli being 0 deg
AP_Int16 _servo3_pos; // servo3 azimuth position on swashplate with front of heli being 0 deg
AP_Int16 _phase_angle; // Phase angle correction for rotor head. If pitching the swash forward induces
// a roll, this can be negative depending on mechanics.
};