ardupilot/libraries/AP_IOMCU/AP_IOMCU.cpp
2025-01-02 23:22:42 +11:00

1480 lines
43 KiB
C++

/*
implement protocol for controlling an IO microcontroller
For bootstrapping this will initially implement the px4io protocol,
but will later move to an ArduPilot specific protocol
*/
#include "AP_IOMCU.h"
#if HAL_WITH_IO_MCU
#include <AP_Math/AP_Math.h>
#include <AP_Math/crc.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_ROMFS/AP_ROMFS.h>
#include <SRV_Channel/SRV_Channel.h>
#include <RC_Channel/RC_Channel.h>
#include <AP_RCProtocol/AP_RCProtocol.h>
#include <AP_InternalError/AP_InternalError.h>
#include <AP_Logger/AP_Logger.h>
#include <AP_Arming/AP_Arming.h>
#include <AP_BLHeli/AP_BLHeli.h>
#include <ch.h>
extern const AP_HAL::HAL &hal;
// pending IO events to send, used as an event mask
enum ioevents {
IOEVENT_INIT=1,
IOEVENT_SEND_PWM_OUT,
IOEVENT_FORCE_SAFETY_OFF,
IOEVENT_FORCE_SAFETY_ON,
IOEVENT_SET_ONESHOT_ON,
IOEVENT_SET_BRUSHED_ON,
IOEVENT_SET_RATES,
IOEVENT_ENABLE_SBUS,
IOEVENT_SET_HEATER_TARGET,
IOEVENT_SET_DEFAULT_RATE,
IOEVENT_SET_SAFETY_MASK,
IOEVENT_MIXING,
IOEVENT_GPIO,
IOEVENT_SET_OUTPUT_MODE,
IOEVENT_SET_DSHOT_PERIOD,
IOEVENT_SET_CHANNEL_MASK,
IOEVENT_DSHOT,
IOEVENT_PROFILED,
};
// max number of consecutve protocol failures we accept before raising
// an error
#define IOMCU_MAX_REPEATED_FAILURES 20
#ifndef AP_IOMCU_FORCE_ENABLE_HEATER
#define AP_IOMCU_FORCE_ENABLE_HEATER 0
#endif
AP_IOMCU::AP_IOMCU(AP_HAL::UARTDriver &_uart) :
uart(_uart)
{
singleton = this;
}
#define IOMCU_DEBUG_ENABLE 0
#if IOMCU_DEBUG_ENABLE
#include <stdio.h>
#define debug(fmt, args ...) do {printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); } while(0)
#else
#define debug(fmt, args ...)
#endif
AP_IOMCU *AP_IOMCU::singleton;
/*
initialise library, starting thread
*/
void AP_IOMCU::init(void)
{
// uart runs at 1.5MBit
uart.begin(1500*1000, 128, 128);
uart.set_unbuffered_writes(true);
#if IOMCU_DEBUG_ENABLE
crc_is_ok = true;
#else
AP_BoardConfig *boardconfig = AP_BoardConfig::get_singleton();
if ((!boardconfig || boardconfig->io_enabled() == 1) && !hal.util->was_watchdog_reset()) {
check_crc();
} else {
crc_is_ok = true;
}
#endif
#if AP_IOMCU_PROFILED_SUPPORT_ENABLED
use_safety_as_led = boardconfig->use_safety_as_led();
#endif
if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_IOMCU::thread_main, void), "IOMCU",
1024, AP_HAL::Scheduler::PRIORITY_BOOST, 1)) {
AP_HAL::panic("Unable to allocate IOMCU thread");
}
initialised = true;
}
/*
handle event failure
*/
void AP_IOMCU::event_failed(uint32_t event_mask)
{
// wait 0.5ms then retry
hal.scheduler->delay_microseconds(500);
chEvtSignal(thread_ctx, event_mask);
}
/*
main IO thread loop
*/
void AP_IOMCU::thread_main(void)
{
thread_ctx = chThdGetSelfX();
chEvtSignal(thread_ctx, initial_event_mask);
uart.begin(1500*1000, 128, 128);
uart.set_unbuffered_writes(true);
#if HAL_WITH_IO_MCU_BIDIR_DSHOT
uint16_t erpm_period_ms = 10; // default 100Hz
#if HAVE_AP_BLHELI_SUPPORT
AP_BLHeli* blh = AP_BLHeli::get_singleton();
if (blh && blh->get_telemetry_rate() > 0) {
erpm_period_ms = constrain_int16(1000 / blh->get_telemetry_rate(), 1, 1000);
}
#endif
#endif
trigger_event(IOEVENT_INIT);
while (!do_shutdown) {
// check if we have lost contact with the IOMCU
const uint32_t now_ms = AP_HAL::millis();
if (last_reg_access_ms != 0 && now_ms - last_reg_access_ms > 1000) {
INTERNAL_ERROR(AP_InternalError::error_t::iomcu_reset);
last_reg_access_ms = 0;
}
eventmask_t mask = chEvtWaitAnyTimeout(~0, chTimeMS2I(10));
// check for pending IO events
if (mask & EVENT_MASK(IOEVENT_SEND_PWM_OUT)) {
send_servo_out();
}
mask &= ~EVENT_MASK(IOEVENT_SEND_PWM_OUT);
if (mask & EVENT_MASK(IOEVENT_INIT)) {
// get protocol version
if (!read_registers(PAGE_CONFIG, 0, sizeof(config)/2, (uint16_t *)&config)) {
event_failed(mask);
continue;
}
is_chibios_backend = (config.protocol_version == IOMCU_PROTOCOL_VERSION &&
config.protocol_version2 == IOMCU_PROTOCOL_VERSION2);
DEV_PRINTF("IOMCU: 0x%lx\n", config.mcuid);
// set IO_ARM_OK and clear FMU_ARMED
if (!modify_register(PAGE_SETUP, PAGE_REG_SETUP_ARMING, P_SETUP_ARMING_FMU_ARMED,
P_SETUP_ARMING_IO_ARM_OK |
P_SETUP_ARMING_RC_HANDLING_DISABLED)) {
event_failed(mask);
continue;
}
#if AP_IOMCU_FORCE_ENABLE_HEATER
if (!modify_register(PAGE_SETUP, PAGE_REG_SETUP_FEATURES, 0,
P_SETUP_FEATURES_HEATER)) {
event_failed(mask);
continue;
}
#endif
}
mask &= ~EVENT_MASK(IOEVENT_INIT);
if (mask & EVENT_MASK(IOEVENT_MIXING)) {
if (!write_registers(PAGE_MIXING, 0, sizeof(mixing)/2, (const uint16_t *)&mixing)) {
event_failed(mask);
continue;
}
}
mask &= ~EVENT_MASK(IOEVENT_MIXING);
if (mask & EVENT_MASK(IOEVENT_FORCE_SAFETY_OFF)) {
if (!write_register(PAGE_SETUP, PAGE_REG_SETUP_FORCE_SAFETY_OFF, FORCE_SAFETY_MAGIC)) {
event_failed(mask);
continue;
}
}
mask &= ~EVENT_MASK(IOEVENT_FORCE_SAFETY_OFF);
if (mask & EVENT_MASK(IOEVENT_FORCE_SAFETY_ON)) {
if (!write_register(PAGE_SETUP, PAGE_REG_SETUP_FORCE_SAFETY_ON, FORCE_SAFETY_MAGIC)) {
event_failed(mask);
continue;
}
}
mask &= ~EVENT_MASK(IOEVENT_FORCE_SAFETY_ON);
if (mask & EVENT_MASK(IOEVENT_SET_RATES)) {
if (!write_register(PAGE_SETUP, PAGE_REG_SETUP_ALTRATE, rate.freq) ||
!write_register(PAGE_SETUP, PAGE_REG_SETUP_PWM_RATE_MASK, rate.chmask)) {
event_failed(mask);
continue;
}
}
mask &= ~EVENT_MASK(IOEVENT_SET_RATES);
if (mask & EVENT_MASK(IOEVENT_ENABLE_SBUS)) {
if (!write_register(PAGE_SETUP, PAGE_REG_SETUP_SBUS_RATE, rate.sbus_rate_hz) ||
!modify_register(PAGE_SETUP, PAGE_REG_SETUP_FEATURES, 0,
P_SETUP_FEATURES_SBUS1_OUT)) {
event_failed(mask);
continue;
}
}
mask &= ~EVENT_MASK(IOEVENT_ENABLE_SBUS);
if (mask & EVENT_MASK(IOEVENT_SET_HEATER_TARGET)) {
if (!write_register(PAGE_SETUP, PAGE_REG_SETUP_HEATER_DUTY_CYCLE, heater_duty_cycle)) {
event_failed(mask);
continue;
}
}
mask &= ~EVENT_MASK(IOEVENT_SET_HEATER_TARGET);
if (mask & EVENT_MASK(IOEVENT_SET_DEFAULT_RATE)) {
if (!write_register(PAGE_SETUP, PAGE_REG_SETUP_DEFAULTRATE, rate.default_freq)) {
event_failed(mask);
continue;
}
}
mask &= ~EVENT_MASK(IOEVENT_SET_DEFAULT_RATE);
if (mask & EVENT_MASK(IOEVENT_SET_DSHOT_PERIOD)) {
if (!write_registers(PAGE_SETUP, PAGE_REG_SETUP_DSHOT_PERIOD, sizeof(dshot_rate)/2, (const uint16_t *)&dshot_rate)) {
event_failed(mask);
continue;
}
}
mask &= ~EVENT_MASK(IOEVENT_SET_DSHOT_PERIOD);
if (mask & EVENT_MASK(IOEVENT_SET_ONESHOT_ON)) {
if (!modify_register(PAGE_SETUP, PAGE_REG_SETUP_FEATURES, 0, P_SETUP_FEATURES_ONESHOT)) {
event_failed(mask);
continue;
}
}
mask &= ~EVENT_MASK(IOEVENT_SET_ONESHOT_ON);
if (mask & EVENT_MASK(IOEVENT_SET_BRUSHED_ON)) {
if (!modify_register(PAGE_SETUP, PAGE_REG_SETUP_FEATURES, 0, P_SETUP_FEATURES_BRUSHED)) {
event_failed(mask);
continue;
}
}
mask &= ~EVENT_MASK(IOEVENT_SET_BRUSHED_ON);
if (mask & EVENT_MASK(IOEVENT_SET_OUTPUT_MODE)) {
if (!write_registers(PAGE_SETUP, PAGE_REG_SETUP_OUTPUT_MODE, sizeof(mode_out)/2, (const uint16_t *)&mode_out)) {
event_failed(mask);
continue;
}
}
mask &= ~EVENT_MASK(IOEVENT_SET_OUTPUT_MODE);
if (mask & EVENT_MASK(IOEVENT_SET_CHANNEL_MASK)) {
if (!write_register(PAGE_SETUP, PAGE_REG_SETUP_CHANNEL_MASK, pwm_out.channel_mask)) {
event_failed(mask);
continue;
}
}
mask &= ~EVENT_MASK(IOEVENT_SET_CHANNEL_MASK);
if (mask & EVENT_MASK(IOEVENT_SET_SAFETY_MASK)) {
if (!write_register(PAGE_SETUP, PAGE_REG_SETUP_IGNORE_SAFETY, pwm_out.safety_mask)) {
event_failed(mask);
continue;
}
}
mask &= ~EVENT_MASK(IOEVENT_SET_SAFETY_MASK);
if (is_chibios_backend) {
if (mask & EVENT_MASK(IOEVENT_GPIO)) {
if (!write_registers(PAGE_GPIO, 0, sizeof(GPIO)/sizeof(uint16_t), (const uint16_t*)&GPIO)) {
event_failed(mask);
continue;
}
}
mask &= ~EVENT_MASK(IOEVENT_GPIO);
}
if (mask & EVENT_MASK(IOEVENT_DSHOT)) {
page_dshot dshot;
if (!dshot_command_queue.pop(dshot) || !write_registers(PAGE_DSHOT, 0, sizeof(dshot)/sizeof(uint16_t), (const uint16_t*)&dshot)) {
event_failed(mask);
continue;
}
}
mask &= ~EVENT_MASK(IOEVENT_DSHOT);
#if AP_IOMCU_PROFILED_SUPPORT_ENABLED
if (mask & EVENT_MASK(IOEVENT_PROFILED)) {
if (!write_registers(PAGE_PROFILED, 0, sizeof(profiled)/sizeof(uint16_t), (const uint16_t*)&profiled)) {
event_failed(mask);
continue;
}
}
mask &= ~EVENT_MASK(IOEVENT_PROFILED);
#endif
// check for regular timed events
uint32_t now = AP_HAL::millis();
if (now - last_rc_read_ms > 20) {
// read RC input at 50Hz
read_rc_input();
last_rc_read_ms = AP_HAL::millis();
}
if (now - last_status_read_ms > 50) {
// read status at 20Hz
read_status();
last_status_read_ms = AP_HAL::millis();
write_log();
}
if (now - last_servo_read_ms > 50) {
// read servo out at 20Hz
read_servo();
last_servo_read_ms = AP_HAL::millis();
}
#if HAL_WITH_IO_MCU_BIDIR_DSHOT
if (AP_BoardConfig::io_dshot() && now - last_erpm_read_ms > erpm_period_ms) {
// read erpm at configured rate. A more efficient scheme might be to
// send erpm info back with the response from a PWM send, but that would
// require a reworking of the registers model
read_erpm();
last_erpm_read_ms = AP_HAL::millis();
}
if (AP_BoardConfig::io_dshot() && now - last_telem_read_ms > 100) {
// read dshot telemetry at 10Hz
// needs to be at least 4Hz since each ESC updates at ~1Hz and we
// are reading 4 at a time
read_telem();
last_telem_read_ms = AP_HAL::millis();
}
#endif
// update options at the same rate that the iomcu updates the state
if (now - last_safety_option_check_ms > 100) {
update_safety_options();
last_safety_option_check_ms = now;
}
// update failsafe pwm
if (pwm_out.failsafe_pwm_set != pwm_out.failsafe_pwm_sent) {
uint8_t set = pwm_out.failsafe_pwm_set;
if (write_registers(PAGE_FAILSAFE_PWM, 0, IOMCU_MAX_RC_CHANNELS, pwm_out.failsafe_pwm)) {
pwm_out.failsafe_pwm_sent = set;
}
}
send_rc_protocols();
}
done_shutdown = true;
}
/*
send servo output data
*/
void AP_IOMCU::send_servo_out()
{
#if 0
// simple method to test IO failsafe
if (AP_HAL::millis() > 30000) {
return;
}
#endif
if (pwm_out.num_channels > 0) {
uint8_t n = pwm_out.num_channels;
if (rate.sbus_rate_hz == 0) {
n = MIN(n, 8);
} else {
n = MIN(n, IOMCU_MAX_RC_CHANNELS);
}
uint32_t now = AP_HAL::micros();
if (now - last_servo_out_us >= 2000 || AP_BoardConfig::io_dshot()) {
// don't send data at more than 500Hz except when using dshot which is more timing sensitive
if (write_registers(PAGE_DIRECT_PWM, 0, n, pwm_out.pwm)) {
last_servo_out_us = now;
}
}
}
}
/*
read RC input
*/
void AP_IOMCU::read_rc_input()
{
uint16_t *r = (uint16_t *)&rc_input;
if (!read_registers(PAGE_RAW_RCIN, 0, sizeof(rc_input)/2, r)) {
return;
}
if (rc_input.flags_failsafe && rc().option_is_enabled(RC_Channels::Option::IGNORE_FAILSAFE)) {
rc_input.flags_failsafe = false;
}
if (rc_input.flags_rc_ok && !rc_input.flags_failsafe) {
rc_last_input_ms = AP_HAL::millis();
}
}
#if HAL_WITH_IO_MCU_BIDIR_DSHOT
/*
read dshot erpm
*/
void AP_IOMCU::read_erpm()
{
uint16_t *r = (uint16_t *)&dshot_erpm;
if (!read_registers(PAGE_RAW_DSHOT_ERPM, 0, sizeof(dshot_erpm)/2, r)) {
return;
}
uint8_t motor_poles = 14;
#if HAVE_AP_BLHELI_SUPPORT
AP_BLHeli* blh = AP_BLHeli::get_singleton();
if (blh) {
motor_poles = blh->get_motor_poles();
}
#endif
for (uint8_t i = 0; i < IOMCU_MAX_TELEM_CHANNELS/4; i++) {
for (uint8_t j = 0; j < 4; j++) {
const uint8_t esc_id = (i * 4 + j);
if (dshot_erpm.update_mask & 1U<<esc_id) {
update_rpm(esc_id, dshot_erpm.erpm[esc_id] * 200U / motor_poles, dshot_telem[i].error_rate[j] * 0.01);
}
}
}
}
/*
read dshot telemetry
*/
void AP_IOMCU::read_telem()
{
struct page_dshot_telem* telem = &dshot_telem[esc_group];
uint16_t *r = (uint16_t *)telem;
iopage page = PAGE_RAW_DSHOT_TELEM_1_4;
switch (esc_group) {
#if IOMCU_MAX_TELEM_CHANNELS > 4
case 1:
page = PAGE_RAW_DSHOT_TELEM_5_8;
break;
#endif
default:
break;
}
if (!read_registers(page, 0, sizeof(page_dshot_telem)/2, r)) {
return;
}
for (uint i = 0; i<4; i++) {
TelemetryData t {
.temperature_cdeg = int16_t(telem->temperature_cdeg[i]),
.voltage = float(telem->voltage_cvolts[i]) * 0.01,
.current = float(telem->current_camps[i]) * 0.01,
#if AP_EXTENDED_DSHOT_TELEM_V2_ENABLED
.edt2_status = telem->edt2_status[i],
.edt2_stress = telem->edt2_stress[i],
#endif
};
update_telem_data(esc_group * 4 + i, t, telem->types[i]);
}
esc_group = (esc_group + 1) % (IOMCU_MAX_TELEM_CHANNELS / 4);
}
#endif
/*
read status registers
*/
void AP_IOMCU::read_status()
{
uint16_t *r = (uint16_t *)&reg_status;
if (!read_registers(PAGE_STATUS, 0, sizeof(reg_status)/2, r)) {
read_status_errors++;
if (read_status_errors == 20 && last_iocmu_timestamp_ms != 0) {
// the IOMCU has stopped responding to status requests
INTERNAL_ERROR(AP_InternalError::error_t::iomcu_reset);
}
return;
}
if (read_status_ok == 0) {
// reset error count on first good read
read_status_errors = 0;
}
read_status_ok++;
check_iomcu_reset();
if (reg_status.flag_safety_off == 0) {
// if the IOMCU is indicating that safety is on, then force a
// re-check of the safety options. This copes with a IOMCU reset
last_safety_options = 0xFFFF;
// also check if the safety should be definately off.
AP_BoardConfig *boardconfig = AP_BoardConfig::get_singleton();
if (!boardconfig) {
return;
}
uint16_t options = boardconfig->get_safety_button_options();
if (safety_forced_off && (options & AP_BoardConfig::BOARD_SAFETY_OPTION_BUTTON_ACTIVE_SAFETY_ON) == 0) {
// the safety has been forced off, and the user has asked
// that the button can never be used, so there should be
// no way for the safety to be on except a IOMCU
// reboot. Force safety off again
force_safety_off();
}
}
}
void AP_IOMCU::write_log()
{
uint32_t now = AP_HAL::millis();
if (now - last_log_ms >= 1000U) {
last_log_ms = now;
#if HAL_LOGGING_ENABLED
if (AP_Logger::get_singleton()) {
// @LoggerMessage: IOMC
// @Description: IOMCU diagnostic information
// @Field: TimeUS: Time since system startup
// @Field: RSErr: Status Read error count (zeroed on successful read)
// @Field: Mem: Free memory
// @Field: TS: IOMCU uptime
// @Field: NPkt: Number of packets received by IOMCU
// @Field: Nerr: Protocol failures on MCU side
// @Field: Nerr2: Reported number of failures on IOMCU side
// @Field: NDel: Number of delayed packets received by MCU
AP::logger().WriteStreaming("IOMC", "TimeUS,RSErr,Mem,TS,NPkt,Nerr,Nerr2,NDel", "QHHIIIII",
AP_HAL::micros64(),
read_status_errors,
reg_status.freemem,
reg_status.timestamp_ms,
reg_status.total_pkts,
total_errors,
reg_status.num_errors,
num_delayed);
}
#endif // HAL_LOGGING_ENABLED
#if IOMCU_DEBUG_ENABLE
static uint32_t last_io_print;
if (now - last_io_print >= 5000) {
last_io_print = now;
debug("t=%lu num=%lu mem=%u mstack=%u pstack=%u terr=%lu nerr=%lu crc=%u opcode=%u rd=%u wr=%u ur=%u ndel=%lu\n",
now,
reg_status.total_pkts,
reg_status.freemem,
reg_status.freemstack,
reg_status.freepstack,
total_errors,
reg_status.num_errors,
reg_status.err_crc,
reg_status.err_bad_opcode,
reg_status.err_read,
reg_status.err_write,
reg_status.err_uart,
num_delayed);
}
#endif // IOMCU_DEBUG_ENABLE
}
}
/*
read servo output values
*/
void AP_IOMCU::read_servo()
{
if (pwm_out.num_channels > 0) {
read_registers(PAGE_SERVOS, 0, pwm_out.num_channels, pwm_in.pwm);
}
}
/*
discard any pending input
*/
void AP_IOMCU::discard_input(void)
{
uart.discard_input();
}
/*
write a packet, retrying as needed
*/
size_t AP_IOMCU::write_wait(const uint8_t *pkt, uint8_t len)
{
uint8_t wait_count = 5;
size_t ret;
do {
ret = uart.write(pkt, len);
if (ret == 0) {
hal.scheduler->delay_microseconds(100);
num_delayed++;
}
} while (ret == 0 && wait_count--);
return ret;
}
/*
read count 16 bit registers
*/
bool AP_IOMCU::read_registers(uint8_t page, uint8_t offset, uint8_t count, uint16_t *regs)
{
while (count > PKT_MAX_REGS) {
if (!read_registers(page, offset, PKT_MAX_REGS, regs)) {
return false;
}
offset += PKT_MAX_REGS;
count -= PKT_MAX_REGS;
regs += PKT_MAX_REGS;
}
IOPacket pkt;
discard_input();
memset(&pkt.regs[0], 0, count*2);
pkt.code = CODE_READ;
pkt.count = count;
pkt.page = page;
pkt.offset = offset;
pkt.crc = 0;
uint8_t pkt_size = pkt.get_size();
if (is_chibios_backend) {
/*
the original read protocol is a bit strange, as it
unnecessarily sends the same size packet that it expects to
receive. This means reading a large number of registers
wastes a lot of serial bandwidth. We avoid this overhead
when we know we are talking to a ChibiOS backend
*/
pkt_size = 4;
}
pkt.crc = crc_crc8((const uint8_t *)&pkt, pkt_size);
size_t ret = write_wait((uint8_t *)&pkt, pkt_size);
if (ret != pkt_size) {
debug("write failed1 %u %u %u\n", unsigned(pkt_size), page, offset);
protocol_fail_count++;
return false;
}
// wait for the expected number of reply bytes or timeout
if (!uart.wait_timeout(count*2+4, 10)) {
debug("t=%lu timeout read page=%u offset=%u count=%u avail=%u\n",
AP_HAL::millis(), page, offset, count, uart.available());
protocol_fail_count++;
return false;
}
uint8_t *b = (uint8_t *)&pkt;
uint8_t n = uart.available();
if (n < offsetof(struct IOPacket, regs)) {
debug("t=%lu small pkt %u\n", AP_HAL::millis(), n);
protocol_fail_count++;
return false;
}
if (pkt.get_size() != n) {
debug("t=%lu bad len %u %u\n", AP_HAL::millis(), n, pkt.get_size());
protocol_fail_count++;
return false;
}
uart.read(b, MIN(n, sizeof(pkt)));
uint8_t got_crc = pkt.crc;
pkt.crc = 0;
uint8_t expected_crc = crc_crc8((const uint8_t *)&pkt, pkt.get_size());
if (got_crc != expected_crc) {
debug("t=%lu bad crc %02x should be %02x n=%u %u/%u/%u\n",
AP_HAL::millis(), got_crc, expected_crc,
n, page, offset, count);
protocol_fail_count++;
return false;
}
if (pkt.code != CODE_SUCCESS) {
debug("bad code %02x read %u/%u/%u\n", pkt.code, page, offset, count);
protocol_fail_count++;
return false;
}
if (pkt.count < count) {
debug("bad count %u read %u/%u/%u n=%u\n", pkt.count, page, offset, count, n);
protocol_fail_count++;
return false;
}
memcpy(regs, pkt.regs, count*2);
if (protocol_fail_count > IOMCU_MAX_REPEATED_FAILURES) {
handle_repeated_failures();
}
total_errors += protocol_fail_count;
protocol_fail_count = 0;
protocol_count++;
last_reg_access_ms = AP_HAL::millis();
return true;
}
/*
write count 16 bit registers
*/
bool AP_IOMCU::write_registers(uint8_t page, uint8_t offset, uint8_t count, const uint16_t *regs)
{
// The use of offset is very, very evil - it can either be a command within the page
// or a genuine offset, offsets within PAGE_SETUP are assumed to be commands, otherwise to be an
// actual offset
while (page != PAGE_SETUP && count > PKT_MAX_REGS) {
if (!write_registers(page, offset, PKT_MAX_REGS, regs)) {
return false;
}
offset += PKT_MAX_REGS;
count -= PKT_MAX_REGS;
regs += PKT_MAX_REGS;
}
IOPacket pkt;
discard_input();
memset(&pkt.regs[0], 0, count*2);
pkt.code = CODE_WRITE;
pkt.count = count;
pkt.page = page;
pkt.offset = offset;
pkt.crc = 0;
memcpy(pkt.regs, regs, 2*count);
pkt.crc = crc_crc8((const uint8_t *)&pkt, pkt.get_size());
const uint8_t pkt_size = pkt.get_size();
size_t ret = write_wait((uint8_t *)&pkt, pkt_size);
if (ret != pkt_size) {
debug("write failed2 %u %u %u %u\n", pkt_size, page, offset, ret);
protocol_fail_count++;
return false;
}
// wait for the expected number of reply bytes or timeout
if (!uart.wait_timeout(4, 10)) {
debug("no reply for %u/%u/%u\n", page, offset, count);
protocol_fail_count++;
return false;
}
uint8_t *b = (uint8_t *)&pkt;
uint8_t n = uart.available();
for (uint8_t i=0; i<n; i++) {
if (i < sizeof(pkt)) {
b[i] = uart.read();
}
}
if (pkt.code != CODE_SUCCESS) {
debug("bad code %02x write %u/%u/%u %02x/%02x n=%u\n",
pkt.code, page, offset, count,
pkt.page, pkt.offset, n);
protocol_fail_count++;
return false;
}
uint8_t got_crc = pkt.crc;
pkt.crc = 0;
uint8_t expected_crc = crc_crc8((const uint8_t *)&pkt, pkt.get_size());
if (got_crc != expected_crc) {
debug("bad crc %02x should be %02x\n", got_crc, expected_crc);
protocol_fail_count++;
return false;
}
if (protocol_fail_count > IOMCU_MAX_REPEATED_FAILURES) {
handle_repeated_failures();
}
total_errors += protocol_fail_count;
protocol_fail_count = 0;
protocol_count++;
last_reg_access_ms = AP_HAL::millis();
return true;
}
// modify a single register
bool AP_IOMCU::modify_register(uint8_t page, uint8_t offset, uint16_t clearbits, uint16_t setbits)
{
uint16_t v = 0;
if (!read_registers(page, offset, 1, &v)) {
return false;
}
uint16_t v2 = (v & ~clearbits) | setbits;
if (v2 == v) {
return true;
}
return write_registers(page, offset, 1, &v2);
}
void AP_IOMCU::write_channel(uint8_t chan, uint16_t pwm)
{
if (chan >= IOMCU_MAX_RC_CHANNELS) { // could be SBUS out
return;
}
if (chan >= pwm_out.num_channels) {
pwm_out.num_channels = chan+1;
}
pwm_out.pwm[chan] = pwm;
if (!corked) {
push();
}
}
// trigger an ioevent
void AP_IOMCU::trigger_event(uint8_t event)
{
if (thread_ctx != nullptr) {
chEvtSignal(thread_ctx, EVENT_MASK(event));
} else {
// thread isn't started yet, trigger this event once it is started
initial_event_mask |= EVENT_MASK(event);
}
}
// get state of safety switch
AP_HAL::Util::safety_state AP_IOMCU::get_safety_switch_state(void) const
{
return reg_status.flag_safety_off?AP_HAL::Util::SAFETY_ARMED:AP_HAL::Util::SAFETY_DISARMED;
}
// force safety on
bool AP_IOMCU::force_safety_on(void)
{
trigger_event(IOEVENT_FORCE_SAFETY_ON);
safety_forced_off = false;
return true;
}
// force safety off
void AP_IOMCU::force_safety_off(void)
{
trigger_event(IOEVENT_FORCE_SAFETY_OFF);
safety_forced_off = true;
}
// read from one channel
uint16_t AP_IOMCU::read_channel(uint8_t chan)
{
return pwm_in.pwm[chan];
}
// cork output
void AP_IOMCU::cork(void)
{
corked = true;
}
// push output
void AP_IOMCU::push(void)
{
trigger_event(IOEVENT_SEND_PWM_OUT);
corked = false;
}
// set output frequency
void AP_IOMCU::set_freq(uint16_t chmask, uint16_t freq)
{
// ensure mask is legal for the timer layout
for (uint8_t i=0; i<ARRAY_SIZE(ch_masks); i++) {
if (chmask & ch_masks[i]) {
chmask |= ch_masks[i];
}
}
rate.freq = freq;
rate.chmask |= chmask;
trigger_event(IOEVENT_SET_RATES);
}
// get output frequency
uint16_t AP_IOMCU::get_freq(uint16_t chan)
{
if ((1U<<chan) & rate.chmask) {
return rate.freq;
}
return rate.default_freq;
}
// enable SBUS out
bool AP_IOMCU::enable_sbus_out(uint16_t rate_hz)
{
rate.sbus_rate_hz = rate_hz;
trigger_event(IOEVENT_ENABLE_SBUS);
return true;
}
/*
check for new RC input
*/
bool AP_IOMCU::check_rcinput(uint32_t &last_frame_us, uint8_t &num_channels, uint16_t *channels, uint8_t max_chan)
{
if (last_frame_us != uint32_t(rc_last_input_ms * 1000U)) {
num_channels = MIN(MIN(rc_input.count, IOMCU_MAX_RC_CHANNELS), max_chan);
memcpy(channels, rc_input.pwm, num_channels*2);
last_frame_us = uint32_t(rc_last_input_ms * 1000U);
return true;
}
return false;
}
// set IMU heater target
void AP_IOMCU::set_heater_duty_cycle(uint8_t duty_cycle)
{
heater_duty_cycle = duty_cycle;
trigger_event(IOEVENT_SET_HEATER_TARGET);
}
// set default output rate
void AP_IOMCU::set_default_rate(uint16_t rate_hz)
{
if (rate.default_freq != rate_hz) {
rate.default_freq = rate_hz;
trigger_event(IOEVENT_SET_DEFAULT_RATE);
}
}
// setup for oneshot mode
void AP_IOMCU::set_oneshot_mode(void)
{
trigger_event(IOEVENT_SET_ONESHOT_ON);
rate.oneshot_enabled = true;
}
// setup for brushed mode
void AP_IOMCU::set_brushed_mode(void)
{
trigger_event(IOEVENT_SET_BRUSHED_ON);
rate.brushed_enabled = true;
}
#if HAL_DSHOT_ENABLED
// directly set the dshot rate - period_us is the dshot tick period_us and drate is the number
// of dshot ticks per main loop cycle. These values are calculated by RCOutput::set_dshot_rate()
// if the backend is free running then then period_us is fixed at 1000us and drate is 0
void AP_IOMCU::set_dshot_period(uint16_t period_us, uint8_t drate)
{
dshot_rate.period_us = period_us;
dshot_rate.rate = drate;
trigger_event(IOEVENT_SET_DSHOT_PERIOD);
}
// set the dshot esc_type
void AP_IOMCU::set_dshot_esc_type(AP_HAL::RCOutput::DshotEscType dshot_esc_type)
{
mode_out.esc_type = uint16_t(dshot_esc_type);
trigger_event(IOEVENT_SET_OUTPUT_MODE);
}
// set output mode
void AP_IOMCU::set_telem_request_mask(uint32_t mask)
{
page_dshot dshot {
.telem_mask = uint16_t(mask)
};
dshot_command_queue.push(dshot);
trigger_event(IOEVENT_DSHOT);
}
void AP_IOMCU::send_dshot_command(uint8_t command, uint8_t chan, uint32_t command_timeout_ms, uint16_t repeat_count, bool priority)
{
page_dshot dshot {
.command = command,
.chan = chan,
.command_timeout_ms = command_timeout_ms,
.repeat_count = uint8_t(repeat_count),
.priority = priority
};
dshot_command_queue.push(dshot);
trigger_event(IOEVENT_DSHOT);
}
#endif
// set output mode
void AP_IOMCU::set_output_mode(uint16_t mask, uint16_t mode)
{
mode_out.mask = mask;
mode_out.mode = mode;
trigger_event(IOEVENT_SET_OUTPUT_MODE);
}
// set output mode
void AP_IOMCU::set_bidir_dshot_mask(uint16_t mask)
{
mode_out.bdmask = mask;
trigger_event(IOEVENT_SET_OUTPUT_MODE);
}
// set reversible mask
void AP_IOMCU::set_reversible_mask(uint16_t mask)
{
mode_out.reversible_mask = mask;
trigger_event(IOEVENT_SET_OUTPUT_MODE);
}
AP_HAL::RCOutput::output_mode AP_IOMCU::get_output_mode(uint8_t& mask) const
{
mask = reg_status.rcout_mask;
return AP_HAL::RCOutput::output_mode(reg_status.rcout_mode);
}
uint32_t AP_IOMCU::get_disabled_channels(uint32_t digital_mask) const
{
uint32_t dig_out = reg_status.rcout_mask & (digital_mask & 0xFF);
if (dig_out > 0
&& AP_HAL::RCOutput::is_dshot_protocol(AP_HAL::RCOutput::output_mode(reg_status.rcout_mode))) {
return ~dig_out & 0xFF;
}
return 0;
}
// setup channels
void AP_IOMCU::enable_ch(uint8_t ch)
{
if (!(pwm_out.channel_mask & (1U << ch))) {
pwm_out.channel_mask |= (1U << ch);
trigger_event(IOEVENT_SET_CHANNEL_MASK);
}
}
void AP_IOMCU::disable_ch(uint8_t ch)
{
if (pwm_out.channel_mask & (1U << ch)) {
pwm_out.channel_mask &= ~(1U << ch);
trigger_event(IOEVENT_SET_CHANNEL_MASK);
}
}
// handling of BRD_SAFETYOPTION parameter
void AP_IOMCU::update_safety_options(void)
{
AP_BoardConfig *boardconfig = AP_BoardConfig::get_singleton();
if (!boardconfig) {
return;
}
uint16_t desired_options = 0;
uint16_t options = boardconfig->get_safety_button_options();
bool armed = hal.util->get_soft_armed();
if (!(options & AP_BoardConfig::BOARD_SAFETY_OPTION_BUTTON_ACTIVE_SAFETY_OFF)) {
desired_options |= P_SETUP_ARMING_SAFETY_DISABLE_OFF;
}
if (!(options & AP_BoardConfig::BOARD_SAFETY_OPTION_BUTTON_ACTIVE_SAFETY_ON)) {
desired_options |= P_SETUP_ARMING_SAFETY_DISABLE_ON;
}
if (!(options & AP_BoardConfig::BOARD_SAFETY_OPTION_BUTTON_ACTIVE_ARMED) && armed) {
desired_options |= (P_SETUP_ARMING_SAFETY_DISABLE_ON | P_SETUP_ARMING_SAFETY_DISABLE_OFF);
}
// update armed state
if (armed) {
desired_options |= P_SETUP_ARMING_FMU_ARMED;
}
if (last_safety_options != desired_options) {
uint16_t mask = (P_SETUP_ARMING_SAFETY_DISABLE_ON | P_SETUP_ARMING_SAFETY_DISABLE_OFF | P_SETUP_ARMING_FMU_ARMED);
uint32_t bits_to_set = desired_options & mask;
uint32_t bits_to_clear = (~desired_options) & mask;
if (modify_register(PAGE_SETUP, PAGE_REG_SETUP_ARMING, bits_to_clear, bits_to_set)) {
last_safety_options = desired_options;
}
}
}
// update enabled RC protocols mask
void AP_IOMCU::send_rc_protocols()
{
const uint32_t v = rc().enabled_protocols();
if (last_rc_protocols == v) {
return;
}
if (write_registers(PAGE_SETUP, PAGE_REG_SETUP_RC_PROTOCOLS, 2, (uint16_t *)&v)) {
last_rc_protocols = v;
}
}
/*
check ROMFS firmware against CRC on IOMCU, and if incorrect then upload new firmware
*/
bool AP_IOMCU::check_crc(void)
{
// flash size minus 4k bootloader
const uint32_t flash_size = 0x10000 - 0x1000;
const char *path = AP_BoardConfig::io_dshot() ? dshot_fw_name : fw_name;
fw = AP_ROMFS::find_decompress(path, fw_size);
if (!fw) {
DEV_PRINTF("failed to find %s\n", path);
return false;
}
uint32_t crc = crc32_small(0, fw, fw_size);
// pad CRC to max size
for (uint32_t i=0; i<flash_size-fw_size; i++) {
uint8_t b = 0xff;
crc = crc32_small(crc, &b, 1);
}
uint32_t io_crc = 0;
uint8_t tries = 32;
while (tries--) {
if (read_registers(PAGE_SETUP, PAGE_REG_SETUP_CRC, 2, (uint16_t *)&io_crc)) {
break;
}
}
if (io_crc == crc) {
DEV_PRINTF("IOMCU: CRC ok\n");
crc_is_ok = true;
AP_ROMFS::free(fw);
fw = nullptr;
return true;
} else {
DEV_PRINTF("IOMCU: CRC mismatch expected: 0x%X got: 0x%X\n", (unsigned)crc, (unsigned)io_crc);
}
const uint16_t magic = REBOOT_BL_MAGIC;
write_registers(PAGE_SETUP, PAGE_REG_SETUP_REBOOT_BL, 1, &magic);
// avoid internal error on fw upload delay
last_reg_access_ms = 0;
if (!upload_fw()) {
AP_ROMFS::free(fw);
fw = nullptr;
AP_BoardConfig::config_error("Failed to update IO firmware");
}
AP_ROMFS::free(fw);
fw = nullptr;
return false;
}
/*
set the pwm to use when in FMU failsafe
*/
void AP_IOMCU::set_failsafe_pwm(uint16_t chmask, uint16_t period_us)
{
bool changed = false;
for (uint8_t i=0; i<IOMCU_MAX_RC_CHANNELS; i++) {
if (chmask & (1U<<i)) {
if (pwm_out.failsafe_pwm[i] != period_us) {
pwm_out.failsafe_pwm[i] = period_us;
changed = true;
}
}
}
if (changed) {
pwm_out.failsafe_pwm_set++;
}
}
// set mask of channels that ignore safety state
void AP_IOMCU::set_safety_mask(uint16_t chmask)
{
if (pwm_out.safety_mask != chmask) {
pwm_out.safety_mask = chmask;
trigger_event(IOEVENT_SET_SAFETY_MASK);
}
}
/*
check that IO is healthy. This should be used in arming checks
*/
bool AP_IOMCU::healthy(void)
{
return crc_is_ok && protocol_fail_count == 0 && !detected_io_reset && read_status_errors < read_status_ok/128U;
}
/*
shutdown protocol, ready for reboot
*/
void AP_IOMCU::shutdown(void)
{
do_shutdown = true;
while (!done_shutdown) {
hal.scheduler->delay(1);
}
}
/*
reboot IOMCU
*/
void AP_IOMCU::soft_reboot(void)
{
const uint16_t magic = REBOOT_BL_MAGIC;
write_registers(PAGE_SETUP, PAGE_REG_SETUP_REBOOT_BL, 1, &magic);
}
/*
request bind on a DSM radio
*/
void AP_IOMCU::bind_dsm(uint8_t mode)
{
if (!is_chibios_backend || AP::arming().is_armed()) {
// only with ChibiOS IO firmware, and disarmed
return;
}
uint16_t reg = mode;
write_registers(PAGE_SETUP, PAGE_REG_SETUP_DSM_BIND, 1, &reg);
}
/*
setup for mixing. This allows fixed wing aircraft to fly in manual
mode if the FMU dies
*/
bool AP_IOMCU::setup_mixing(int8_t override_chan,
float mixing_gain, uint16_t manual_rc_mask)
{
if (!is_chibios_backend) {
return false;
}
bool changed = false;
#define MIX_UPDATE(a,b) do { if ((a) != (b)) { a = b; changed = true; }} while (0)
// update mixing structure, checking for changes
for (uint8_t i=0; i<IOMCU_MAX_RC_CHANNELS; i++) {
const SRV_Channel *c = SRV_Channels::srv_channel(i);
if (!c) {
continue;
}
MIX_UPDATE(mixing.servo_trim[i], c->get_trim());
MIX_UPDATE(mixing.servo_min[i], c->get_output_min());
MIX_UPDATE(mixing.servo_max[i], c->get_output_max());
MIX_UPDATE(mixing.servo_function[i], c->get_function());
MIX_UPDATE(mixing.servo_reversed[i], c->get_reversed());
}
auto &xrc = rc();
// note that if not all of these channels are specified correctly
// in parameters then these may be a "dummy" RC channel pointer.
// In that case c->ch() will be zero.
const RC_Channel *channels[] {
&xrc.get_roll_channel(),
&xrc.get_pitch_channel(),
&xrc.get_throttle_channel(),
&xrc.get_yaw_channel()
};
for (uint8_t i=0; i<4; i++) {
const auto *c = channels[i];
MIX_UPDATE(mixing.rc_channel[i], c->ch());
MIX_UPDATE(mixing.rc_min[i], c->get_radio_min());
MIX_UPDATE(mixing.rc_max[i], c->get_radio_max());
MIX_UPDATE(mixing.rc_trim[i], c->get_radio_trim());
MIX_UPDATE(mixing.rc_reversed[i], c->get_reverse());
// cope with reversible throttle
if (i == 2 && c->get_type() == RC_Channel::ControlType::ANGLE) {
MIX_UPDATE(mixing.throttle_is_angle, 1);
} else {
MIX_UPDATE(mixing.throttle_is_angle, 0);
}
}
MIX_UPDATE(mixing.rc_chan_override, override_chan);
MIX_UPDATE(mixing.mixing_gain, (uint16_t)(mixing_gain*1000));
MIX_UPDATE(mixing.manual_rc_mask, manual_rc_mask);
// and enable
MIX_UPDATE(mixing.enabled, 1);
if (changed) {
trigger_event(IOEVENT_MIXING);
}
return true;
}
/*
return the RC protocol name
*/
const char *AP_IOMCU::get_rc_protocol(void)
{
if (!is_chibios_backend) {
return nullptr;
}
return AP_RCProtocol::protocol_name_from_protocol((AP_RCProtocol::rcprotocol_t)rc_input.rc_protocol);
}
/*
we have had a series of repeated protocol failures to the
IOMCU. This may indicate that the IOMCU has been reset (possibly due
to a watchdog).
*/
void AP_IOMCU::handle_repeated_failures(void)
{
if (protocol_count < 100) {
// we're just starting up, ignore initial failures caused by
// initial sync with IOMCU
return;
}
INTERNAL_ERROR(AP_InternalError::error_t::iomcu_fail);
}
/*
check for IOMCU reset (possibly due to a watchdog).
*/
void AP_IOMCU::check_iomcu_reset(void)
{
if (last_iocmu_timestamp_ms == 0) {
// initialisation
last_iocmu_timestamp_ms = reg_status.timestamp_ms;
DEV_PRINTF("IOMCU startup\n");
return;
}
uint32_t dt_ms = reg_status.timestamp_ms - last_iocmu_timestamp_ms;
#if IOMCU_DEBUG_ENABLE
const uint32_t ts1 = last_iocmu_timestamp_ms;
#endif
// when we are in an expected delay allow for a larger time
// delta. This copes with flash erase, such as bootloader update
const uint32_t max_delay = hal.scheduler->in_expected_delay()?8000:500;
last_iocmu_timestamp_ms = reg_status.timestamp_ms;
if (dt_ms < max_delay) {
// all OK
last_safety_off = reg_status.flag_safety_off;
return;
}
detected_io_reset = true;
INTERNAL_ERROR(AP_InternalError::error_t::iomcu_reset);
debug("IOMCU reset t=%u %u %u dt=%u\n",
unsigned(AP_HAL::millis()), unsigned(ts1), unsigned(reg_status.timestamp_ms), unsigned(dt_ms));
bool have_forced_off = false;
if (last_safety_off && !reg_status.flag_safety_off && AP::arming().is_armed()) {
AP_BoardConfig *boardconfig = AP_BoardConfig::get_singleton();
uint16_t options = boardconfig?boardconfig->get_safety_button_options():0;
if (safety_forced_off || (options & AP_BoardConfig::BOARD_SAFETY_OPTION_BUTTON_ACTIVE_ARMED) == 0) {
// IOMCU has reset while armed with safety off - force it off
// again so we can keep flying
have_forced_off = true;
force_safety_off();
}
}
if (!have_forced_off) {
last_safety_off = reg_status.flag_safety_off;
}
// we need to ensure the mixer data and the rates are sent over to
// the IOMCU
if (mixing.enabled) {
trigger_event(IOEVENT_MIXING);
}
trigger_event(IOEVENT_SET_RATES);
trigger_event(IOEVENT_SET_DEFAULT_RATE);
trigger_event(IOEVENT_SET_DSHOT_PERIOD);
trigger_event(IOEVENT_SET_OUTPUT_MODE);
trigger_event(IOEVENT_SET_CHANNEL_MASK);
if (rate.oneshot_enabled) {
trigger_event(IOEVENT_SET_ONESHOT_ON);
}
if (rate.brushed_enabled) {
trigger_event(IOEVENT_SET_BRUSHED_ON);
}
if (rate.sbus_rate_hz) {
trigger_event(IOEVENT_ENABLE_SBUS);
}
if (pwm_out.safety_mask) {
trigger_event(IOEVENT_SET_SAFETY_MASK);
}
last_rc_protocols = 0;
}
// Check if pin number is valid and configured for GPIO
bool AP_IOMCU::valid_GPIO_pin(uint8_t pin) const
{
// sanity check pin number
if (!convert_pin_number(pin)) {
return false;
}
// check pin is enabled as GPIO
return ((GPIO.channel_mask & (1U << pin)) != 0);
}
// convert external pin numbers 101 to 108 to internal 0 to 7
bool AP_IOMCU::convert_pin_number(uint8_t& pin) const
{
if (pin < 101 || pin > 108) {
return false;
}
pin -= 101;
return true;
}
// set GPIO mask of channels setup for output
void AP_IOMCU::set_GPIO_mask(uint8_t mask)
{
if (mask == GPIO.channel_mask) {
return;
}
GPIO.channel_mask = mask;
trigger_event(IOEVENT_GPIO);
}
// Get GPIO mask of channels setup for output
uint8_t AP_IOMCU::get_GPIO_mask() const
{
return GPIO.channel_mask;
}
// write to a output pin
void AP_IOMCU::write_GPIO(uint8_t pin, bool value)
{
if (!convert_pin_number(pin)) {
return;
}
if (value == ((GPIO.output_mask & (1U << pin)) != 0)) {
return;
}
if (value) {
GPIO.output_mask |= (1U << pin);
} else {
GPIO.output_mask &= ~(1U << pin);
}
trigger_event(IOEVENT_GPIO);
}
// Read the last output value send to the GPIO pin
// This is not a real read of the actual pin
// This allows callers to check for state change
uint8_t AP_IOMCU::read_virtual_GPIO(uint8_t pin) const
{
if (!convert_pin_number(pin)) {
return 0;
}
return (GPIO.output_mask & (1U << pin)) != 0;
}
// toggle a output pin
void AP_IOMCU::toggle_GPIO(uint8_t pin)
{
if (!convert_pin_number(pin)) {
return;
}
GPIO.output_mask ^= (1U << pin);
trigger_event(IOEVENT_GPIO);
}
#if AP_IOMCU_PROFILED_SUPPORT_ENABLED
// set profiled R G B values
void AP_IOMCU::set_profiled(uint8_t r, uint8_t g, uint8_t b)
{
if (!use_safety_as_led) {
return;
}
if (r == profiled.red && g == profiled.green && b == profiled.blue) {
return;
}
profiled.magic = PROFILED_ENABLE_MAGIC;
profiled.red = r;
profiled.green = g;
profiled.blue = b;
trigger_event(IOEVENT_PROFILED);
}
#endif
namespace AP {
AP_IOMCU *iomcu(void) {
return AP_IOMCU::get_singleton();
}
};
#endif // HAL_WITH_IO_MCU