ardupilot/ArduCopter/mode_sport.cpp

137 lines
4.7 KiB
C++

#include "Copter.h"
#if MODE_SPORT_ENABLED == ENABLED
/*
* Init and run calls for sport flight mode
*/
// sport_init - initialise sport controller
bool ModeSport::init(bool ignore_checks)
{
// initialize vertical speed and acceleration
pos_control->set_max_speed_z(-get_pilot_speed_dn(), g.pilot_speed_up);
pos_control->set_max_accel_z(g.pilot_accel_z);
// initialise position and desired velocity
if (!pos_control->is_active_z()) {
pos_control->set_alt_target_to_current_alt();
pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z());
}
return true;
}
// sport_run - runs the sport controller
// should be called at 100hz or more
void ModeSport::run()
{
float takeoff_climb_rate = 0.0f;
// initialize vertical speed and acceleration
pos_control->set_max_speed_z(-get_pilot_speed_dn(), g.pilot_speed_up);
pos_control->set_max_accel_z(g.pilot_accel_z);
// apply SIMPLE mode transform
update_simple_mode();
// get pilot's desired roll and pitch rates
// calculate rate requests
float target_roll_rate = channel_roll->get_control_in() * g.acro_rp_p;
float target_pitch_rate = channel_pitch->get_control_in() * g.acro_rp_p;
// get attitude targets
const Vector3f att_target = attitude_control->get_att_target_euler_cd();
// Calculate trainer mode earth frame rate command for roll
int32_t roll_angle = wrap_180_cd(att_target.x);
target_roll_rate -= constrain_int32(roll_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_roll;
// Calculate trainer mode earth frame rate command for pitch
int32_t pitch_angle = wrap_180_cd(att_target.y);
target_pitch_rate -= constrain_int32(pitch_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_pitch;
const float angle_max = copter.aparm.angle_max;
if (roll_angle > angle_max){
target_roll_rate -= g.acro_rp_p*(roll_angle-angle_max);
}else if (roll_angle < -angle_max) {
target_roll_rate -= g.acro_rp_p*(roll_angle+angle_max);
}
if (pitch_angle > angle_max){
target_pitch_rate -= g.acro_rp_p*(pitch_angle-angle_max);
}else if (pitch_angle < -angle_max) {
target_pitch_rate -= g.acro_rp_p*(pitch_angle+angle_max);
}
// get pilot's desired yaw rate
float target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
// get pilot desired climb rate
float target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in());
target_climb_rate = constrain_float(target_climb_rate, -get_pilot_speed_dn(), g.pilot_speed_up);
// Sport State Machine Determination
AltHoldModeState sport_state = get_alt_hold_state(target_climb_rate);
// State Machine
switch (sport_state) {
case AltHold_MotorStopped:
attitude_control->reset_rate_controller_I_terms();
attitude_control->set_yaw_target_to_current_heading();
pos_control->relax_alt_hold_controllers(0.0f); // forces throttle output to go to zero
break;
case AltHold_Takeoff:
// initiate take-off
if (!takeoff.running()) {
takeoff.start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
}
// get take-off adjusted pilot and takeoff climb rates
takeoff.get_climb_rates(target_climb_rate, takeoff_climb_rate);
// get avoidance adjusted climb rate
target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);
// call position controller
pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
pos_control->add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
break;
case AltHold_Landed_Ground_Idle:
attitude_control->reset_rate_controller_I_terms();
attitude_control->set_yaw_target_to_current_heading();
// FALLTHROUGH
case AltHold_Landed_Pre_Takeoff:
pos_control->relax_alt_hold_controllers(0.0f); // forces throttle output to go to zero
break;
case AltHold_Flying:
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// adjust climb rate using rangefinder
target_climb_rate = copter.surface_tracking.adjust_climb_rate(target_climb_rate);
// get avoidance adjusted climb rate
target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);
pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
break;
}
// call attitude controller
attitude_control->input_euler_rate_roll_pitch_yaw(target_roll_rate, target_pitch_rate, target_yaw_rate);
// call z-axis position controller
pos_control->update_z_controller();
}
#endif