ardupilot/libraries/AP_NavEKF/AP_NavEKF.h
2016-10-27 15:45:40 +11:00

305 lines
15 KiB
C++

/*
22 state EKF based on https://github.com/priseborough/InertialNav
Converted from Matlab to C++ by Paul Riseborough
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <AP_Math/AP_Math.h>
#include <AP_InertialSensor/AP_InertialSensor.h>
#include <AP_Baro/AP_Baro.h>
#include <AP_Airspeed/AP_Airspeed.h>
#include <AP_Compass/AP_Compass.h>
#include <AP_Param/AP_Param.h>
#include "AP_Nav_Common.h"
#include <GCS_MAVLink/GCS_MAVLink.h>
#include <AP_RangeFinder/AP_RangeFinder.h>
#include <AP_Math/vectorN.h>
// GPS pre-flight check bit locations
#define MASK_GPS_NSATS (1<<0)
#define MASK_GPS_HDOP (1<<1)
#define MASK_GPS_SPD_ERR (1<<2)
#define MASK_GPS_POS_ERR (1<<3)
#define MASK_GPS_YAW_ERR (1<<4)
#define MASK_GPS_POS_DRIFT (1<<5)
#define MASK_GPS_VERT_SPD (1<<6)
#define MASK_GPS_HORIZ_SPD (1<<7)
class AP_AHRS;
class NavEKF_core;
class NavEKF
{
friend class NavEKF_core;
public:
// Constructor
NavEKF(const AP_AHRS *ahrs, AP_Baro &baro, const RangeFinder &rng);
// allow logging to determine if the EKF is enabled
bool enabled(void) const {
return (_enable != 0);
}
// This function is used to initialise the filter whilst moving, using the AHRS DCM solution
// It should NOT be used to re-initialise after a timeout as DCM will also be corrupted
bool InitialiseFilterDynamic(void);
// Initialise the states from accelerometer and magnetometer data (if present)
// This method can only be used when the vehicle is static
bool InitialiseFilterBootstrap(void);
// Update Filter States - this should be called whenever new IMU data is available
void UpdateFilter(void);
// Check basic filter health metrics and return a consolidated health status
bool healthy(void) const;
// Write the last calculated North East position relative to the reference point (m).
// If a calculated solution is not available, use the best available data and return false
// If false returned, do not use for flight control
bool getPosNE(Vector2f &posNE) const;
// Write the last calculated Down position relative to the reference point (m).
// If a calculated solution is not available, use the best available data and return false
// If false returned, do not use for flight control
bool getPosD(float &posD) const;
// return NED velocity in m/s
void getVelNED(Vector3f &vel) const;
// Return the rate of change of vertical position in the down diection (dPosD/dt) in m/s
// This can be different to the z component of the EKF velocity state because it will fluctuate with height errors and corrections in the EKF
// but will always be kinematically consistent with the z component of the EKF position state
float getPosDownDerivative(void) const;
// This returns the specific forces in the NED frame
void getAccelNED(Vector3f &accelNED) const;
// return body axis gyro bias estimates in rad/sec
void getGyroBias(Vector3f &gyroBias) const;
// reset body axis gyro bias estimates
void resetGyroBias(void);
// Resets the baro so that it reads zero at the current height
// Resets the EKF height to zero
// Adjusts the EKf origin height so that the EKF height + origin height is the same as before
// Returns true if the height datum reset has been performed
// If using a range finder for height no reset is performed and it returns false
bool resetHeightDatum(void);
// Commands the EKF to not use GPS.
// This command must be sent prior to arming as it will only be actioned when the filter is in static mode
// This command is forgotten by the EKF each time it goes back into static mode (eg the vehicle disarms)
// Returns 0 if command rejected
// Returns 1 if attitude, vertical velocity and vertical position will be provided
// Returns 2 if attitude, 3D-velocity, vertical position and relative horizontal position will be provided
uint8_t setInhibitGPS(void);
// return the horizontal speed limit in m/s set by optical flow sensor limits
// return the scale factor to be applied to navigation velocity gains to compensate for increase in velocity noise with height when using optical flow
void getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler) const;
// return weighting of first IMU in blending function
void getIMU1Weighting(float &ret) const;
// return the individual Z-accel bias estimates in m/s^2
void getAccelZBias(float &zbias1, float &zbias2) const;
// return the NED wind speed estimates in m/s (positive is air moving in the direction of the axis)
void getWind(Vector3f &wind) const;
// return earth magnetic field estimates in measurement units / 1000
void getMagNED(Vector3f &magNED) const;
// return body magnetic field estimates in measurement units / 1000
void getMagXYZ(Vector3f &magXYZ) const;
// Return estimated magnetometer offsets
// Return true if magnetometer offsets are valid
bool getMagOffsets(uint8_t mag_idx, Vector3f &magOffsets) const;
// Return the last calculated latitude, longitude and height in WGS-84
// If a calculated location isn't available, return a raw GPS measurement
// The status will return true if a calculation or raw measurement is available
// The getFilterStatus() function provides a more detailed description of data health and must be checked if data is to be used for flight control
bool getLLH(struct Location &loc) const;
// return the latitude and longitude and height used to set the NED origin
// All NED positions calculated by the filter are relative to this location
// Returns false if the origin has not been set
bool getOriginLLH(struct Location &loc) const;
// set the latitude and longitude and height used to set the NED origin
// All NED positions calcualted by the filter will be relative to this location
// The origin cannot be set if the filter is in a flight mode (eg vehicle armed)
// Returns false if the filter has rejected the attempt to set the origin
bool setOriginLLH(struct Location &loc);
// return estimated height above ground level
// return false if ground height is not being estimated.
bool getHAGL(float &HAGL) const;
// return the Euler roll, pitch and yaw angle in radians
void getEulerAngles(Vector3f &eulers) const;
// return the transformation matrix from XYZ (body) to NED axes
void getRotationBodyToNED(Matrix3f &mat) const;
// return the quaternions defining the rotation from NED to XYZ (body) axes
void getQuaternion(Quaternion &quat) const;
// return the innovations for the NED Pos, NED Vel, XYZ Mag and Vtas measurements
void getInnovations(Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov) const;
// return the innovation consistency test ratios for the velocity, position, magnetometer and true airspeed measurements
void getVariances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const;
// should we use the compass? This is public so it can be used for
// reporting via ahrs.use_compass()
bool use_compass(void) const;
// write the raw optical flow measurements
// rawFlowQuality is a measured of quality between 0 and 255, with 255 being the best quality
// rawFlowRates are the optical flow rates in rad/sec about the X and Y sensor axes.
// rawGyroRates are the sensor rotation rates in rad/sec measured by the sensors internal gyro
// The sign convention is that a RH physical rotation of the sensor about an axis produces both a positive flow and gyro rate
// msecFlowMeas is the scheduler time in msec when the optical flow data was received from the sensor.
void writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas, const Vector3f &posOffset);
// return data for debugging optical flow fusion
void getFlowDebug(float &varFlow, float &gndOffset, float &flowInnovX, float &flowInnovY, float &auxInnov, float &HAGL, float &rngInnov, float &range, float &gndOffsetErr) const;
// called by vehicle code to specify that a takeoff is happening
// causes the EKF to compensate for expected barometer errors due to ground effect
void setTakeoffExpected(bool val);
// called by vehicle code to specify that a touchdown is expected to happen
// causes the EKF to compensate for expected barometer errors due to ground effect
void setTouchdownExpected(bool val);
/*
return the filter fault status as a bitmasked integer
0 = quaternions are NaN
1 = velocities are NaN
2 = badly conditioned X magnetometer fusion
3 = badly conditioned Y magnetometer fusion
4 = badly conditioned Z magnetometer fusion
5 = badly conditioned airspeed fusion
6 = badly conditioned synthetic sideslip fusion
7 = filter is not initialised
*/
void getFilterFaults(uint16_t &faults) const;
/*
return filter timeout status as a bitmasked integer
0 = position measurement timeout
1 = velocity measurement timeout
2 = height measurement timeout
3 = magnetometer measurement timeout
4 = true airspeed measurement timeout
5 = unassigned
6 = unassigned
7 = unassigned
*/
void getFilterTimeouts(uint8_t &timeouts) const;
/*
return filter status flags
*/
void getFilterStatus(nav_filter_status &status) const;
/*
return filter gps quality check status
*/
void getFilterGpsStatus(nav_gps_status &status) const;
// send an EKF_STATUS_REPORT message to GCS
void send_status_report(mavlink_channel_t chan);
// provides the height limit to be observed by the control loops
// returns false if no height limiting is required
// this is needed to ensure the vehicle does not fly too high when using optical flow navigation
bool getHeightControlLimit(float &height) const;
// returns true of the EKF thinks the GPS is glitching
bool getGpsGlitchStatus(void) const;
// return the amount of yaw angle change due to the last yaw angle reset in radians
// returns the time of the last yaw angle reset or 0 if no reset has ever occurred
uint32_t getLastYawResetAngle(float &yawAng) const;
// return the amount of NE position change due to the last position reset in metres
// returns the time of the last reset or 0 if no reset has ever occurred
uint32_t getLastPosNorthEastReset(Vector2f &pos) const;
// return the amount of NE velocity change due to the last velocity reset in metres/sec
// returns the time of the last reset or 0 if no reset has ever occurred
uint32_t getLastVelNorthEastReset(Vector2f &vel) const;
// report any reason for why the backend is refusing to initialise
const char *prearm_failure_reason(void) const;
static const struct AP_Param::GroupInfo var_info[];
private:
const AP_AHRS *_ahrs;
AP_Baro &_baro;
const RangeFinder &_rng;
NavEKF_core *core;
// EKF Mavlink Tuneable Parameters
AP_Int8 _enable; // zero to disable EKF1
AP_Float _gpsHorizVelNoise; // GPS horizontal velocity measurement noise : m/s
AP_Float _gpsVertVelNoise; // GPS vertical velocity measurement noise : m/s
AP_Float _gpsHorizPosNoise; // GPS horizontal position measurement noise m
AP_Float _baroAltNoise; // Baro height measurement noise : m^2
AP_Float _magNoise; // magnetometer measurement noise : gauss
AP_Float _easNoise; // equivalent airspeed measurement noise : m/s
AP_Float _windVelProcessNoise; // wind velocity state process noise : m/s^2
AP_Float _wndVarHgtRateScale; // scale factor applied to wind process noise due to height rate
AP_Float _magEarthProcessNoise; // earth magnetic field process noise : gauss/sec
AP_Float _magBodyProcessNoise; // earth magnetic field process noise : gauss/sec
AP_Float _gyrNoise; // gyro process noise : rad/s
AP_Float _accNoise; // accelerometer process noise : m/s^2
AP_Float _gyroBiasProcessNoise; // gyro bias state process noise : rad/s
AP_Float _accelBiasProcessNoise;// accel bias state process noise : m/s^2
AP_Int16 _msecVelDelay; // effective average delay of GPS velocity measurements rel to IMU (msec)
AP_Int16 _msecPosDelay; // effective average delay of GPS position measurements rel to (msec)
AP_Int8 _fusionModeGPS; // 0 = use 3D velocity, 1 = use 2D velocity, 2 = use no velocity
AP_Int8 _gpsVelInnovGate; // Number of standard deviations applied to GPS velocity innovation consistency check
AP_Int8 _gpsPosInnovGate; // Number of standard deviations applied to GPS position innovation consistency check
AP_Int8 _hgtInnovGate; // Number of standard deviations applied to height innovation consistency check
AP_Int8 _magInnovGate; // Number of standard deviations applied to magnetometer innovation consistency check
AP_Int8 _tasInnovGate; // Number of standard deviations applied to true airspeed innovation consistency check
AP_Int8 _magCal; // Sets activation condition for in-flight magnetometer calibration
AP_Int16 _gpsGlitchAccelMax; // Maximum allowed discrepancy between inertial and GPS Horizontal acceleration before GPS data is ignored : cm/s^2
AP_Int8 _gpsGlitchRadiusMax; // Maximum allowed discrepancy between inertial and GPS Horizontal position before GPS glitch is declared : m
AP_Int8 _gndGradientSigma; // RMS terrain gradient percentage assumed by the terrain height estimation.
AP_Float _flowNoise; // optical flow rate measurement noise
AP_Int8 _flowInnovGate; // Number of standard deviations applied to optical flow innovation consistency check
AP_Int8 _msecFLowDelay; // effective average delay of optical flow measurements rel to IMU (msec)
AP_Int8 _rngInnovGate; // Number of standard deviations applied to range finder innovation consistency check
AP_Float _maxFlowRate; // Maximum flow rate magnitude that will be accepted by the filter
AP_Int8 _fallback; // EKF-to-DCM fallback strictness. 0 = trust EKF more, 1 = fallback more conservatively.
AP_Int8 _altSource; // Primary alt source during optical flow navigation. 0 = use Baro, 1 = use range finder.
AP_Int8 _gpsCheck; // Bitmask controlling which preflight GPS checks are bypassed
};