mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-24 17:48:35 -04:00
643 lines
26 KiB
C++
643 lines
26 KiB
C++
#include "AC_AttitudeControl_Heli.h"
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <AP_Scheduler/AP_Scheduler.h>
|
|
|
|
// table of user settable parameters
|
|
const AP_Param::GroupInfo AC_AttitudeControl_Heli::var_info[] = {
|
|
// parameters from parent vehicle
|
|
AP_NESTEDGROUPINFO(AC_AttitudeControl, 0),
|
|
|
|
// @Param: HOVR_ROL_TRM
|
|
// @DisplayName: Hover Roll Trim
|
|
// @Description: Trim the hover roll angle to counter tail rotor thrust in a hover
|
|
// @Units: cdeg
|
|
// @Increment: 10
|
|
// @Range: 0 1000
|
|
// @User: Advanced
|
|
AP_GROUPINFO("HOVR_ROL_TRM", 1, AC_AttitudeControl_Heli, _hover_roll_trim, AC_ATTITUDE_HELI_HOVER_ROLL_TRIM_DEFAULT),
|
|
|
|
// @Param: RAT_RLL_P
|
|
// @DisplayName: Roll axis rate controller P gain
|
|
// @Description: Roll axis rate controller P gain. Corrects in proportion to the difference between the desired roll rate vs actual roll rate
|
|
// @Range: 0.0 0.35
|
|
// @Increment: 0.005
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_RLL_I
|
|
// @DisplayName: Roll axis rate controller I gain
|
|
// @Description: Roll axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate
|
|
// @Range: 0.0 0.6
|
|
// @Increment: 0.01
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_RLL_IMAX
|
|
// @DisplayName: Roll axis rate controller I gain maximum
|
|
// @Description: Roll axis rate controller I gain maximum. Constrains the maximum that the I term will output
|
|
// @Range: 0 1
|
|
// @Increment: 0.01
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_RLL_ILMI
|
|
// @DisplayName: Roll axis rate controller I-term leak minimum
|
|
// @Description: Point below which I-term will not leak down
|
|
// @Range: 0 1
|
|
// @User: Advanced
|
|
|
|
// @Param: RAT_RLL_D
|
|
// @DisplayName: Roll axis rate controller D gain
|
|
// @Description: Roll axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate
|
|
// @Range: 0.0 0.03
|
|
// @Increment: 0.001
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_RLL_FF
|
|
// @DisplayName: Roll axis rate controller feed forward
|
|
// @Description: Roll axis rate controller feed forward
|
|
// @Range: 0.05 0.5
|
|
// @Increment: 0.001
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_RLL_FLTT
|
|
// @DisplayName: Roll axis rate controller target frequency in Hz
|
|
// @Description: Roll axis rate controller target frequency in Hz
|
|
// @Range: 5 50
|
|
// @Increment: 1
|
|
// @Units: Hz
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_RLL_FLTE
|
|
// @DisplayName: Roll axis rate controller error frequency in Hz
|
|
// @Description: Roll axis rate controller error frequency in Hz
|
|
// @Range: 5 50
|
|
// @Increment: 1
|
|
// @Units: Hz
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_RLL_FLTD
|
|
// @DisplayName: Roll axis rate controller derivative frequency in Hz
|
|
// @Description: Roll axis rate controller derivative frequency in Hz
|
|
// @Range: 0 50
|
|
// @Increment: 1
|
|
// @Units: Hz
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_RLL_SMAX
|
|
// @DisplayName: Roll slew rate limit
|
|
// @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.
|
|
// @Range: 0 200
|
|
// @Increment: 0.5
|
|
// @User: Advanced
|
|
|
|
// @Param: RAT_RLL_D_FF
|
|
// @DisplayName: Roll Derivative FeedForward Gain
|
|
// @Description: FF D Gain which produces an output that is proportional to the rate of change of the target
|
|
// @Range: 0 0.02
|
|
// @Increment: 0.0001
|
|
// @User: Advanced
|
|
|
|
// @Param: RAT_RLL_NTF
|
|
// @DisplayName: Roll Target notch filter index
|
|
// @Description: Roll Target notch filter index
|
|
// @Range: 1 8
|
|
// @User: Advanced
|
|
|
|
// @Param: RAT_RLL_NEF
|
|
// @DisplayName: Roll Error notch filter index
|
|
// @Description: Roll Error notch filter index
|
|
// @Range: 1 8
|
|
// @User: Advanced
|
|
|
|
AP_SUBGROUPINFO(_pid_rate_roll, "RAT_RLL_", 2, AC_AttitudeControl_Heli, AC_HELI_PID),
|
|
|
|
// @Param: RAT_PIT_P
|
|
// @DisplayName: Pitch axis rate controller P gain
|
|
// @Description: Pitch axis rate controller P gain. Corrects in proportion to the difference between the desired pitch rate vs actual pitch rate
|
|
// @Range: 0.0 0.35
|
|
// @Increment: 0.005
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_PIT_I
|
|
// @DisplayName: Pitch axis rate controller I gain
|
|
// @Description: Pitch axis rate controller I gain. Corrects long-term difference in desired pitch rate vs actual pitch rate
|
|
// @Range: 0.0 0.6
|
|
// @Increment: 0.01
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_PIT_IMAX
|
|
// @DisplayName: Pitch axis rate controller I gain maximum
|
|
// @Description: Pitch axis rate controller I gain maximum. Constrains the maximum that the I term will output
|
|
// @Range: 0 1
|
|
// @Increment: 0.01
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_PIT_ILMI
|
|
// @DisplayName: Pitch axis rate controller I-term leak minimum
|
|
// @Description: Point below which I-term will not leak down
|
|
// @Range: 0 1
|
|
// @User: Advanced
|
|
|
|
// @Param: RAT_PIT_D
|
|
// @DisplayName: Pitch axis rate controller D gain
|
|
// @Description: Pitch axis rate controller D gain. Compensates for short-term change in desired pitch rate vs actual pitch rate
|
|
// @Range: 0.0 0.03
|
|
// @Increment: 0.001
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_PIT_FF
|
|
// @DisplayName: Pitch axis rate controller feed forward
|
|
// @Description: Pitch axis rate controller feed forward
|
|
// @Range: 0.05 0.5
|
|
// @Increment: 0.001
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_PIT_FLTT
|
|
// @DisplayName: Pitch axis rate controller target frequency in Hz
|
|
// @Description: Pitch axis rate controller target frequency in Hz
|
|
// @Range: 5 50
|
|
// @Increment: 1
|
|
// @Units: Hz
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_PIT_FLTE
|
|
// @DisplayName: Pitch axis rate controller error frequency in Hz
|
|
// @Description: Pitch axis rate controller error frequency in Hz
|
|
// @Range: 5 50
|
|
// @Increment: 1
|
|
// @Units: Hz
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_PIT_FLTD
|
|
// @DisplayName: Pitch axis rate controller derivative frequency in Hz
|
|
// @Description: Pitch axis rate controller derivative frequency in Hz
|
|
// @Range: 0 50
|
|
// @Increment: 1
|
|
// @Units: Hz
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_PIT_SMAX
|
|
// @DisplayName: Pitch slew rate limit
|
|
// @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.
|
|
// @Range: 0 200
|
|
// @Increment: 0.5
|
|
// @User: Advanced
|
|
|
|
// @Param: RAT_PIT_D_FF
|
|
// @DisplayName: Pitch Derivative FeedForward Gain
|
|
// @Description: FF D Gain which produces an output that is proportional to the rate of change of the target
|
|
// @Range: 0 0.02
|
|
// @Increment: 0.0001
|
|
// @User: Advanced
|
|
|
|
// @Param: RAT_PIT_NTF
|
|
// @DisplayName: Pitch Target notch filter index
|
|
// @Description: Pitch Target notch filter index
|
|
// @Range: 1 8
|
|
// @User: Advanced
|
|
|
|
// @Param: RAT_PIT_NEF
|
|
// @DisplayName: Pitch Error notch filter index
|
|
// @Description: Pitch Error notch filter index
|
|
// @Range: 1 8
|
|
// @User: Advanced
|
|
|
|
AP_SUBGROUPINFO(_pid_rate_pitch, "RAT_PIT_", 3, AC_AttitudeControl_Heli, AC_HELI_PID),
|
|
|
|
// @Param: RAT_YAW_P
|
|
// @DisplayName: Yaw axis rate controller P gain
|
|
// @Description: Yaw axis rate controller P gain. Corrects in proportion to the difference between the desired yaw rate vs actual yaw rate
|
|
// @Range: 0.180 0.60
|
|
// @Increment: 0.005
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_YAW_I
|
|
// @DisplayName: Yaw axis rate controller I gain
|
|
// @Description: Yaw axis rate controller I gain. Corrects long-term difference in desired yaw rate vs actual yaw rate
|
|
// @Range: 0.01 0.2
|
|
// @Increment: 0.01
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_YAW_IMAX
|
|
// @DisplayName: Yaw axis rate controller I gain maximum
|
|
// @Description: Yaw axis rate controller I gain maximum. Constrains the maximum that the I term will output
|
|
// @Range: 0 1
|
|
// @Increment: 0.01
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_YAW_ILMI
|
|
// @DisplayName: Yaw axis rate controller I-term leak minimum
|
|
// @Description: Point below which I-term will not leak down
|
|
// @Range: 0 1
|
|
// @User: Advanced
|
|
|
|
// @Param: RAT_YAW_D
|
|
// @DisplayName: Yaw axis rate controller D gain
|
|
// @Description: Yaw axis rate controller D gain. Compensates for short-term change in desired yaw rate vs actual yaw rate
|
|
// @Range: 0.000 0.02
|
|
// @Increment: 0.001
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_YAW_FF
|
|
// @DisplayName: Yaw axis rate controller feed forward
|
|
// @Description: Yaw axis rate controller feed forward
|
|
// @Range: 0 0.5
|
|
// @Increment: 0.001
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_YAW_FLTT
|
|
// @DisplayName: Yaw axis rate controller target frequency in Hz
|
|
// @Description: Yaw axis rate controller target frequency in Hz
|
|
// @Range: 5 50
|
|
// @Increment: 1
|
|
// @Units: Hz
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_YAW_FLTE
|
|
// @DisplayName: Yaw axis rate controller error frequency in Hz
|
|
// @Description: Yaw axis rate controller error frequency in Hz
|
|
// @Range: 5 50
|
|
// @Increment: 1
|
|
// @Units: Hz
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_YAW_FLTD
|
|
// @DisplayName: Yaw axis rate controller derivative frequency in Hz
|
|
// @Description: Yaw axis rate controller derivative frequency in Hz
|
|
// @Range: 0 50
|
|
// @Increment: 1
|
|
// @Units: Hz
|
|
// @User: Standard
|
|
|
|
// @Param: RAT_YAW_SMAX
|
|
// @DisplayName: Yaw slew rate limit
|
|
// @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.
|
|
// @Range: 0 200
|
|
// @Increment: 0.5
|
|
// @User: Advanced
|
|
|
|
// @Param: RAT_YAW_D_FF
|
|
// @DisplayName: Yaw Derivative FeedForward Gain
|
|
// @Description: FF D Gain which produces an output that is proportional to the rate of change of the target
|
|
// @Range: 0 0.02
|
|
// @Increment: 0.0001
|
|
// @User: Advanced
|
|
|
|
// @Param: RAT_YAW_NTF
|
|
// @DisplayName: Yaw Target notch filter index
|
|
// @Description: Yaw Target notch filter index
|
|
// @Range: 1 8
|
|
// @Units: Hz
|
|
// @User: Advanced
|
|
|
|
// @Param: RAT_YAW_NEF
|
|
// @DisplayName: Yaw Error notch filter index
|
|
// @Description: Yaw Error notch filter index
|
|
// @Range: 1 8
|
|
// @User: Advanced
|
|
|
|
AP_SUBGROUPINFO(_pid_rate_yaw, "RAT_YAW_", 4, AC_AttitudeControl_Heli, AC_HELI_PID),
|
|
|
|
// @Param: PIRO_COMP
|
|
// @DisplayName: Piro Comp Enable
|
|
// @Description: Pirouette compensation enabled
|
|
// @Values: 0:Disabled,1:Enabled
|
|
// @User: Advanced
|
|
AP_GROUPINFO("PIRO_COMP", 5, AC_AttitudeControl_Heli, _piro_comp_enabled, 0),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
AC_AttitudeControl_Heli::AC_AttitudeControl_Heli(AP_AHRS_View &ahrs, const AP_MultiCopter &aparm, AP_MotorsHeli& motors) :
|
|
AC_AttitudeControl(ahrs, aparm, motors)
|
|
{
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
|
|
// initialise flags
|
|
_flags_heli.leaky_i = true;
|
|
_flags_heli.flybar_passthrough = false;
|
|
_flags_heli.tail_passthrough = false;
|
|
#if AP_FILTER_ENABLED
|
|
set_notch_sample_rate(AP::scheduler().get_loop_rate_hz());
|
|
#endif
|
|
}
|
|
|
|
// passthrough_bf_roll_pitch_rate_yaw - passthrough the pilots roll and pitch inputs directly to swashplate for flybar acro mode
|
|
void AC_AttitudeControl_Heli::passthrough_bf_roll_pitch_rate_yaw(float roll_passthrough, float pitch_passthrough, float yaw_rate_bf_cds)
|
|
{
|
|
// convert from centidegrees on public interface to radians
|
|
float yaw_rate_bf_rads = radians(yaw_rate_bf_cds * 0.01f);
|
|
|
|
// store roll, pitch and passthroughs
|
|
// NOTE: this abuses yaw_rate_bf_rads
|
|
_passthrough_roll = roll_passthrough;
|
|
_passthrough_pitch = pitch_passthrough;
|
|
_passthrough_yaw = degrees(yaw_rate_bf_rads) * 100.0f;
|
|
|
|
// set rate controller to use pass through
|
|
_flags_heli.flybar_passthrough = true;
|
|
|
|
// set bf rate targets to current body frame rates (i.e. relax and be ready for vehicle to switch out of acro)
|
|
_ang_vel_target.x = _ahrs.get_gyro().x;
|
|
_ang_vel_target.y = _ahrs.get_gyro().y;
|
|
|
|
// accel limit desired yaw rate
|
|
if (get_accel_yaw_max_radss() > 0.0f) {
|
|
float rate_change_limit_rads = get_accel_yaw_max_radss() * _dt;
|
|
float rate_change_rads = yaw_rate_bf_rads - _ang_vel_target.z;
|
|
rate_change_rads = constrain_float(rate_change_rads, -rate_change_limit_rads, rate_change_limit_rads);
|
|
_ang_vel_target.z += rate_change_rads;
|
|
} else {
|
|
_ang_vel_target.z = yaw_rate_bf_rads;
|
|
}
|
|
|
|
integrate_bf_rate_error_to_angle_errors();
|
|
_att_error_rot_vec_rad.x = 0;
|
|
_att_error_rot_vec_rad.y = 0;
|
|
|
|
// update our earth-frame angle targets
|
|
Vector3f att_error_euler_rad;
|
|
|
|
// convert angle error rotation vector into 321-intrinsic euler angle difference
|
|
// NOTE: this results an an approximation linearized about the vehicle's attitude
|
|
Quaternion att;
|
|
_ahrs.get_quat_body_to_ned(att);
|
|
if (ang_vel_to_euler_rate(att, _att_error_rot_vec_rad, att_error_euler_rad)) {
|
|
_euler_angle_target.x = wrap_PI(att_error_euler_rad.x + _ahrs.roll);
|
|
_euler_angle_target.y = wrap_PI(att_error_euler_rad.y + _ahrs.pitch);
|
|
_euler_angle_target.z = wrap_2PI(att_error_euler_rad.z + _ahrs.yaw);
|
|
}
|
|
|
|
// handle flipping over pitch axis
|
|
if (_euler_angle_target.y > M_PI / 2.0f) {
|
|
_euler_angle_target.x = wrap_PI(_euler_angle_target.x + M_PI);
|
|
_euler_angle_target.y = wrap_PI(M_PI - _euler_angle_target.x);
|
|
_euler_angle_target.z = wrap_2PI(_euler_angle_target.z + M_PI);
|
|
}
|
|
if (_euler_angle_target.y < -M_PI / 2.0f) {
|
|
_euler_angle_target.x = wrap_PI(_euler_angle_target.x + M_PI);
|
|
_euler_angle_target.y = wrap_PI(-M_PI - _euler_angle_target.x);
|
|
_euler_angle_target.z = wrap_2PI(_euler_angle_target.z + M_PI);
|
|
}
|
|
|
|
// convert body-frame angle errors to body-frame rate targets
|
|
_ang_vel_body = update_ang_vel_target_from_att_error(_att_error_rot_vec_rad);
|
|
|
|
// set body-frame roll/pitch rate target to current desired rates which are the vehicle's actual rates
|
|
_ang_vel_body.x = _ang_vel_target.x;
|
|
_ang_vel_body.y = _ang_vel_target.y;
|
|
|
|
// add desired target to yaw
|
|
_ang_vel_body.z += _ang_vel_target.z;
|
|
_thrust_error_angle = _att_error_rot_vec_rad.xy().length();
|
|
}
|
|
|
|
void AC_AttitudeControl_Heli::integrate_bf_rate_error_to_angle_errors()
|
|
{
|
|
// Integrate the angular velocity error into the attitude error
|
|
_att_error_rot_vec_rad += (_ang_vel_target - _ahrs.get_gyro()) * _dt;
|
|
|
|
// Constrain attitude error
|
|
_att_error_rot_vec_rad.x = constrain_float(_att_error_rot_vec_rad.x, -AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD, AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD);
|
|
_att_error_rot_vec_rad.y = constrain_float(_att_error_rot_vec_rad.y, -AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD, AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD);
|
|
_att_error_rot_vec_rad.z = constrain_float(_att_error_rot_vec_rad.z, -AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD, AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD);
|
|
}
|
|
|
|
// subclass non-passthrough too, for external gyro, no flybar
|
|
void AC_AttitudeControl_Heli::input_rate_bf_roll_pitch_yaw(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds)
|
|
{
|
|
_passthrough_yaw = yaw_rate_bf_cds;
|
|
|
|
AC_AttitudeControl::input_rate_bf_roll_pitch_yaw(roll_rate_bf_cds, pitch_rate_bf_cds, yaw_rate_bf_cds);
|
|
}
|
|
|
|
//
|
|
// rate controller (body-frame) methods
|
|
//
|
|
|
|
// rate_controller_run - run lowest level rate controller and send outputs to the motors
|
|
// should be called at 100hz or more
|
|
void AC_AttitudeControl_Heli::rate_controller_run()
|
|
{
|
|
_ang_vel_body += _sysid_ang_vel_body;
|
|
|
|
_rate_gyro = _ahrs.get_gyro_latest();
|
|
_rate_gyro_time_us = AP_HAL::micros64();
|
|
|
|
// call rate controllers and send output to motors object
|
|
// if using a flybar passthrough roll and pitch directly to motors
|
|
if (_flags_heli.flybar_passthrough) {
|
|
_motors.set_roll(_passthrough_roll / 4500.0f);
|
|
_motors.set_pitch(_passthrough_pitch / 4500.0f);
|
|
} else {
|
|
rate_bf_to_motor_roll_pitch(_rate_gyro, _ang_vel_body.x, _ang_vel_body.y);
|
|
}
|
|
if (_flags_heli.tail_passthrough) {
|
|
_motors.set_yaw(_passthrough_yaw / 4500.0f);
|
|
} else {
|
|
_motors.set_yaw(rate_target_to_motor_yaw(_rate_gyro.z, _ang_vel_body.z));
|
|
}
|
|
|
|
_sysid_ang_vel_body.zero();
|
|
_actuator_sysid.zero();
|
|
|
|
}
|
|
|
|
// Update Alt_Hold angle maximum
|
|
void AC_AttitudeControl_Heli::update_althold_lean_angle_max(float throttle_in)
|
|
{
|
|
float althold_lean_angle_max = acosf(constrain_float(throttle_in / AC_ATTITUDE_HELI_ANGLE_LIMIT_THROTTLE_MAX, 0.0f, 1.0f));
|
|
_althold_lean_angle_max = _althold_lean_angle_max + (_dt / (_dt + _angle_limit_tc)) * (althold_lean_angle_max - _althold_lean_angle_max);
|
|
}
|
|
|
|
//
|
|
// private methods
|
|
//
|
|
|
|
//
|
|
// body-frame rate controller
|
|
//
|
|
|
|
// rate_bf_to_motor_roll_pitch - ask the rate controller to calculate the motor outputs to achieve the target rate in radians/second
|
|
void AC_AttitudeControl_Heli::rate_bf_to_motor_roll_pitch(const Vector3f &rate_rads, float rate_roll_target_rads, float rate_pitch_target_rads)
|
|
{
|
|
|
|
if (_flags_heli.leaky_i) {
|
|
_pid_rate_roll.update_leaky_i(AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE);
|
|
}
|
|
float roll_pid = _pid_rate_roll.update_all(rate_roll_target_rads, rate_rads.x, _dt, _motors.limit.roll) + _actuator_sysid.x;
|
|
|
|
if (_flags_heli.leaky_i) {
|
|
_pid_rate_pitch.update_leaky_i(AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE);
|
|
}
|
|
|
|
float pitch_pid = _pid_rate_pitch.update_all(rate_pitch_target_rads, rate_rads.y, _dt, _motors.limit.pitch) + _actuator_sysid.y;
|
|
|
|
// use pid library to calculate ff
|
|
float roll_ff = _pid_rate_roll.get_ff();
|
|
float pitch_ff = _pid_rate_pitch.get_ff();
|
|
|
|
// add feed forward and final output
|
|
float roll_out = roll_pid + roll_ff;
|
|
float pitch_out = pitch_pid + pitch_ff;
|
|
|
|
// constrain output
|
|
roll_out = constrain_float(roll_out, -AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX, AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX);
|
|
pitch_out = constrain_float(pitch_out, -AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX, AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX);
|
|
|
|
// output to motors
|
|
_motors.set_roll(roll_out);
|
|
_motors.set_pitch(pitch_out);
|
|
|
|
// Piro-Comp, or Pirouette Compensation is a pre-compensation calculation, which basically rotates the Roll and Pitch Rate I-terms as the
|
|
// helicopter rotates in yaw. Much of the built-up I-term is needed to tip the disk into the incoming wind. Fast yawing can create an instability
|
|
// as the built-up I-term in one axis must be reduced, while the other increases. This helps solve that by rotating the I-terms before the error occurs.
|
|
// It does assume that the rotor aerodynamics and mechanics are essentially symmetrical about the main shaft, which is a generally valid assumption.
|
|
if (_piro_comp_enabled) {
|
|
|
|
// used to hold current I-terms while doing piro comp:
|
|
const float piro_roll_i = _pid_rate_roll.get_i();
|
|
const float piro_pitch_i = _pid_rate_pitch.get_i();
|
|
|
|
Vector2f yawratevector;
|
|
yawratevector.x = cosf(-rate_rads.z * _dt);
|
|
yawratevector.y = sinf(-rate_rads.z * _dt);
|
|
yawratevector.normalize();
|
|
|
|
_pid_rate_roll.set_integrator(piro_roll_i * yawratevector.x - piro_pitch_i * yawratevector.y);
|
|
_pid_rate_pitch.set_integrator(piro_pitch_i * yawratevector.x + piro_roll_i * yawratevector.y);
|
|
}
|
|
|
|
}
|
|
|
|
// rate_bf_to_motor_yaw - ask the rate controller to calculate the motor outputs to achieve the target rate in radians/second
|
|
float AC_AttitudeControl_Heli::rate_target_to_motor_yaw(float rate_yaw_actual_rads, float rate_target_rads)
|
|
{
|
|
if (!((AP_MotorsHeli&)_motors).rotor_runup_complete()) {
|
|
_pid_rate_yaw.update_leaky_i(AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE);
|
|
}
|
|
|
|
float pid = _pid_rate_yaw.update_all(rate_target_rads, rate_yaw_actual_rads, _dt, _motors.limit.yaw) + _actuator_sysid.z;
|
|
|
|
// use pid library to calculate ff
|
|
float vff = _pid_rate_yaw.get_ff()*_feedforward_scalar;
|
|
|
|
// add feed forward
|
|
float yaw_out = pid + vff;
|
|
|
|
// constrain output
|
|
yaw_out = constrain_float(yaw_out, -AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX, AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX);
|
|
|
|
// output to motors
|
|
return yaw_out;
|
|
}
|
|
|
|
//
|
|
// throttle functions
|
|
//
|
|
|
|
void AC_AttitudeControl_Heli::set_throttle_out(float throttle_in, bool apply_angle_boost, float filter_cutoff)
|
|
{
|
|
_throttle_in = throttle_in;
|
|
update_althold_lean_angle_max(throttle_in);
|
|
|
|
_motors.set_throttle_filter_cutoff(filter_cutoff);
|
|
if (apply_angle_boost && !((AP_MotorsHeli&)_motors).in_autorotation()) {
|
|
// Apply angle boost
|
|
throttle_in = get_throttle_boosted(throttle_in);
|
|
} else {
|
|
// Clear angle_boost for logging purposes
|
|
_angle_boost = 0.0f;
|
|
}
|
|
_motors.set_throttle(throttle_in);
|
|
}
|
|
|
|
// returns a throttle including compensation for roll/pitch angle
|
|
// throttle value should be 0 ~ 1
|
|
float AC_AttitudeControl_Heli::get_throttle_boosted(float throttle_in)
|
|
{
|
|
if (!_angle_boost_enabled) {
|
|
_angle_boost = 0;
|
|
return throttle_in;
|
|
}
|
|
// inverted_factor is 1 for tilt angles below 60 degrees
|
|
// inverted_factor changes from 1 to -1 for tilt angles between 60 and 120 degrees
|
|
|
|
float cos_tilt = _ahrs.cos_pitch() * _ahrs.cos_roll();
|
|
float inverted_factor = constrain_float(2.0f * cos_tilt, -1.0f, 1.0f);
|
|
float cos_tilt_target = fabsf(cosf(_thrust_angle));
|
|
float boost_factor = 1.0f / constrain_float(cos_tilt_target, 0.1f, 1.0f);
|
|
|
|
// angle boost and inverted factor applied about the zero thrust collective
|
|
const float coll_mid = ((AP_MotorsHeli&)_motors).get_coll_mid();
|
|
float throttle_out = ((throttle_in - coll_mid) * inverted_factor * boost_factor) + coll_mid;
|
|
_angle_boost = constrain_float(throttle_out - throttle_in, -1.0f, 1.0f);
|
|
return throttle_out;
|
|
}
|
|
|
|
// get_roll_trim - angle in centi-degrees to be added to roll angle for learn hover collective. Used by helicopter to counter tail rotor thrust in hover
|
|
float AC_AttitudeControl_Heli::get_roll_trim_cd()
|
|
{
|
|
// hover roll trim is given the opposite sign in inverted flight since the tail rotor thrust is pointed in the opposite direction.
|
|
float inverted_factor = constrain_float(2.0f * _ahrs.cos_roll(), -1.0f, 1.0f);
|
|
return constrain_float(_hover_roll_trim_scalar * _hover_roll_trim * inverted_factor, -1000.0f,1000.0f);
|
|
}
|
|
|
|
// Command an euler roll and pitch angle and an euler yaw rate with angular velocity feedforward and smoothing
|
|
void AC_AttitudeControl_Heli::input_euler_angle_roll_pitch_euler_rate_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_rate_cds)
|
|
{
|
|
if (_inverted_flight) {
|
|
euler_roll_angle_cd = wrap_180_cd(euler_roll_angle_cd + 18000);
|
|
}
|
|
AC_AttitudeControl::input_euler_angle_roll_pitch_euler_rate_yaw(euler_roll_angle_cd, euler_pitch_angle_cd, euler_yaw_rate_cds);
|
|
}
|
|
|
|
// Command an euler roll, pitch and yaw angle with angular velocity feedforward and smoothing
|
|
void AC_AttitudeControl_Heli::input_euler_angle_roll_pitch_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_angle_cd, bool slew_yaw)
|
|
{
|
|
if (_inverted_flight) {
|
|
euler_roll_angle_cd = wrap_180_cd(euler_roll_angle_cd + 18000);
|
|
}
|
|
AC_AttitudeControl::input_euler_angle_roll_pitch_yaw(euler_roll_angle_cd, euler_pitch_angle_cd, euler_yaw_angle_cd, slew_yaw);
|
|
}
|
|
|
|
void AC_AttitudeControl_Heli::set_notch_sample_rate(float sample_rate)
|
|
{
|
|
#if AP_FILTER_ENABLED
|
|
_pid_rate_roll.set_notch_sample_rate(sample_rate);
|
|
_pid_rate_pitch.set_notch_sample_rate(sample_rate);
|
|
_pid_rate_yaw.set_notch_sample_rate(sample_rate);
|
|
#endif
|
|
}
|
|
|
|
// Command a thrust vector and heading rate
|
|
void AC_AttitudeControl_Heli::input_thrust_vector_rate_heading(const Vector3f& thrust_vector, float heading_rate_cds, bool slew_yaw)
|
|
{
|
|
|
|
if (!_inverted_flight) {
|
|
AC_AttitudeControl::input_thrust_vector_rate_heading(thrust_vector, heading_rate_cds, slew_yaw);
|
|
return;
|
|
}
|
|
// convert thrust vector to a roll and pitch angles
|
|
// this negates the advantage of using thrust vector control, but works just fine
|
|
Vector3f angle_target = attitude_from_thrust_vector(thrust_vector, _ahrs.yaw).to_vector312();
|
|
|
|
float euler_roll_angle_cd = degrees(angle_target.x) * 100.0f;
|
|
euler_roll_angle_cd = wrap_180_cd(euler_roll_angle_cd + 18000);
|
|
AC_AttitudeControl::input_euler_angle_roll_pitch_euler_rate_yaw(euler_roll_angle_cd, degrees(angle_target.y) * 100.0f, heading_rate_cds);
|
|
}
|
|
|
|
// Command a thrust vector, heading and heading rate
|
|
void AC_AttitudeControl_Heli::input_thrust_vector_heading(const Vector3f& thrust_vector, float heading_angle_cd, float heading_rate_cds)
|
|
{
|
|
if (!_inverted_flight) {
|
|
AC_AttitudeControl::input_thrust_vector_heading(thrust_vector, heading_angle_cd, heading_rate_cds);
|
|
return;
|
|
}
|
|
// convert thrust vector to a roll and pitch angles
|
|
Vector3f angle_target = attitude_from_thrust_vector(thrust_vector, _ahrs.yaw).to_vector312();
|
|
|
|
float euler_roll_angle_cd = degrees(angle_target.x) * 100.0f;
|
|
euler_roll_angle_cd = wrap_180_cd(euler_roll_angle_cd + 18000);
|
|
// note that we are throwing away heading rate here
|
|
AC_AttitudeControl::input_euler_angle_roll_pitch_yaw(euler_roll_angle_cd, degrees(angle_target.y) * 100.0f, heading_angle_cd, true);
|
|
}
|