mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-22 00:28:30 -04:00
c2f8571f37
Also adjust parameter ranges used by GCSs
707 lines
30 KiB
C++
707 lines
30 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
|
|
|
|
#include "AC_AttitudeControl.h"
|
|
#include <AP_HAL.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// table of user settable parameters
|
|
const AP_Param::GroupInfo AC_AttitudeControl::var_info[] PROGMEM = {
|
|
|
|
// @Param: RATE_RP_MAX
|
|
// @DisplayName: Angle Rate Roll-Pitch max
|
|
// @Description: maximum rotation rate in roll/pitch axis requested by angle controller used in stabilize, loiter, rtl, auto flight modes
|
|
// @Units: Centi-Degrees/Sec
|
|
// @Range: 9000 36000
|
|
// @Increment: 500
|
|
// @User: Advanced
|
|
AP_GROUPINFO("RATE_RP_MAX", 0, AC_AttitudeControl, _angle_rate_rp_max, AC_ATTITUDE_CONTROL_RATE_RP_MAX_DEFAULT),
|
|
|
|
// @Param: RATE_Y_MAX
|
|
// @DisplayName: Angle Rate Yaw max
|
|
// @Description: maximum rotation rate in roll/pitch axis requested by angle controller used in stabilize, loiter, rtl, auto flight modes
|
|
// @Units: Centi-Degrees/Sec
|
|
// @Range: 4500 18000
|
|
// @Increment: 500
|
|
// @User: Advanced
|
|
AP_GROUPINFO("RATE_Y_MAX", 1, AC_AttitudeControl, _angle_rate_y_max, AC_ATTITUDE_CONTROL_RATE_Y_MAX_DEFAULT),
|
|
|
|
// @Param: SLEW_YAW
|
|
// @DisplayName: Yaw target slew rate
|
|
// @Description: Maximum rate the yaw target can be updated in Loiter, RTL, Auto flight modes
|
|
// @Units: Centi-Degrees/Sec
|
|
// @Range: 500 18000
|
|
// @Increment: 100
|
|
// @User: Advanced
|
|
AP_GROUPINFO("SLEW_YAW", 2, AC_AttitudeControl, _slew_yaw, AC_ATTITUDE_CONTROL_SLEW_YAW_DEFAULT),
|
|
|
|
// @Param: ACCEL_RP_MAX
|
|
// @DisplayName: Acceleration Max for Roll/Pitch
|
|
// @Description: Maximum acceleration in roll/pitch axis
|
|
// @Units: Centi-Degrees/Sec/Sec
|
|
// @Range: 0 180000
|
|
// @Increment: 1000
|
|
// @Values: 0:Disabled, 72000:Slow, 108000:Medium, 162000:Fast
|
|
// @User: Advanced
|
|
AP_GROUPINFO("ACCEL_RP_MAX", 3, AC_AttitudeControl, _accel_rp_max, AC_ATTITUDE_CONTROL_ACCEL_RP_MAX_DEFAULT),
|
|
|
|
// @Param: ACCEL_Y_MAX
|
|
// @DisplayName: Acceleration Max for Yaw
|
|
// @Description: Maximum acceleration in yaw axis
|
|
// @Units: Centi-Degrees/Sec/Sec
|
|
// @Range: 0 72000
|
|
// @Values: 0:Disabled, 18000:Slow, 36000:Medium, 54000:Fast
|
|
// @Increment: 1000
|
|
// @User: Advanced
|
|
AP_GROUPINFO("ACCEL_Y_MAX", 4, AC_AttitudeControl, _accel_y_max, AC_ATTITUDE_CONTROL_ACCEL_Y_MAX_DEFAULT),
|
|
|
|
// @Param: RATE_FF_ENAB
|
|
// @DisplayName: Rate Feedforward Enable
|
|
// @Description: Controls whether body-frame rate feedfoward is enabled or disabled
|
|
// @Values: 0:Disabled, 1:Enabled
|
|
// @User: Advanced
|
|
AP_GROUPINFO("RATE_FF_ENAB", 5, AC_AttitudeControl, _rate_bf_ff_enabled, AC_ATTITUDE_CONTROL_RATE_BF_FF_DEFAULT),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
//
|
|
// high level controllers
|
|
//
|
|
|
|
void AC_AttitudeControl::set_dt(float delta_sec)
|
|
{
|
|
_dt = delta_sec;
|
|
|
|
// set attitude controller's D term filters
|
|
_pid_rate_roll.set_d_lpf_alpha(AC_ATTITUDE_RATE_RP_PID_DTERM_FILTER, _dt);
|
|
_pid_rate_pitch.set_d_lpf_alpha(AC_ATTITUDE_RATE_RP_PID_DTERM_FILTER, _dt);
|
|
_pid_rate_yaw.set_d_lpf_alpha(AC_ATTITUDE_RATE_Y_PID_DTERM_FILTER, _dt);
|
|
}
|
|
|
|
// relax_bf_rate_controller - ensure body-frame rate controller has zero errors to relax rate controller output
|
|
void AC_AttitudeControl::relax_bf_rate_controller()
|
|
{
|
|
// ensure zero error in body frame rate controllers
|
|
const Vector3f& gyro = _ahrs.get_gyro();
|
|
_rate_bf_target = gyro * AC_ATTITUDE_CONTROL_DEGX100;
|
|
}
|
|
|
|
//
|
|
// methods to be called by upper controllers to request and implement a desired attitude
|
|
//
|
|
|
|
// angle_ef_roll_pitch_rate_ef_yaw_smooth - attempts to maintain a roll and pitch angle and yaw rate (all earth frame) while smoothing the attitude based on the feel parameter
|
|
// smoothing_gain : a number from 1 to 50 with 1 being sluggish and 50 being very crisp
|
|
void AC_AttitudeControl::angle_ef_roll_pitch_rate_ef_yaw_smooth(float roll_angle_ef, float pitch_angle_ef, float yaw_rate_ef, float smoothing_gain)
|
|
{
|
|
Vector3f angle_ef_error; // earth frame angle errors
|
|
float rate_change_limit;
|
|
|
|
// sanity check smoothing gain
|
|
smoothing_gain = constrain_float(smoothing_gain,1.0f,50.0f);
|
|
|
|
float linear_angle = _accel_rp_max/(smoothing_gain*smoothing_gain);
|
|
rate_change_limit = _accel_rp_max * _dt;
|
|
float rate_ef_desired;
|
|
float angle_to_target;
|
|
|
|
if (_accel_rp_max > 0.0f) {
|
|
|
|
// calculate earth-frame feed forward roll rate using linear response when close to the target, sqrt response when we're further away
|
|
angle_to_target = roll_angle_ef - _angle_ef_target.x;
|
|
if (angle_to_target > linear_angle) {
|
|
rate_ef_desired = safe_sqrt(2.0f*_accel_rp_max*((float)fabs(angle_to_target)-(linear_angle/2.0f)));
|
|
} else if (angle_to_target < -linear_angle) {
|
|
rate_ef_desired = -safe_sqrt(2.0f*_accel_rp_max*((float)fabs(angle_to_target)-(linear_angle/2.0f)));
|
|
} else {
|
|
rate_ef_desired = smoothing_gain*angle_to_target;
|
|
}
|
|
_rate_ef_desired.x = constrain_float(rate_ef_desired, _rate_ef_desired.x-rate_change_limit, _rate_ef_desired.x+rate_change_limit);
|
|
|
|
// update earth-frame roll angle target using desired roll rate
|
|
update_ef_roll_angle_and_error(_rate_ef_desired.x, angle_ef_error, AC_ATTITUDE_RATE_STAB_ROLL_OVERSHOOT_ANGLE_MAX);
|
|
|
|
// calculate earth-frame feed forward pitch rate using linear response when close to the target, sqrt response when we're further away
|
|
angle_to_target = pitch_angle_ef - _angle_ef_target.y;
|
|
if (angle_to_target > linear_angle) {
|
|
rate_ef_desired = safe_sqrt(2.0f*_accel_rp_max*((float)fabs(angle_to_target)-(linear_angle/2.0f)));
|
|
} else if (angle_to_target < -linear_angle) {
|
|
rate_ef_desired = -safe_sqrt(2.0f*_accel_rp_max*((float)fabs(angle_to_target)-(linear_angle/2.0f)));
|
|
} else {
|
|
rate_ef_desired = smoothing_gain*angle_to_target;
|
|
}
|
|
_rate_ef_desired.y = constrain_float(rate_ef_desired, _rate_ef_desired.y-rate_change_limit, _rate_ef_desired.y+rate_change_limit);
|
|
|
|
// update earth-frame pitch angle target using desired pitch rate
|
|
update_ef_pitch_angle_and_error(_rate_ef_desired.y, angle_ef_error, AC_ATTITUDE_RATE_STAB_PITCH_OVERSHOOT_ANGLE_MAX);
|
|
} else {
|
|
// target roll and pitch to desired input roll and pitch
|
|
_angle_ef_target.x = roll_angle_ef;
|
|
angle_ef_error.x = wrap_180_cd_float(_angle_ef_target.x - _ahrs.roll_sensor);
|
|
|
|
_angle_ef_target.y = pitch_angle_ef;
|
|
angle_ef_error.y = wrap_180_cd_float(_angle_ef_target.y - _ahrs.pitch_sensor);
|
|
|
|
// set roll and pitch feed forward to zero
|
|
_rate_ef_desired.x = 0;
|
|
_rate_ef_desired.y = 0;
|
|
}
|
|
// constrain earth-frame angle targets
|
|
_angle_ef_target.x = constrain_float(_angle_ef_target.x, -_aparm.angle_max, _aparm.angle_max);
|
|
_angle_ef_target.y = constrain_float(_angle_ef_target.y, -_aparm.angle_max, _aparm.angle_max);
|
|
|
|
if (_accel_y_max > 0.0f) {
|
|
// set earth-frame feed forward rate for yaw
|
|
rate_change_limit = _accel_y_max * _dt;
|
|
|
|
float rate_change = yaw_rate_ef - _rate_ef_desired.z;
|
|
rate_change = constrain_float(rate_change, -rate_change_limit, rate_change_limit);
|
|
_rate_ef_desired.z += rate_change;
|
|
// calculate yaw target angle and angle error
|
|
update_ef_yaw_angle_and_error(_rate_ef_desired.z, angle_ef_error, AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX);
|
|
} else {
|
|
// set yaw feed forward to zero
|
|
_rate_ef_desired.z = yaw_rate_ef;
|
|
// calculate yaw target angle and angle error
|
|
update_ef_yaw_angle_and_error(_rate_ef_desired.z, angle_ef_error, AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX);
|
|
}
|
|
|
|
// convert earth-frame angle errors to body-frame angle errors
|
|
frame_conversion_ef_to_bf(angle_ef_error, _angle_bf_error);
|
|
|
|
|
|
// convert body-frame angle errors to body-frame rate targets
|
|
update_rate_bf_targets();
|
|
|
|
// add body frame rate feed forward
|
|
if (_rate_bf_ff_enabled) {
|
|
// convert earth-frame feed forward rates to body-frame feed forward rates
|
|
frame_conversion_ef_to_bf(_rate_ef_desired, _rate_bf_desired);
|
|
_rate_bf_target += _rate_bf_desired;
|
|
} else {
|
|
// convert earth-frame feed forward rates to body-frame feed forward rates
|
|
frame_conversion_ef_to_bf(Vector3f(0,0,_rate_ef_desired.z), _rate_bf_desired);
|
|
_rate_bf_target += _rate_bf_desired;
|
|
}
|
|
|
|
// body-frame to motor outputs should be called separately
|
|
}
|
|
|
|
//
|
|
// methods to be called by upper controllers to request and implement a desired attitude
|
|
//
|
|
|
|
// angle_ef_roll_pitch_rate_ef_yaw - attempts to maintain a roll and pitch angle and yaw rate (all earth frame)
|
|
void AC_AttitudeControl::angle_ef_roll_pitch_rate_ef_yaw(float roll_angle_ef, float pitch_angle_ef, float yaw_rate_ef)
|
|
{
|
|
Vector3f angle_ef_error; // earth frame angle errors
|
|
|
|
// set earth-frame angle targets for roll and pitch and calculate angle error
|
|
_angle_ef_target.x = constrain_float(roll_angle_ef, -_aparm.angle_max, _aparm.angle_max);
|
|
angle_ef_error.x = wrap_180_cd_float(_angle_ef_target.x - _ahrs.roll_sensor);
|
|
|
|
_angle_ef_target.y = constrain_float(pitch_angle_ef, -_aparm.angle_max, _aparm.angle_max);
|
|
angle_ef_error.y = wrap_180_cd_float(_angle_ef_target.y - _ahrs.pitch_sensor);
|
|
|
|
if (_accel_y_max > 0.0f) {
|
|
// set earth-frame feed forward rate for yaw
|
|
float rate_change_limit = _accel_y_max * _dt;
|
|
|
|
float rate_change = yaw_rate_ef - _rate_ef_desired.z;
|
|
rate_change = constrain_float(rate_change, -rate_change_limit, rate_change_limit);
|
|
_rate_ef_desired.z += rate_change;
|
|
// calculate yaw target angle and angle error
|
|
update_ef_yaw_angle_and_error(_rate_ef_desired.z, angle_ef_error, AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX);
|
|
} else {
|
|
// set yaw feed forward to zero
|
|
_rate_ef_desired.z = yaw_rate_ef;
|
|
// calculate yaw target angle and angle error
|
|
update_ef_yaw_angle_and_error(_rate_ef_desired.z, angle_ef_error, AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX);
|
|
}
|
|
|
|
// convert earth-frame angle errors to body-frame angle errors
|
|
frame_conversion_ef_to_bf(angle_ef_error, _angle_bf_error);
|
|
|
|
// convert body-frame angle errors to body-frame rate targets
|
|
update_rate_bf_targets();
|
|
|
|
// set roll and pitch feed forward to zero
|
|
_rate_ef_desired.x = 0;
|
|
_rate_ef_desired.y = 0;
|
|
// convert earth-frame feed forward rates to body-frame feed forward rates
|
|
frame_conversion_ef_to_bf(_rate_ef_desired, _rate_bf_desired);
|
|
_rate_bf_target += _rate_bf_desired;
|
|
|
|
// body-frame to motor outputs should be called separately
|
|
}
|
|
|
|
// angle_ef_roll_pitch_yaw - attempts to maintain a roll, pitch and yaw angle (all earth frame)
|
|
// if yaw_slew is true then target yaw movement will be gradually moved to the new target based on the SLEW_YAW parameter
|
|
void AC_AttitudeControl::angle_ef_roll_pitch_yaw(float roll_angle_ef, float pitch_angle_ef, float yaw_angle_ef, bool slew_yaw)
|
|
{
|
|
Vector3f angle_ef_error;
|
|
|
|
// set earth-frame angle targets
|
|
_angle_ef_target.x = constrain_float(roll_angle_ef, -_aparm.angle_max, _aparm.angle_max);
|
|
_angle_ef_target.y = constrain_float(pitch_angle_ef, -_aparm.angle_max, _aparm.angle_max);
|
|
_angle_ef_target.z = yaw_angle_ef;
|
|
|
|
// calculate earth frame errors
|
|
angle_ef_error.x = wrap_180_cd_float(_angle_ef_target.x - _ahrs.roll_sensor);
|
|
angle_ef_error.y = wrap_180_cd_float(_angle_ef_target.y - _ahrs.pitch_sensor);
|
|
angle_ef_error.z = wrap_180_cd_float(_angle_ef_target.z - _ahrs.yaw_sensor);
|
|
|
|
// constrain the yaw angle error
|
|
if (slew_yaw) {
|
|
angle_ef_error.z = constrain_float(angle_ef_error.z,-_slew_yaw,_slew_yaw);
|
|
}
|
|
|
|
// convert earth-frame angle errors to body-frame angle errors
|
|
frame_conversion_ef_to_bf(angle_ef_error, _angle_bf_error);
|
|
|
|
// convert body-frame angle errors to body-frame rate targets
|
|
update_rate_bf_targets();
|
|
|
|
// body-frame to motor outputs should be called separately
|
|
}
|
|
|
|
// rate_ef_roll_pitch_yaw - attempts to maintain a roll, pitch and yaw rate (all earth frame)
|
|
void AC_AttitudeControl::rate_ef_roll_pitch_yaw(float roll_rate_ef, float pitch_rate_ef, float yaw_rate_ef)
|
|
{
|
|
Vector3f angle_ef_error;
|
|
float rate_change_limit, rate_change;
|
|
|
|
if (_accel_rp_max > 0.0f) {
|
|
rate_change_limit = _accel_rp_max * _dt;
|
|
|
|
// update feed forward roll rate after checking it is within acceleration limits
|
|
rate_change = roll_rate_ef - _rate_ef_desired.x;
|
|
rate_change = constrain_float(rate_change, -rate_change_limit, rate_change_limit);
|
|
_rate_ef_desired.x += rate_change;
|
|
|
|
// update feed forward pitch rate after checking it is within acceleration limits
|
|
rate_change = pitch_rate_ef - _rate_ef_desired.y;
|
|
rate_change = constrain_float(rate_change, -rate_change_limit, rate_change_limit);
|
|
_rate_ef_desired.y += rate_change;
|
|
} else {
|
|
_rate_ef_desired.x = roll_rate_ef;
|
|
_rate_ef_desired.y = pitch_rate_ef;
|
|
}
|
|
|
|
if (_accel_y_max > 0.0f) {
|
|
rate_change_limit = _accel_y_max * _dt;
|
|
|
|
// update feed forward yaw rate after checking it is within acceleration limits
|
|
rate_change = yaw_rate_ef - _rate_ef_desired.z;
|
|
rate_change = constrain_float(rate_change, -rate_change_limit, rate_change_limit);
|
|
_rate_ef_desired.z += rate_change;
|
|
} else {
|
|
_rate_ef_desired.z = yaw_rate_ef;
|
|
}
|
|
|
|
// update earth frame angle targets and errors
|
|
update_ef_roll_angle_and_error(_rate_ef_desired.x, angle_ef_error, AC_ATTITUDE_RATE_STAB_ROLL_OVERSHOOT_ANGLE_MAX);
|
|
update_ef_pitch_angle_and_error(_rate_ef_desired.y, angle_ef_error, AC_ATTITUDE_RATE_STAB_PITCH_OVERSHOOT_ANGLE_MAX);
|
|
update_ef_yaw_angle_and_error(_rate_ef_desired.z, angle_ef_error, AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX);
|
|
|
|
// constrain earth-frame angle targets
|
|
_angle_ef_target.x = constrain_float(_angle_ef_target.x, -_aparm.angle_max, _aparm.angle_max);
|
|
_angle_ef_target.y = constrain_float(_angle_ef_target.y, -_aparm.angle_max, _aparm.angle_max);
|
|
|
|
// convert earth-frame angle errors to body-frame angle errors
|
|
frame_conversion_ef_to_bf(angle_ef_error, _angle_bf_error);
|
|
|
|
// convert body-frame angle errors to body-frame rate targets
|
|
update_rate_bf_targets();
|
|
|
|
// convert earth-frame rates to body-frame rates
|
|
frame_conversion_ef_to_bf(_rate_ef_desired, _rate_bf_desired);
|
|
|
|
// add body frame rate feed forward
|
|
_rate_bf_target += _rate_bf_desired;
|
|
|
|
// body-frame to motor outputs should be called separately
|
|
}
|
|
|
|
// rate_bf_roll_pitch_yaw - attempts to maintain a roll, pitch and yaw rate (all body frame)
|
|
void AC_AttitudeControl::rate_bf_roll_pitch_yaw(float roll_rate_bf, float pitch_rate_bf, float yaw_rate_bf)
|
|
{
|
|
Vector3f angle_ef_error;
|
|
|
|
// Update angle error
|
|
if (labs(_ahrs.pitch_sensor)<_acro_angle_switch) {
|
|
_acro_angle_switch = 6000;
|
|
// convert body-frame rates to earth-frame rates
|
|
frame_conversion_bf_to_ef(_rate_bf_desired, _rate_ef_desired);
|
|
|
|
// update earth frame angle targets and errors
|
|
update_ef_roll_angle_and_error(_rate_ef_desired.x, angle_ef_error, AC_ATTITUDE_RATE_STAB_ACRO_OVERSHOOT_ANGLE_MAX);
|
|
update_ef_pitch_angle_and_error(_rate_ef_desired.y, angle_ef_error, AC_ATTITUDE_RATE_STAB_ACRO_OVERSHOOT_ANGLE_MAX);
|
|
update_ef_yaw_angle_and_error(_rate_ef_desired.z, angle_ef_error, AC_ATTITUDE_RATE_STAB_ACRO_OVERSHOOT_ANGLE_MAX);
|
|
|
|
// convert earth-frame angle errors to body-frame angle errors
|
|
frame_conversion_ef_to_bf(angle_ef_error, _angle_bf_error);
|
|
} else {
|
|
_acro_angle_switch = 4500;
|
|
integrate_bf_rate_error_to_angle_errors();
|
|
frame_conversion_bf_to_ef(_angle_bf_error, angle_ef_error);
|
|
_angle_ef_target.x = wrap_180_cd_float(angle_ef_error.x + _ahrs.roll_sensor);
|
|
_angle_ef_target.y = wrap_180_cd_float(angle_ef_error.y + _ahrs.pitch_sensor);
|
|
_angle_ef_target.z = wrap_360_cd_float(angle_ef_error.z + _ahrs.yaw_sensor);
|
|
if (_angle_ef_target.y > 9000.0f) {
|
|
_angle_ef_target.x = wrap_180_cd_float(_angle_ef_target.x + 18000.0f);
|
|
_angle_ef_target.y = wrap_180_cd_float(18000.0f - _angle_ef_target.x);
|
|
_angle_ef_target.z = wrap_360_cd_float(_angle_ef_target.z + 18000.0f);
|
|
}
|
|
if (_angle_ef_target.y < -9000.0f) {
|
|
_angle_ef_target.x = wrap_180_cd_float(_angle_ef_target.x + 18000.0f);
|
|
_angle_ef_target.y = wrap_180_cd_float(-18000.0f - _angle_ef_target.x);
|
|
_angle_ef_target.z = wrap_360_cd_float(_angle_ef_target.z + 18000.0f);
|
|
}
|
|
}
|
|
|
|
// convert body-frame angle errors to body-frame rate targets
|
|
update_rate_bf_targets();
|
|
|
|
float rate_change, rate_change_limit;
|
|
|
|
// update the rate feed forward with angular acceleration limits
|
|
if (_accel_rp_max > 0.0f) {
|
|
rate_change_limit = _accel_rp_max * _dt;
|
|
|
|
rate_change = roll_rate_bf - _rate_bf_desired.x;
|
|
rate_change = constrain_float(rate_change, -rate_change_limit, rate_change_limit);
|
|
_rate_bf_desired.x += rate_change;
|
|
|
|
rate_change = pitch_rate_bf - _rate_bf_desired.y;
|
|
rate_change = constrain_float(rate_change, -rate_change_limit, rate_change_limit);
|
|
_rate_bf_desired.y += rate_change;
|
|
} else {
|
|
_rate_bf_desired.x = roll_rate_bf;
|
|
_rate_bf_desired.y = pitch_rate_bf;
|
|
}
|
|
|
|
if (_accel_y_max > 0.0f) {
|
|
rate_change_limit = _accel_y_max * _dt;
|
|
|
|
rate_change = yaw_rate_bf - _rate_bf_desired.z;
|
|
rate_change = constrain_float(rate_change, -rate_change_limit, rate_change_limit);
|
|
_rate_bf_desired.z += rate_change;
|
|
} else {
|
|
_rate_bf_desired.z = yaw_rate_bf;
|
|
}
|
|
|
|
// body-frame rate commands added
|
|
_rate_bf_target += _rate_bf_desired;
|
|
}
|
|
|
|
//
|
|
// rate_controller_run - run lowest level body-frame rate controller and send outputs to the motors
|
|
// should be called at 100hz or more
|
|
//
|
|
void AC_AttitudeControl::rate_controller_run()
|
|
{
|
|
// call rate controllers and send output to motors object
|
|
// To-Do: should the outputs from get_rate_roll, pitch, yaw be int16_t which is the input to the motors library?
|
|
// To-Do: skip this step if the throttle out is zero?
|
|
_motors.set_roll(rate_bf_to_motor_roll(_rate_bf_target.x));
|
|
_motors.set_pitch(rate_bf_to_motor_pitch(_rate_bf_target.y));
|
|
_motors.set_yaw(rate_bf_to_motor_yaw(_rate_bf_target.z));
|
|
}
|
|
|
|
//
|
|
// earth-frame <-> body-frame conversion functions
|
|
//
|
|
// frame_conversion_ef_to_bf - converts earth frame vector to body frame vector
|
|
void AC_AttitudeControl::frame_conversion_ef_to_bf(const Vector3f& ef_vector, Vector3f& bf_vector)
|
|
{
|
|
// convert earth frame rates to body frame rates
|
|
bf_vector.x = ef_vector.x - _ahrs.sin_pitch() * ef_vector.z;
|
|
bf_vector.y = _ahrs.cos_roll() * ef_vector.y + _ahrs.sin_roll() * _ahrs.cos_pitch() * ef_vector.z;
|
|
bf_vector.z = -_ahrs.sin_roll() * ef_vector.y + _ahrs.cos_pitch() * _ahrs.cos_roll() * ef_vector.z;
|
|
}
|
|
|
|
// frame_conversion_bf_to_ef - converts body frame vector to earth frame vector
|
|
void AC_AttitudeControl::frame_conversion_bf_to_ef(const Vector3f& bf_vector, Vector3f& ef_vector)
|
|
{
|
|
// convert earth frame rates to body frame rates
|
|
ef_vector.x = bf_vector.x + _ahrs.sin_roll() * (_ahrs.sin_pitch()/_ahrs.cos_pitch()) * bf_vector.y + _ahrs.cos_roll() * (_ahrs.sin_pitch()/_ahrs.cos_pitch()) * bf_vector.z;
|
|
ef_vector.y = _ahrs.cos_roll() * bf_vector.y - _ahrs.sin_roll() * bf_vector.z;
|
|
ef_vector.z = (_ahrs.sin_roll() / _ahrs.cos_pitch()) * bf_vector.y + (_ahrs.cos_roll() / _ahrs.cos_pitch()) * bf_vector.z;
|
|
}
|
|
|
|
//
|
|
// protected methods
|
|
//
|
|
|
|
//
|
|
// stabilized rate controller (body-frame) methods
|
|
//
|
|
|
|
// update_ef_roll_angle_and_error - update _angle_ef_target.x using an earth frame roll rate request
|
|
void AC_AttitudeControl::update_ef_roll_angle_and_error(float roll_rate_ef, Vector3f &angle_ef_error, float overshoot_max)
|
|
{
|
|
// calculate angle error with maximum of +- max angle overshoot
|
|
angle_ef_error.x = wrap_180_cd(_angle_ef_target.x - _ahrs.roll_sensor);
|
|
angle_ef_error.x = constrain_float(angle_ef_error.x, -overshoot_max, overshoot_max);
|
|
|
|
// update roll angle target to be within max angle overshoot of our roll angle
|
|
_angle_ef_target.x = angle_ef_error.x + _ahrs.roll_sensor;
|
|
|
|
// increment the roll angle target
|
|
_angle_ef_target.x += roll_rate_ef * _dt;
|
|
_angle_ef_target.x = wrap_180_cd(_angle_ef_target.x);
|
|
}
|
|
|
|
// update_ef_pitch_angle_and_error - update _angle_ef_target.y using an earth frame pitch rate request
|
|
void AC_AttitudeControl::update_ef_pitch_angle_and_error(float pitch_rate_ef, Vector3f &angle_ef_error, float overshoot_max)
|
|
{
|
|
// calculate angle error with maximum of +- max angle overshoot
|
|
// To-Do: should we do something better as we cross 90 degrees?
|
|
angle_ef_error.y = wrap_180_cd(_angle_ef_target.y - _ahrs.pitch_sensor);
|
|
angle_ef_error.y = constrain_float(angle_ef_error.y, -overshoot_max, overshoot_max);
|
|
|
|
// update pitch angle target to be within max angle overshoot of our pitch angle
|
|
_angle_ef_target.y = angle_ef_error.y + _ahrs.pitch_sensor;
|
|
|
|
// increment the pitch angle target
|
|
_angle_ef_target.y += pitch_rate_ef * _dt;
|
|
_angle_ef_target.y = wrap_180_cd(_angle_ef_target.y);
|
|
}
|
|
|
|
// update_ef_yaw_angle_and_error - update _angle_ef_target.z using an earth frame yaw rate request
|
|
void AC_AttitudeControl::update_ef_yaw_angle_and_error(float yaw_rate_ef, Vector3f &angle_ef_error, float overshoot_max)
|
|
{
|
|
// calculate angle error with maximum of +- max angle overshoot
|
|
angle_ef_error.z = wrap_180_cd(_angle_ef_target.z - _ahrs.yaw_sensor);
|
|
angle_ef_error.z = constrain_float(angle_ef_error.z, -overshoot_max, overshoot_max);
|
|
|
|
// update yaw angle target to be within max angle overshoot of our current heading
|
|
_angle_ef_target.z = angle_ef_error.z + _ahrs.yaw_sensor;
|
|
|
|
// increment the yaw angle target
|
|
_angle_ef_target.z += yaw_rate_ef * _dt;
|
|
_angle_ef_target.z = wrap_360_cd(_angle_ef_target.z);
|
|
}
|
|
|
|
// update_rate_bf_errors - calculates body frame angle errors
|
|
// body-frame feed forward rates (centi-degrees / second) taken from _angle_bf_error
|
|
// angle errors in centi-degrees placed in _angle_bf_error
|
|
void AC_AttitudeControl::integrate_bf_rate_error_to_angle_errors()
|
|
{
|
|
// roll - calculate body-frame angle error by integrating body-frame rate error
|
|
_angle_bf_error.x += (_rate_bf_desired.x - (_ahrs.get_gyro().x * AC_ATTITUDE_CONTROL_DEGX100)) * _dt;
|
|
// roll - limit maximum error
|
|
_angle_bf_error.x = constrain_float(_angle_bf_error.x, -AC_ATTITUDE_RATE_STAB_ACRO_OVERSHOOT_ANGLE_MAX, AC_ATTITUDE_RATE_STAB_ACRO_OVERSHOOT_ANGLE_MAX);
|
|
|
|
|
|
// pitch - calculate body-frame angle error by integrating body-frame rate error
|
|
_angle_bf_error.y += (_rate_bf_desired.y - (_ahrs.get_gyro().y * AC_ATTITUDE_CONTROL_DEGX100)) * _dt;
|
|
// pitch - limit maximum error
|
|
_angle_bf_error.y = constrain_float(_angle_bf_error.y, -AC_ATTITUDE_RATE_STAB_ACRO_OVERSHOOT_ANGLE_MAX, AC_ATTITUDE_RATE_STAB_ACRO_OVERSHOOT_ANGLE_MAX);
|
|
|
|
|
|
// yaw - calculate body-frame angle error by integrating body-frame rate error
|
|
_angle_bf_error.z += (_rate_bf_desired.z - (_ahrs.get_gyro().z * AC_ATTITUDE_CONTROL_DEGX100)) * _dt;
|
|
// yaw - limit maximum error
|
|
_angle_bf_error.z = constrain_float(_angle_bf_error.z, -AC_ATTITUDE_RATE_STAB_ACRO_OVERSHOOT_ANGLE_MAX, AC_ATTITUDE_RATE_STAB_ACRO_OVERSHOOT_ANGLE_MAX);
|
|
|
|
// To-Do: handle case of motors being disarmed or g.rc_3.servo_out == 0 and set error to zero
|
|
}
|
|
|
|
// update_rate_bf_targets - converts body-frame angle error to body-frame rate targets for roll, pitch and yaw axis
|
|
// targets rates in centi-degrees taken from _angle_bf_error
|
|
// results in centi-degrees/sec put into _rate_bf_target
|
|
void AC_AttitudeControl::update_rate_bf_targets()
|
|
{
|
|
// stab roll calculation
|
|
_rate_bf_target.x = _p_angle_roll.kP() * _angle_bf_error.x;
|
|
// constrain roll rate request
|
|
if (_flags.limit_angle_to_rate_request) {
|
|
_rate_bf_target.x = constrain_float(_rate_bf_target.x,-_angle_rate_rp_max,_angle_rate_rp_max);
|
|
}
|
|
|
|
// stab pitch calculation
|
|
_rate_bf_target.y = _p_angle_pitch.kP() * _angle_bf_error.y;
|
|
// constrain pitch rate request
|
|
if (_flags.limit_angle_to_rate_request) {
|
|
_rate_bf_target.y = constrain_float(_rate_bf_target.y,-_angle_rate_rp_max,_angle_rate_rp_max);
|
|
}
|
|
|
|
// stab yaw calculation
|
|
_rate_bf_target.z = _p_angle_yaw.kP() * _angle_bf_error.z;
|
|
// constrain yaw rate request
|
|
if (_flags.limit_angle_to_rate_request) {
|
|
_rate_bf_target.z = constrain_float(_rate_bf_target.z,-_angle_rate_y_max,_angle_rate_y_max);
|
|
}
|
|
|
|
_rate_bf_target.x += -_angle_bf_error.y * _ahrs.get_gyro().z;
|
|
_rate_bf_target.y += _angle_bf_error.x * _ahrs.get_gyro().z;
|
|
}
|
|
|
|
//
|
|
// body-frame rate controller
|
|
//
|
|
|
|
// rate_bf_to_motor_roll - ask the rate controller to calculate the motor outputs to achieve the target rate in centi-degrees / second
|
|
float AC_AttitudeControl::rate_bf_to_motor_roll(float rate_target_cds)
|
|
{
|
|
float p,i,d; // used to capture pid values for logging
|
|
float current_rate; // this iteration's rate
|
|
float rate_error; // simply target_rate - current_rate
|
|
|
|
// get current rate
|
|
// To-Do: make getting gyro rates more efficient?
|
|
current_rate = (_ahrs.get_gyro().x * AC_ATTITUDE_CONTROL_DEGX100);
|
|
|
|
// calculate error and call pid controller
|
|
rate_error = rate_target_cds - current_rate;
|
|
p = _pid_rate_roll.get_p(rate_error);
|
|
|
|
// get i term
|
|
i = _pid_rate_roll.get_integrator();
|
|
|
|
// update i term as long as we haven't breached the limits or the I term will certainly reduce
|
|
if (!_motors.limit.roll_pitch || ((i>0&&rate_error<0)||(i<0&&rate_error>0))) {
|
|
i = _pid_rate_roll.get_i(rate_error, _dt);
|
|
}
|
|
|
|
// get d term
|
|
d = _pid_rate_roll.get_d(rate_error, _dt);
|
|
|
|
// constrain output and return
|
|
return constrain_float((p+i+d), -AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX, AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX);
|
|
|
|
// To-Do: allow logging of PIDs?
|
|
}
|
|
|
|
// rate_bf_to_motor_pitch - ask the rate controller to calculate the motor outputs to achieve the target rate in centi-degrees / second
|
|
float AC_AttitudeControl::rate_bf_to_motor_pitch(float rate_target_cds)
|
|
{
|
|
float p,i,d; // used to capture pid values for logging
|
|
float current_rate; // this iteration's rate
|
|
float rate_error; // simply target_rate - current_rate
|
|
|
|
// get current rate
|
|
// To-Do: make getting gyro rates more efficient?
|
|
current_rate = (_ahrs.get_gyro().y * AC_ATTITUDE_CONTROL_DEGX100);
|
|
|
|
// calculate error and call pid controller
|
|
rate_error = rate_target_cds - current_rate;
|
|
p = _pid_rate_pitch.get_p(rate_error);
|
|
|
|
// get i term
|
|
i = _pid_rate_pitch.get_integrator();
|
|
|
|
// update i term as long as we haven't breached the limits or the I term will certainly reduce
|
|
if (!_motors.limit.roll_pitch || ((i>0&&rate_error<0)||(i<0&&rate_error>0))) {
|
|
i = _pid_rate_pitch.get_i(rate_error, _dt);
|
|
}
|
|
|
|
// get d term
|
|
d = _pid_rate_pitch.get_d(rate_error, _dt);
|
|
|
|
// constrain output and return
|
|
return constrain_float((p+i+d), -AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX, AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX);
|
|
|
|
// To-Do: allow logging of PIDs?
|
|
}
|
|
|
|
// rate_bf_to_motor_yaw - ask the rate controller to calculate the motor outputs to achieve the target rate in centi-degrees / second
|
|
float AC_AttitudeControl::rate_bf_to_motor_yaw(float rate_target_cds)
|
|
{
|
|
float p,i,d; // used to capture pid values for logging
|
|
float current_rate; // this iteration's rate
|
|
float rate_error; // simply target_rate - current_rate
|
|
|
|
// get current rate
|
|
// To-Do: make getting gyro rates more efficient?
|
|
current_rate = (_ahrs.get_gyro().z * AC_ATTITUDE_CONTROL_DEGX100);
|
|
|
|
// calculate error and call pid controller
|
|
rate_error = rate_target_cds - current_rate;
|
|
p = _pid_rate_yaw.get_p(rate_error);
|
|
|
|
// separately calculate p, i, d values for logging
|
|
p = _pid_rate_yaw.get_p(rate_error);
|
|
|
|
// get i term
|
|
i = _pid_rate_yaw.get_integrator();
|
|
|
|
// update i term as long as we haven't breached the limits or the I term will certainly reduce
|
|
if (!_motors.limit.yaw || ((i>0&&rate_error<0)||(i<0&&rate_error>0))) {
|
|
i = _pid_rate_yaw.get_i(rate_error, _dt);
|
|
}
|
|
|
|
// get d value
|
|
d = _pid_rate_yaw.get_d(rate_error, _dt);
|
|
|
|
// constrain output and return
|
|
return constrain_float((p+i+d), -AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX, AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX);
|
|
|
|
// To-Do: allow logging of PIDs?
|
|
}
|
|
|
|
// accel_limiting - enable or disable accel limiting
|
|
void AC_AttitudeControl::accel_limiting(bool enable_limits)
|
|
{
|
|
if (enable_limits) {
|
|
// if enabling limits, reload from eeprom or set to defaults
|
|
if (_accel_rp_max == 0.0f) {
|
|
_accel_rp_max.load();
|
|
}
|
|
if (_accel_y_max == 0.0f) {
|
|
_accel_y_max.load();
|
|
}
|
|
} else {
|
|
// if disabling limits, set to zero
|
|
_accel_rp_max = 0.0f;
|
|
_accel_y_max = 0.0f;
|
|
}
|
|
hal.console->printf_P(PSTR("AccLim:%d"),(int)enable_limits);
|
|
}
|
|
|
|
//
|
|
// throttle functions
|
|
//
|
|
|
|
// set_throttle_out - to be called by upper throttle controllers when they wish to provide throttle output directly to motors
|
|
// provide 0 to cut motors
|
|
void AC_AttitudeControl::set_throttle_out(int16_t throttle_out, bool apply_angle_boost)
|
|
{
|
|
if (apply_angle_boost) {
|
|
_motors.set_throttle(get_angle_boost(throttle_out));
|
|
}else{
|
|
_motors.set_throttle(throttle_out);
|
|
// clear angle_boost for logging purposes
|
|
_angle_boost = 0;
|
|
}
|
|
|
|
// update compass with throttle value
|
|
// To-Do: find another method to grab the throttle out and feed to the compass. Could be done completely outside this class
|
|
//compass.set_throttle((float)g.rc_3.servo_out/1000.0f);
|
|
}
|
|
|
|
// get_angle_boost - returns a throttle including compensation for roll/pitch angle
|
|
// throttle value should be 0 ~ 1000
|
|
int16_t AC_AttitudeControl::get_angle_boost(int16_t throttle_pwm)
|
|
{
|
|
float temp = _ahrs.cos_pitch() * _ahrs.cos_roll();
|
|
int16_t throttle_out;
|
|
|
|
temp = constrain_float(temp, 0.5f, 1.0f);
|
|
|
|
// reduce throttle if we go inverted
|
|
temp = constrain_float(9000-max(labs(_ahrs.roll_sensor),labs(_ahrs.pitch_sensor)), 0, 3000) / (3000 * temp);
|
|
|
|
// apply scale and constrain throttle
|
|
// To-Do: move throttle_min and throttle_max into the AP_Vehicles class?
|
|
throttle_out = constrain_float((float)(throttle_pwm-_motors.throttle_min()) * temp + _motors.throttle_min(), _motors.throttle_min(), 1000);
|
|
|
|
// record angle boost for logging
|
|
_angle_boost = throttle_out - throttle_pwm;
|
|
|
|
return throttle_out;
|
|
}
|