ardupilot/ArduCopter/Attitude.pde

738 lines
25 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
static void
get_stabilize_roll(int32_t target_angle)
{
// angle error
target_angle = wrap_180(target_angle - ahrs.roll_sensor);
#if FRAME_CONFIG == HELI_FRAME
// limit the error we're feeding to the PID
target_angle = constrain(target_angle, -4500, 4500);
// convert to desired Rate:
target_angle = g.pi_stabilize_roll.get_pi(target_angle, G_Dt);
// output control - we do not use rate controllers for helicopters so send directly to servos
g.rc_1.servo_out = constrain(target_angle, -4500, 4500);
#else
// convert to desired Rate:
int32_t target_rate = g.pi_stabilize_roll.get_p(target_angle);
int16_t i_stab;
if(labs(ahrs.roll_sensor) < 500) {
target_angle = constrain(target_angle, -500, 500);
i_stab = g.pi_stabilize_roll.get_i(target_angle, G_Dt);
}else{
i_stab = g.pi_stabilize_roll.get_integrator();
}
// set targets for rate controller
set_roll_rate_target(target_rate+i_stab, EARTH_FRAME);
#endif
}
static void
get_stabilize_pitch(int32_t target_angle)
{
// angle error
target_angle = wrap_180(target_angle - ahrs.pitch_sensor);
#if FRAME_CONFIG == HELI_FRAME
// limit the error we're feeding to the PID
target_angle = constrain(target_angle, -4500, 4500);
// convert to desired Rate:
target_angle = g.pi_stabilize_pitch.get_pi(target_angle, G_Dt);
// output control - we do not use rate controllers for helicopters so send directly to servos
g.rc_2.servo_out = constrain(target_angle, -4500, 4500);
#else
// convert to desired Rate:
int32_t target_rate = g.pi_stabilize_pitch.get_p(target_angle);
int16_t i_stab;
if(labs(ahrs.pitch_sensor) < 500) {
target_angle = constrain(target_angle, -500, 500);
i_stab = g.pi_stabilize_pitch.get_i(target_angle, G_Dt);
}else{
i_stab = g.pi_stabilize_pitch.get_integrator();
}
// set targets for rate controller
set_pitch_rate_target(target_rate + i_stab, EARTH_FRAME);
#endif
}
static void
get_stabilize_yaw(int32_t target_angle)
{
int32_t target_rate,i_term;
int32_t angle_error;
int32_t output = 0;
// angle error
angle_error = wrap_180(target_angle - ahrs.yaw_sensor);
// limit the error we're feeding to the PID
#if FRAME_CONFIG == HELI_FRAME
angle_error = constrain(angle_error, -4500, 4500);
#else
angle_error = constrain(angle_error, -4000, 4000);
#endif
// convert angle error to desired Rate:
target_rate = g.pi_stabilize_yaw.get_p(angle_error);
i_term = g.pi_stabilize_yaw.get_i(angle_error, G_Dt);
// do not use rate controllers for helicotpers with external gyros
#if FRAME_CONFIG == HELI_FRAME
if(motors.ext_gyro_enabled) {
g.rc_4.servo_out = constrain((target_rate + i_term), -4500, 4500);
}
#endif
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID logging is on and we are tuning the yaw
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_KP || g.radio_tuning == CH6_YAW_RATE_KP) ) {
log_counter++;
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_YAW_KP, angle_error, target_rate, i_term, 0, output, tuning_value);
}
}
#endif
// set targets for rate controller
set_yaw_rate_target(target_rate+i_term, EARTH_FRAME);
}
static void
get_acro_roll(int32_t target_rate)
{
target_rate = target_rate * g.acro_p;
// set targets for rate controller
set_roll_rate_target(target_rate, BODY_FRAME);
}
static void
get_acro_pitch(int32_t target_rate)
{
target_rate = target_rate * g.acro_p;
// set targets for rate controller
set_pitch_rate_target(target_rate, BODY_FRAME);
}
static void
get_acro_yaw(int32_t target_rate)
{
target_rate = target_rate * g.acro_p;
// set targets for rate controller
set_yaw_rate_target(target_rate, BODY_FRAME);
}
// Roll with rate input and stabilized in the earth frame
static void
get_roll_rate_stabilized_ef(int32_t stick_angle)
{
int32_t angle_error = 0;
// convert the input to the desired roll rate
int32_t target_rate = stick_angle * g.acro_p - (roll_axis * g.acro_balance_roll)/100;
// convert the input to the desired roll rate
roll_axis += target_rate * G_Dt;
roll_axis = wrap_180(roll_axis);
// ensure that we don't reach gimbal lock
if (roll_axis > 4500 || roll_axis < -4500) {
roll_axis = constrain(roll_axis, -4500, 4500);
angle_error = wrap_180(roll_axis - ahrs.roll_sensor);
} else {
// angle error with maximum of +- max_angle_overshoot
angle_error = wrap_180(roll_axis - ahrs.roll_sensor);
angle_error = constrain(angle_error, -MAX_ROLL_OVERSHOOT, MAX_ROLL_OVERSHOOT);
}
if (motors.armed() == false || ((g.rc_3.control_in == 0) && !ap.failsafe)) {
angle_error = 0;
}
// update roll_axis to be within max_angle_overshoot of our current heading
roll_axis = wrap_180(angle_error + ahrs.roll_sensor);
// set earth frame targets for rate controller
// set earth frame targets for rate controller
set_roll_rate_target(g.pi_stabilize_roll.get_p(angle_error) + target_rate, EARTH_FRAME);
}
// Pitch with rate input and stabilized in the earth frame
static void
get_pitch_rate_stabilized_ef(int32_t stick_angle)
{
int32_t angle_error = 0;
// convert the input to the desired pitch rate
int32_t target_rate = stick_angle * g.acro_p - (pitch_axis * g.acro_balance_pitch)/100;
// convert the input to the desired pitch rate
pitch_axis += target_rate * G_Dt;
pitch_axis = wrap_180(pitch_axis);
// ensure that we don't reach gimbal lock
if (pitch_axis > 4500 || pitch_axis < -4500) {
pitch_axis = constrain(pitch_axis, -4500, 4500);
angle_error = wrap_180(pitch_axis - ahrs.pitch_sensor);
} else {
// angle error with maximum of +- max_angle_overshoot
angle_error = wrap_180(pitch_axis - ahrs.pitch_sensor);
angle_error = constrain(angle_error, -MAX_PITCH_OVERSHOOT, MAX_PITCH_OVERSHOOT);
}
if (motors.armed() == false || ((g.rc_3.control_in == 0) && !ap.failsafe)) {
angle_error = 0;
}
// update pitch_axis to be within max_angle_overshoot of our current heading
pitch_axis = wrap_180(angle_error + ahrs.pitch_sensor);
// set earth frame targets for rate controller
set_pitch_rate_target(g.pi_stabilize_pitch.get_p(angle_error) + target_rate, EARTH_FRAME);
}
// Yaw with rate input and stabilized in the earth frame
static void
get_yaw_rate_stabilized_ef(int32_t stick_angle)
{
int32_t angle_error = 0;
// convert the input to the desired yaw rate
int32_t target_rate = stick_angle * g.acro_p;
// convert the input to the desired yaw rate
nav_yaw += target_rate * G_Dt;
nav_yaw = wrap_360(nav_yaw);
// calculate difference between desired heading and current heading
angle_error = wrap_180(nav_yaw - ahrs.yaw_sensor);
// limit the maximum overshoot
angle_error = constrain(angle_error, -MAX_YAW_OVERSHOOT, MAX_YAW_OVERSHOOT);
if (motors.armed() == false || ((g.rc_3.control_in == 0) && !ap.failsafe)) {
angle_error = 0;
}
// update nav_yaw to be within max_angle_overshoot of our current heading
nav_yaw = wrap_360(angle_error + ahrs.yaw_sensor);
// set earth frame targets for rate controller
set_yaw_rate_target(g.pi_stabilize_yaw.get_p(angle_error)+target_rate, EARTH_FRAME);
}
// set_roll_rate_target - to be called by upper controllers to set roll rate targets in the earth frame
void set_roll_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) {
rate_targets_frame = earth_or_body_frame;
if( earth_or_body_frame == BODY_FRAME ) {
roll_rate_target_bf = desired_rate;
}else{
roll_rate_target_ef = desired_rate;
}
}
// set_pitch_rate_target - to be called by upper controllers to set pitch rate targets in the earth frame
void set_pitch_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) {
rate_targets_frame = earth_or_body_frame;
if( earth_or_body_frame == BODY_FRAME ) {
pitch_rate_target_bf = desired_rate;
}else{
pitch_rate_target_ef = desired_rate;
}
}
// set_yaw_rate_target - to be called by upper controllers to set yaw rate targets in the earth frame
void set_yaw_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) {
rate_targets_frame = earth_or_body_frame;
if( earth_or_body_frame == BODY_FRAME ) {
yaw_rate_target_bf = desired_rate;
}else{
yaw_rate_target_ef = desired_rate;
}
}
// update_rate_contoller_targets - converts earth frame rates to body frame rates for rate controllers
void
update_rate_contoller_targets()
{
if( rate_targets_frame == EARTH_FRAME ) {
// convert earth frame rates to body frame rates
roll_rate_target_bf = roll_rate_target_ef - sin_pitch * yaw_rate_target_ef;
pitch_rate_target_bf = cos_roll_x * pitch_rate_target_ef + sin_roll * cos_pitch_x * yaw_rate_target_ef;
yaw_rate_target_bf = cos_pitch_x * cos_roll_x * yaw_rate_target_ef - sin_roll * pitch_rate_target_ef;
}
}
// run roll, pitch and yaw rate controllers and send output to motors
// targets for these controllers comes from stabilize controllers
void
run_rate_controllers()
{
#if FRAME_CONFIG == HELI_FRAME // helicopters only use rate controllers for yaw and only when not using an external gyro
if(!motors.ext_gyro_enabled) {
g.rc_4.servo_out = get_rate_yaw(yaw_rate_target_bf);
}
#else
// call rate controllers
g.rc_1.servo_out = get_rate_roll(roll_rate_target_bf);
g.rc_2.servo_out = get_rate_pitch(pitch_rate_target_bf);
g.rc_4.servo_out = get_rate_yaw(yaw_rate_target_bf);
#endif
}
static int16_t
get_rate_roll(int32_t target_rate)
{
static int32_t last_rate = 0; // previous iterations rate
int32_t p,i,d; // used to capture pid values for logging
int32_t current_rate; // this iteration's rate
int32_t rate_error; // simply target_rate - current_rate
//int32_t rate_d; // roll's acceleration
int32_t output; // output from pid controller
//int32_t rate_d_dampener; // value to dampen output based on acceleration
// get current rate
current_rate = (omega.x * DEGX100);
// calculate and filter the acceleration
//rate_d = roll_rate_d_filter.apply(current_rate - last_rate);
// store rate for next iteration
last_rate = current_rate;
// call pid controller
rate_error = target_rate - current_rate;
p = g.pid_rate_roll.get_p(rate_error);
// freeze I term if we've breached roll-pitch limits
if( motors.reached_limit(AP_MOTOR_ROLLPITCH_LIMIT) ) {
i = g.pid_rate_roll.get_integrator();
}else{
i = g.pid_rate_roll.get_i(rate_error, G_Dt);
}
d = g.pid_rate_roll.get_d(rate_error, G_Dt);
output = p + i + d;
// Dampening output with D term
//rate_d_dampener = rate_d * roll_scale_d;
//rate_d_dampener = constrain(rate_d_dampener, -400, 400);
//output -= rate_d_dampener;
// constrain output
output = constrain(output, -5000, 5000);
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID logging is on and we are tuning the rate P, I or D gains
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) {
log_counter++;
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_RATE_KP, rate_error, p, i, d /*-rate_d_dampener*/, output, tuning_value);
}
}
#endif
// output control
return output;
}
static int16_t
get_rate_pitch(int32_t target_rate)
{
static int32_t last_rate = 0; // previous iterations rate
int32_t p,i,d; // used to capture pid values for logging
int32_t current_rate; // this iteration's rate
int32_t rate_error; // simply target_rate - current_rate
//int32_t rate_d; // roll's acceleration
int32_t output; // output from pid controller
//int32_t rate_d_dampener; // value to dampen output based on acceleration
// get current rate
current_rate = (omega.y * DEGX100);
// calculate and filter the acceleration
//rate_d = pitch_rate_d_filter.apply(current_rate - last_rate);
// store rate for next iteration
last_rate = current_rate;
// call pid controller
rate_error = target_rate - current_rate;
p = g.pid_rate_pitch.get_p(rate_error);
// freeze I term if we've breached roll-pitch limits
if( motors.reached_limit(AP_MOTOR_ROLLPITCH_LIMIT) ) {
i = g.pid_rate_pitch.get_integrator();
}else{
i = g.pid_rate_pitch.get_i(rate_error, G_Dt);
}
d = g.pid_rate_pitch.get_d(rate_error, G_Dt);
output = p + i + d;
// Dampening output with D term
//rate_d_dampener = rate_d * pitch_scale_d;
//rate_d_dampener = constrain(rate_d_dampener, -400, 400);
//output -= rate_d_dampener;
// constrain output
output = constrain(output, -5000, 5000);
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID logging is on and we are tuning the rate P, I or D gains
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) {
log_counter++;
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_RATE_KP+100, rate_error, p, i, d/*-rate_d_dampener*/, output, tuning_value);
}
}
#endif
// output control
return output;
}
static int16_t
get_rate_yaw(int32_t target_rate)
{
int32_t p,i,d; // used to capture pid values for logging
int32_t rate_error;
int32_t output;
// rate control
rate_error = target_rate - (omega.z * DEGX100);
// separately calculate p, i, d values for logging
p = g.pid_rate_yaw.get_p(rate_error);
// freeze I term if we've breached yaw limits
if( motors.reached_limit(AP_MOTOR_YAW_LIMIT) ) {
i = g.pid_rate_yaw.get_integrator();
}else{
i = g.pid_rate_yaw.get_i(rate_error, G_Dt);
}
d = g.pid_rate_yaw.get_d(rate_error, G_Dt);
output = p+i+d;
output = constrain(output, -4500, 4500);
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID loggins is on and we are tuning the yaw
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_KP || g.radio_tuning == CH6_YAW_RATE_KP) ) {
log_counter++;
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_YAW_RATE_KP, rate_error, p, i, d, output, tuning_value);
}
}
#endif
#if FRAME_CONFIG == HELI_FRAME || FRAME_CONFIG == TRI_FRAME
// constrain output
return output;
#else
// output control:
int16_t yaw_limit = 2200 + abs(g.rc_4.control_in);
// smoother Yaw control:
return constrain(output, -yaw_limit, yaw_limit);
#endif
}
static int16_t
get_throttle_rate(int16_t z_target_speed)
{
int32_t p,i,d; // used to capture pid values for logging
int16_t z_rate_error, output = 0;
// calculate rate error
#if INERTIAL_NAV == ENABLED
z_rate_error = z_target_speed - inertial_nav._velocity.z; // calc the speed error
#else
z_rate_error = z_target_speed - climb_rate; // calc the speed error
#endif
int32_t tmp = (z_target_speed * z_target_speed * (int32_t)g.throttle_cruise) / 200000;
if(z_target_speed < 0) tmp = -tmp;
output = constrain(tmp, -32000, 32000); // constraint to remove chance of overflow when adding int32_t to int16_t
// separately calculate p, i, d values for logging
p = g.pid_throttle.get_p(z_rate_error);
// freeze I term if we've breached throttle limits
if( motors.reached_limit(AP_MOTOR_THROTTLE_LIMIT) ) {
i = g.pid_throttle.get_integrator();
}else{
i = g.pid_throttle.get_i(z_rate_error, .02);
}
d = g.pid_throttle.get_d(z_rate_error, .02);
//
// limit the rate
output += constrain(p+i+d, -80, 120);
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID loggins is on and we are tuning the yaw
if( g.log_bitmask & MASK_LOG_PID && g.radio_tuning == CH6_THROTTLE_KP ) {
log_counter++;
if( log_counter >= 10 ) { // (update rate / desired output rate) = (50hz / 10hz) = 5hz
log_counter = 0;
Log_Write_PID(CH6_THROTTLE_KP, z_rate_error, p, i, d, output, tuning_value);
}
}
#endif
return output;
}
// Keeps old data out of our calculation / logs
static void reset_nav_params(void)
{
nav_throttle = 0;
// always start Circle mode at same angle
circle_angle = 0;
// We must be heading to a new WP, so XTrack must be 0
crosstrack_error = 0;
// Will be set by new command
target_bearing = 0;
// Will be set by new command
wp_distance = 0;
// Will be set by new command, used by loiter
long_error = 0;
lat_error = 0;
nav_lon = 0;
nav_lat = 0;
nav_roll = 0;
nav_pitch = 0;
auto_roll = 0;
auto_pitch = 0;
// make sure we stick to Nav yaw on takeoff
auto_yaw = nav_yaw;
}
/*
* reset all I integrators
*/
static void reset_I_all(void)
{
reset_rate_I();
reset_stability_I();
reset_wind_I();
reset_throttle_I();
reset_optflow_I();
// This is the only place we reset Yaw
g.pi_stabilize_yaw.reset_I();
}
static void reset_rate_I()
{
g.pid_rate_roll.reset_I();
g.pid_rate_pitch.reset_I();
g.pid_rate_yaw.reset_I();
}
static void reset_optflow_I(void)
{
g.pid_optflow_roll.reset_I();
g.pid_optflow_pitch.reset_I();
of_roll = 0;
of_pitch = 0;
}
static void reset_wind_I(void)
{
// Wind Compensation
// this i is not currently being used, but we reset it anyway
// because someone may modify it and not realize it, causing a bug
g.pi_loiter_lat.reset_I();
g.pi_loiter_lon.reset_I();
g.pid_loiter_rate_lat.reset_I();
g.pid_loiter_rate_lon.reset_I();
g.pid_nav_lat.reset_I();
g.pid_nav_lon.reset_I();
}
static void reset_throttle_I(void)
{
// For Altitude Hold
g.pi_alt_hold.reset_I();
g.pid_throttle.reset_I();
}
static void reset_stability_I(void)
{
// Used to balance a quad
// This only needs to be reset during Auto-leveling in flight
g.pi_stabilize_roll.reset_I();
g.pi_stabilize_pitch.reset_I();
}
/*************************************************************
* throttle control
****************************************************************/
static int16_t get_angle_boost(int16_t value)
{
float temp = cos_pitch_x * cos_roll_x;
temp = constrain(temp, .75, 1.0);
return ((float)(value + 80) / temp) - (value + 80);
}
#if FRAME_CONFIG == HELI_FRAME
// heli_angle_boost - adds a boost depending on roll/pitch values
// equivalent of quad's angle_boost function
// throttle value should be 0 ~ 1000
static int16_t heli_get_angle_boost(int16_t throttle)
{
float angle_boost_factor = cos_pitch_x * cos_roll_x;
angle_boost_factor = 1.0 - constrain(angle_boost_factor, .5, 1.0);
int16_t throttle_above_mid = max(throttle - motors.throttle_mid,0);
return throttle + throttle_above_mid*angle_boost_factor;
}
#endif // HELI_FRAME
// calculate modified roll/pitch depending upon optical flow calculated position
static int32_t
get_of_roll(int32_t input_roll)
{
#ifdef OPTFLOW_ENABLED
static float tot_x_cm = 0; // total distance from target
static uint32_t last_of_roll_update = 0;
int32_t new_roll = 0;
int32_t p,i,d;
// check if new optflow data available
if( optflow.last_update != last_of_roll_update) {
last_of_roll_update = optflow.last_update;
// add new distance moved
tot_x_cm += optflow.x_cm;
// only stop roll if caller isn't modifying roll
if( input_roll == 0 && current_loc.alt < 1500) {
p = g.pid_optflow_roll.get_p(-tot_x_cm);
i = g.pid_optflow_roll.get_i(-tot_x_cm,1.0); // we could use the last update time to calculate the time change
d = g.pid_optflow_roll.get_d(-tot_x_cm,1.0);
new_roll = p+i+d;
}else{
g.pid_optflow_roll.reset_I();
tot_x_cm = 0;
p = 0; // for logging
i = 0;
d = 0;
}
// limit amount of change and maximum angle
of_roll = constrain(new_roll, (of_roll-20), (of_roll+20));
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID logging is on and we are tuning the rate P, I or D gains
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_OPTFLOW_KP || g.radio_tuning == CH6_OPTFLOW_KI || g.radio_tuning == CH6_OPTFLOW_KD) ) {
log_counter++;
if( log_counter >= 5 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_OPTFLOW_KP, tot_x_cm, p, i, d, of_roll, tuning_value);
}
}
#endif // LOGGING_ENABLED == ENABLED
}
// limit max angle
of_roll = constrain(of_roll, -1000, 1000);
return input_roll+of_roll;
#else
return input_roll;
#endif
}
static int32_t
get_of_pitch(int32_t input_pitch)
{
#ifdef OPTFLOW_ENABLED
static float tot_y_cm = 0; // total distance from target
static uint32_t last_of_pitch_update = 0;
int32_t new_pitch = 0;
int32_t p,i,d;
// check if new optflow data available
if( optflow.last_update != last_of_pitch_update ) {
last_of_pitch_update = optflow.last_update;
// add new distance moved
tot_y_cm += optflow.y_cm;
// only stop roll if caller isn't modifying pitch
if( input_pitch == 0 && current_loc.alt < 1500 ) {
p = g.pid_optflow_pitch.get_p(tot_y_cm);
i = g.pid_optflow_pitch.get_i(tot_y_cm, 1.0); // we could use the last update time to calculate the time change
d = g.pid_optflow_pitch.get_d(tot_y_cm, 1.0);
new_pitch = p + i + d;
}else{
tot_y_cm = 0;
g.pid_optflow_pitch.reset_I();
p = 0; // for logging
i = 0;
d = 0;
}
// limit amount of change
of_pitch = constrain(new_pitch, (of_pitch-20), (of_pitch+20));
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID logging is on and we are tuning the rate P, I or D gains
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_OPTFLOW_KP || g.radio_tuning == CH6_OPTFLOW_KI || g.radio_tuning == CH6_OPTFLOW_KD) ) {
log_counter++;
if( log_counter >= 5 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_OPTFLOW_KP+100, tot_y_cm, p, i, d, of_pitch, tuning_value);
}
}
#endif // LOGGING_ENABLED == ENABLED
}
// limit max angle
of_pitch = constrain(of_pitch, -1000, 1000);
return input_pitch+of_pitch;
#else
return input_pitch;
#endif
}