mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-22 08:38:36 -04:00
563 lines
25 KiB
C++
563 lines
25 KiB
C++
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#include "AP_NavEKF2.h"
|
|
#include "AP_NavEKF2_core.h"
|
|
#include <GCS_MAVLink/GCS.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
|
|
// Control filter mode transitions
|
|
void NavEKF2_core::controlFilterModes()
|
|
{
|
|
// Determine motor arm status
|
|
prevMotorsArmed = motorsArmed;
|
|
motorsArmed = dal.get_armed();
|
|
if (motorsArmed && !prevMotorsArmed) {
|
|
// set the time at which we arm to assist with checks
|
|
timeAtArming_ms = imuSampleTime_ms;
|
|
}
|
|
|
|
// Detect if we are in flight on or ground
|
|
detectFlight();
|
|
|
|
// Determine if learning of wind and magnetic field will be enabled and set corresponding indexing limits to
|
|
// avoid unnecessary operations
|
|
setWindMagStateLearningMode();
|
|
|
|
// Check the alignmnent status of the tilt and yaw attitude
|
|
// Used during initial bootstrap alignment of the filter
|
|
checkAttitudeAlignmentStatus();
|
|
|
|
// Set the type of inertial navigation aiding used
|
|
setAidingMode();
|
|
|
|
}
|
|
|
|
/*
|
|
return effective value for _magCal for this core
|
|
*/
|
|
uint8_t NavEKF2_core::effective_magCal(void) const
|
|
{
|
|
// force use of simple magnetic heading fusion for specified cores
|
|
if (frontend->_magMask & core_index) {
|
|
return 2;
|
|
} else {
|
|
return frontend->_magCal;
|
|
}
|
|
}
|
|
|
|
// Determine if learning of wind and magnetic field will be enabled and set corresponding indexing limits to
|
|
// avoid unnecessary operations
|
|
void NavEKF2_core::setWindMagStateLearningMode()
|
|
{
|
|
// If we are on ground, or in constant position mode, or don't have the right vehicle and sensing to estimate wind, inhibit wind states
|
|
bool setWindInhibit = (!useAirspeed() && !assume_zero_sideslip()) || onGround || (PV_AidingMode == AID_NONE);
|
|
if (!inhibitWindStates && setWindInhibit) {
|
|
inhibitWindStates = true;
|
|
} else if (inhibitWindStates && !setWindInhibit) {
|
|
inhibitWindStates = false;
|
|
// set states and variances
|
|
if (yawAlignComplete && useAirspeed()) {
|
|
// if we have airspeed and a valid heading, set the wind states to the reciprocal of the vehicle heading
|
|
// which assumes the vehicle has launched into the wind
|
|
Vector3f tempEuler;
|
|
stateStruct.quat.to_euler(tempEuler.x, tempEuler.y, tempEuler.z);
|
|
float windSpeed = sqrtf(sq(stateStruct.velocity.x) + sq(stateStruct.velocity.y)) - tasDataDelayed.tas;
|
|
stateStruct.wind_vel.x = windSpeed * cosf(tempEuler.z);
|
|
stateStruct.wind_vel.y = windSpeed * sinf(tempEuler.z);
|
|
|
|
// set the wind sate variances to the measurement uncertainty
|
|
for (uint8_t index=22; index<=23; index++) {
|
|
P[index][index] = sq(constrain_float(frontend->_easNoise, 0.5f, 5.0f) * constrain_float(dal.get_EAS2TAS(), 0.9f, 10.0f));
|
|
}
|
|
} else {
|
|
// set the variances using a typical wind speed
|
|
for (uint8_t index=22; index<=23; index++) {
|
|
P[index][index] = sq(5.0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
// determine if the vehicle is manoeuvring
|
|
if (accNavMagHoriz > 0.5f) {
|
|
manoeuvring = true;
|
|
} else {
|
|
manoeuvring = false;
|
|
}
|
|
|
|
// Determine if learning of magnetic field states has been requested by the user
|
|
uint8_t magCal = effective_magCal();
|
|
bool magCalRequested =
|
|
((magCal == 0) && inFlight) || // when flying
|
|
((magCal == 1) && manoeuvring) || // when manoeuvring
|
|
((magCal == 3) && finalInflightYawInit && finalInflightMagInit) || // when initial in-air yaw and mag field reset is complete
|
|
(magCal == 4); // all the time
|
|
|
|
// Deny mag calibration request if we aren't using the compass, it has been inhibited by the user,
|
|
// we do not have an absolute position reference or are on the ground (unless explicitly requested by the user)
|
|
bool magCalDenied = !use_compass() || (magCal == 2) || (onGround && magCal != 4);
|
|
|
|
// Inhibit the magnetic field calibration if not requested or denied
|
|
bool setMagInhibit = !magCalRequested || magCalDenied;
|
|
if (!inhibitMagStates && setMagInhibit) {
|
|
inhibitMagStates = true;
|
|
// variances will be reset in CovariancePrediction
|
|
} else if (inhibitMagStates && !setMagInhibit) {
|
|
inhibitMagStates = false;
|
|
if (magFieldLearned) {
|
|
// if we have already learned the field states, then retain the learned variances
|
|
P[16][16] = earthMagFieldVar.x;
|
|
P[17][17] = earthMagFieldVar.y;
|
|
P[18][18] = earthMagFieldVar.z;
|
|
P[19][19] = bodyMagFieldVar.x;
|
|
P[20][20] = bodyMagFieldVar.y;
|
|
P[21][21] = bodyMagFieldVar.z;
|
|
} else {
|
|
// set the variances equal to the observation variances
|
|
for (uint8_t index=16; index<=21; index++) {
|
|
P[index][index] = sq(frontend->_magNoise);
|
|
}
|
|
|
|
// set the NE earth magnetic field states using the published declination
|
|
// and set the corresponding variances and covariances
|
|
alignMagStateDeclination();
|
|
|
|
}
|
|
// request a reset of the yaw and magnetic field states if not done before
|
|
if (!magStateInitComplete || (!finalInflightMagInit && inFlight)) {
|
|
magYawResetRequest = true;
|
|
}
|
|
}
|
|
|
|
// If on ground we clear the flag indicating that the magnetic field in-flight initialisation has been completed
|
|
// because we want it re-done for each takeoff
|
|
if (onGround) {
|
|
finalInflightYawInit = false;
|
|
finalInflightMagInit = false;
|
|
}
|
|
|
|
// Adjust the indexing limits used to address the covariance, states and other EKF arrays to avoid unnecessary operations
|
|
// if we are not using those states
|
|
if (inhibitMagStates && inhibitWindStates) {
|
|
stateIndexLim = 15;
|
|
} else if (inhibitWindStates) {
|
|
stateIndexLim = 21;
|
|
} else {
|
|
stateIndexLim = 23;
|
|
}
|
|
}
|
|
|
|
// Set inertial navigation aiding mode
|
|
void NavEKF2_core::setAidingMode()
|
|
{
|
|
// Save the previous status so we can detect when it has changed
|
|
PV_AidingModePrev = PV_AidingMode;
|
|
|
|
// Determine if we should change aiding mode
|
|
switch (PV_AidingMode) {
|
|
case AID_NONE: {
|
|
// Don't allow filter to start position or velocity aiding until the tilt and yaw alignment is complete
|
|
// and IMU gyro bias estimates have stabilised
|
|
bool filterIsStable = tiltAlignComplete && yawAlignComplete && checkGyroCalStatus();
|
|
// If GPS usage has been prohiited then we use flow aiding provided optical flow data is present
|
|
// GPS aiding is the preferred option unless excluded by the user
|
|
bool canUseGPS = ((frontend->_fusionModeGPS) != 3 && readyToUseGPS() && filterIsStable);
|
|
bool canUseRangeBeacon = readyToUseRangeBeacon() && filterIsStable;
|
|
bool canUseExtNav = readyToUseExtNav();
|
|
if(canUseGPS || canUseRangeBeacon || canUseExtNav) {
|
|
PV_AidingMode = AID_ABSOLUTE;
|
|
} else if (optFlowDataPresent() && (frontend->_flowUse == FLOW_USE_NAV) && filterIsStable) {
|
|
PV_AidingMode = AID_RELATIVE;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case AID_RELATIVE: {
|
|
// Check if the optical flow sensor has timed out
|
|
bool flowSensorTimeout = ((imuSampleTime_ms - flowValidMeaTime_ms) > 5000);
|
|
// Check if the fusion has timed out (flow measurements have been rejected for too long)
|
|
bool flowFusionTimeout = ((imuSampleTime_ms - prevFlowFuseTime_ms) > 5000);
|
|
// Enable switch to absolute position mode if GPS is available
|
|
// If GPS is not available and flow fusion has timed out, then fall-back to no-aiding
|
|
if((frontend->_fusionModeGPS) != 3 && readyToUseGPS()) {
|
|
PV_AidingMode = AID_ABSOLUTE;
|
|
} else if (flowSensorTimeout || flowFusionTimeout) {
|
|
PV_AidingMode = AID_NONE;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case AID_ABSOLUTE: {
|
|
// Find the minimum time without data required to trigger any check
|
|
uint16_t minTestTime_ms = MIN(frontend->tiltDriftTimeMax_ms, MIN(frontend->posRetryTimeNoVel_ms,frontend->posRetryTimeUseVel_ms));
|
|
|
|
// Check if optical flow data is being used
|
|
bool optFlowUsed = (imuSampleTime_ms - prevFlowFuseTime_ms <= minTestTime_ms);
|
|
|
|
// Check if airspeed data is being used
|
|
bool airSpdUsed = (imuSampleTime_ms - lastTasPassTime_ms <= minTestTime_ms);
|
|
|
|
// Check if range beacon data is being used
|
|
bool rngBcnUsed = (imuSampleTime_ms - lastRngBcnPassTime_ms <= minTestTime_ms);
|
|
|
|
// Check if GPS is being used
|
|
bool posUsed = (imuSampleTime_ms - lastPosPassTime_ms <= minTestTime_ms);
|
|
bool gpsVelUsed = (imuSampleTime_ms - lastVelPassTime_ms <= minTestTime_ms);
|
|
|
|
// Check if external nav is being used
|
|
bool extNavUsed = (imuSampleTime_ms - lastExtNavPassTime_ms <= minTestTime_ms);
|
|
|
|
// Check if attitude drift has been constrained by a measurement source
|
|
bool attAiding = posUsed || gpsVelUsed || optFlowUsed || airSpdUsed || rngBcnUsed || extNavUsed;
|
|
|
|
// check if velocity drift has been constrained by a measurement source
|
|
bool velAiding = gpsVelUsed || airSpdUsed || optFlowUsed;
|
|
|
|
// check if position drift has been constrained by a measurement source
|
|
bool posAiding = posUsed || rngBcnUsed || extNavUsed;
|
|
|
|
// Check if the loss of attitude aiding has become critical
|
|
bool attAidLossCritical = false;
|
|
if (!attAiding) {
|
|
attAidLossCritical = (imuSampleTime_ms - prevFlowFuseTime_ms > frontend->tiltDriftTimeMax_ms) &&
|
|
(imuSampleTime_ms - lastTasPassTime_ms > frontend->tiltDriftTimeMax_ms) &&
|
|
(imuSampleTime_ms - lastRngBcnPassTime_ms > frontend->tiltDriftTimeMax_ms) &&
|
|
(imuSampleTime_ms - lastPosPassTime_ms > frontend->tiltDriftTimeMax_ms) &&
|
|
(imuSampleTime_ms - lastExtNavPassTime_ms > frontend->tiltDriftTimeMax_ms) &&
|
|
(imuSampleTime_ms - lastVelPassTime_ms > frontend->tiltDriftTimeMax_ms);
|
|
}
|
|
|
|
// Check if the loss of position accuracy has become critical
|
|
bool posAidLossCritical = false;
|
|
if (!posAiding ) {
|
|
uint16_t maxLossTime_ms;
|
|
if (!velAiding) {
|
|
maxLossTime_ms = frontend->posRetryTimeNoVel_ms;
|
|
} else {
|
|
maxLossTime_ms = frontend->posRetryTimeUseVel_ms;
|
|
}
|
|
posAidLossCritical = (imuSampleTime_ms - lastRngBcnPassTime_ms > maxLossTime_ms) &&
|
|
(imuSampleTime_ms - lastExtNavPassTime_ms > maxLossTime_ms) &&
|
|
(imuSampleTime_ms - lastPosPassTime_ms > maxLossTime_ms);
|
|
}
|
|
|
|
if (attAidLossCritical) {
|
|
// if the loss of attitude data is critical, then put the filter into a constant position mode
|
|
PV_AidingMode = AID_NONE;
|
|
posTimeout = true;
|
|
velTimeout = true;
|
|
rngBcnTimeout = true;
|
|
tasTimeout = true;
|
|
gpsNotAvailable = true;
|
|
} else if (posAidLossCritical) {
|
|
if ((frontend->_flowUse == FLOW_USE_NAV) && optFlowDataPresent() && (imuSampleTime_ms - rngValidMeaTime_ms < 500)) {
|
|
PV_AidingMode = AID_NONE;
|
|
}
|
|
// if the loss of position is critical, declare all sources of position aiding as being timed out
|
|
posTimeout = true;
|
|
velTimeout = true;
|
|
rngBcnTimeout = true;
|
|
gpsNotAvailable = true;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// check to see if we are starting or stopping aiding and set states and modes as required
|
|
if (PV_AidingMode != PV_AidingModePrev) {
|
|
// set various usage modes based on the condition when we start aiding. These are then held until aiding is stopped.
|
|
switch (PV_AidingMode) {
|
|
case AID_NONE:
|
|
// We have ceased aiding
|
|
GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "EKF2 IMU%u has stopped aiding",(unsigned)imu_index);
|
|
// When not aiding, estimate orientation & height fusing synthetic constant position and zero velocity measurement to constrain tilt errors
|
|
posTimeout = true;
|
|
velTimeout = true;
|
|
// Reset the normalised innovation to avoid false failing bad fusion tests
|
|
velTestRatio = 0.0f;
|
|
posTestRatio = 0.0f;
|
|
// store the current position to be used to keep reporting the last known position
|
|
lastKnownPositionNE.x = stateStruct.position.x;
|
|
lastKnownPositionNE.y = stateStruct.position.y;
|
|
// initialise filtered altitude used to provide a takeoff reference to current baro on disarm
|
|
// this reduces the time required for the baro noise filter to settle before the filtered baro data can be used
|
|
meaHgtAtTakeOff = baroDataDelayed.hgt;
|
|
// reset the vertical position state to faster recover from baro errors experienced during touchdown
|
|
stateStruct.position.z = -meaHgtAtTakeOff;
|
|
break;
|
|
|
|
case AID_RELATIVE:
|
|
// We have commenced aiding, but GPS usage has been prohibited so use optical flow only
|
|
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF2 IMU%u is using optical flow",(unsigned)imu_index);
|
|
posTimeout = true;
|
|
velTimeout = true;
|
|
// Reset the last valid flow measurement time
|
|
flowValidMeaTime_ms = imuSampleTime_ms;
|
|
// Reset the last valid flow fusion time
|
|
prevFlowFuseTime_ms = imuSampleTime_ms;
|
|
break;
|
|
|
|
case AID_ABSOLUTE: {
|
|
bool canUseGPS = ((frontend->_fusionModeGPS) != 3 && readyToUseGPS());
|
|
bool canUseRangeBeacon = readyToUseRangeBeacon();
|
|
bool canUseExtNav = readyToUseExtNav();
|
|
// We have commenced aiding and GPS usage is allowed
|
|
if (canUseGPS) {
|
|
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF2 IMU%u is using GPS",(unsigned)imu_index);
|
|
}
|
|
posTimeout = false;
|
|
velTimeout = false;
|
|
// We have commenced aiding and range beacon usage is allowed
|
|
if (canUseRangeBeacon) {
|
|
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF2 IMU%u is using range beacons",(unsigned)imu_index);
|
|
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF2 IMU%u initial pos NE = %3.1f,%3.1f (m)",(unsigned)imu_index,(double)receiverPos.x,(double)receiverPos.y);
|
|
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF2 IMU%u initial beacon pos D offset = %3.1f (m)",(unsigned)imu_index,(double)bcnPosOffset);
|
|
}
|
|
// We have commenced aiding and external nav usage is allowed
|
|
if (canUseExtNav) {
|
|
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF2 IMU%u is using external nav data",(unsigned)imu_index);
|
|
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF2 IMU%u initial pos NED = %3.1f,%3.1f,%3.1f (m)",(unsigned)imu_index,(double)extNavDataDelayed.pos.x,(double)extNavDataDelayed.pos.y,(double)extNavDataDelayed.pos.z);
|
|
//handle yaw reset as special case only if compass is disabled
|
|
if (!use_compass()) {
|
|
extNavYawResetRequest = true;
|
|
controlMagYawReset();
|
|
}
|
|
// handle height reset as special case
|
|
hgtMea = -extNavDataDelayed.pos.z;
|
|
posDownObsNoise = sq(constrain_float(extNavDataDelayed.posErr, 0.1f, 10.0f));
|
|
ResetHeight();
|
|
}
|
|
// reset the last fusion accepted times to prevent unwanted activation of timeout logic
|
|
lastPosPassTime_ms = imuSampleTime_ms;
|
|
lastVelPassTime_ms = imuSampleTime_ms;
|
|
lastRngBcnPassTime_ms = imuSampleTime_ms;
|
|
lastExtNavPassTime_ms = imuSampleTime_ms;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Always reset the position and velocity when changing mode
|
|
ResetVelocity();
|
|
ResetPosition();
|
|
}
|
|
}
|
|
|
|
// Check the tilt and yaw alignmnent status
|
|
// Used during initial bootstrap alignment of the filter
|
|
void NavEKF2_core::checkAttitudeAlignmentStatus()
|
|
{
|
|
// Check for tilt convergence - used during initial alignment
|
|
float alpha = 1.0f*imuDataDelayed.delAngDT;
|
|
float temp=tiltErrVec.length();
|
|
tiltErrFilt = alpha*temp + (1.0f-alpha)*tiltErrFilt;
|
|
if (tiltErrFilt < 0.005f && !tiltAlignComplete) {
|
|
tiltAlignComplete = true;
|
|
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF2 IMU%u tilt alignment complete",(unsigned)imu_index);
|
|
}
|
|
|
|
// submit yaw and magnetic field reset requests depending on whether we have compass data
|
|
if (tiltAlignComplete && !yawAlignComplete) {
|
|
if (use_compass()) {
|
|
magYawResetRequest = true;
|
|
gpsYawResetRequest = false;
|
|
} else {
|
|
magYawResetRequest = false;
|
|
gpsYawResetRequest = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// return true if we should use the airspeed sensor
|
|
bool NavEKF2_core::useAirspeed(void) const
|
|
{
|
|
return dal.airspeed_sensor_enabled();
|
|
}
|
|
|
|
// return true if we should use the range finder sensor
|
|
bool NavEKF2_core::useRngFinder(void) const
|
|
{
|
|
// TO-DO add code to set this based in setting of optical flow use parameter and presence of sensor
|
|
return true;
|
|
}
|
|
|
|
// return true if optical flow data is available
|
|
bool NavEKF2_core::optFlowDataPresent(void) const
|
|
{
|
|
return (imuSampleTime_ms - flowMeaTime_ms < 200);
|
|
}
|
|
|
|
// return true if the filter to be ready to use gps
|
|
bool NavEKF2_core::readyToUseGPS(void) const
|
|
{
|
|
return validOrigin && tiltAlignComplete && yawAlignComplete && gpsGoodToAlign && (frontend->_fusionModeGPS != 3) && gpsDataToFuse;
|
|
}
|
|
|
|
// return true if the filter to be ready to use the beacon range measurements
|
|
bool NavEKF2_core::readyToUseRangeBeacon(void) const
|
|
{
|
|
return tiltAlignComplete && yawAlignComplete && rngBcnGoodToAlign && rngBcnDataToFuse;
|
|
}
|
|
|
|
// return true if the filter to be ready to use external nav data
|
|
bool NavEKF2_core::readyToUseExtNav(void) const
|
|
{
|
|
return tiltAlignComplete && extNavDataToFuse;
|
|
}
|
|
|
|
// return true if we should use the compass
|
|
bool NavEKF2_core::use_compass(void) const
|
|
{
|
|
return dal.get_compass() && dal.get_compass()->use_for_yaw(magSelectIndex) && !allMagSensorsFailed;
|
|
}
|
|
|
|
/*
|
|
should we assume zero sideslip?
|
|
*/
|
|
bool NavEKF2_core::assume_zero_sideslip(void) const
|
|
{
|
|
// we don't assume zero sideslip for ground vehicles as EKF could
|
|
// be quite sensitive to a rapid spin of the ground vehicle if
|
|
// traction is lost
|
|
return dal.get_fly_forward() && dal.get_vehicle_class() != AP_DAL::VehicleClass::GROUND;
|
|
}
|
|
|
|
// set the LLH location of the filters NED origin
|
|
bool NavEKF2_core::setOriginLLH(const Location &loc)
|
|
{
|
|
if (PV_AidingMode == AID_ABSOLUTE && !extNavUsedForPos) {
|
|
return false;
|
|
}
|
|
EKF_origin = loc;
|
|
ekfGpsRefHgt = (double)0.01 * (double)EKF_origin.alt;
|
|
// define Earth rotation vector in the NED navigation frame at the origin
|
|
calcEarthRateNED(earthRateNED, loc.lat);
|
|
validOrigin = true;
|
|
return true;
|
|
}
|
|
|
|
// Set the NED origin to be used until the next filter reset
|
|
void NavEKF2_core::setOrigin(const Location &loc)
|
|
{
|
|
EKF_origin = loc;
|
|
// if flying, correct for height change from takeoff so that the origin is at field elevation
|
|
if (inFlight) {
|
|
EKF_origin.alt += (int32_t)(100.0f * stateStruct.position.z);
|
|
}
|
|
ekfGpsRefHgt = (double)0.01 * (double)EKF_origin.alt;
|
|
// define Earth rotation vector in the NED navigation frame at the origin
|
|
calcEarthRateNED(earthRateNED, EKF_origin.lat);
|
|
validOrigin = true;
|
|
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF2 IMU%u origin set",(unsigned)imu_index);
|
|
|
|
// put origin in frontend as well to ensure it stays in sync between lanes
|
|
frontend->common_EKF_origin = EKF_origin;
|
|
frontend->common_origin_valid = true;
|
|
}
|
|
|
|
// record a yaw reset event
|
|
void NavEKF2_core::recordYawReset()
|
|
{
|
|
yawAlignComplete = true;
|
|
if (inFlight) {
|
|
finalInflightYawInit = true;
|
|
}
|
|
}
|
|
|
|
// return true and set the class variable true if the delta angle bias has been learned
|
|
bool NavEKF2_core::checkGyroCalStatus(void)
|
|
{
|
|
// check delta angle bias variances
|
|
const float delAngBiasVarMax = sq(radians(0.15f * dtEkfAvg));
|
|
if (!use_compass()) {
|
|
// rotate the variances into earth frame and evaluate horizontal terms only as yaw component is poorly observable without a compass
|
|
// which can make this check fail
|
|
Vector3f delAngBiasVarVec = Vector3f(P[9][9],P[10][10],P[11][11]);
|
|
Vector3f temp = prevTnb * delAngBiasVarVec;
|
|
delAngBiasLearned = (fabsf(temp.x) < delAngBiasVarMax) &&
|
|
(fabsf(temp.y) < delAngBiasVarMax);
|
|
} else {
|
|
delAngBiasLearned = (P[9][9] <= delAngBiasVarMax) &&
|
|
(P[10][10] <= delAngBiasVarMax) &&
|
|
(P[11][11] <= delAngBiasVarMax);
|
|
}
|
|
return delAngBiasLearned;
|
|
}
|
|
|
|
// Update the filter status
|
|
void NavEKF2_core::updateFilterStatus(void)
|
|
{
|
|
// init return value
|
|
filterStatus.value = 0;
|
|
bool doingFlowNav = (PV_AidingMode == AID_RELATIVE) && flowDataValid;
|
|
bool doingWindRelNav = !tasTimeout && assume_zero_sideslip();
|
|
bool doingNormalGpsNav = !posTimeout && (PV_AidingMode == AID_ABSOLUTE);
|
|
bool someVertRefData = (!velTimeout && (useGpsVertVel || useExtNavVel)) || !hgtTimeout;
|
|
bool someHorizRefData = !(velTimeout && posTimeout && tasTimeout) || doingFlowNav;
|
|
bool optFlowNavPossible = flowDataValid && delAngBiasLearned;
|
|
bool gpsNavPossible = !gpsNotAvailable && gpsGoodToAlign && delAngBiasLearned;
|
|
bool filterHealthy = healthy() && tiltAlignComplete && (yawAlignComplete || (!use_compass() && (PV_AidingMode == AID_NONE)));
|
|
// If GPS height usage is specified, height is considered to be inaccurate until the GPS passes all checks
|
|
bool hgtNotAccurate = (frontend->_altSource == 2) && !validOrigin;
|
|
|
|
// set individual flags
|
|
filterStatus.flags.attitude = !stateStruct.quat.is_nan() && filterHealthy; // attitude valid (we need a better check)
|
|
filterStatus.flags.horiz_vel = someHorizRefData && filterHealthy; // horizontal velocity estimate valid
|
|
filterStatus.flags.vert_vel = someVertRefData && filterHealthy; // vertical velocity estimate valid
|
|
filterStatus.flags.horiz_pos_rel = ((doingFlowNav && gndOffsetValid) || doingWindRelNav || doingNormalGpsNav) && filterHealthy; // relative horizontal position estimate valid
|
|
filterStatus.flags.horiz_pos_abs = doingNormalGpsNav && filterHealthy; // absolute horizontal position estimate valid
|
|
filterStatus.flags.vert_pos = !hgtTimeout && filterHealthy && !hgtNotAccurate; // vertical position estimate valid
|
|
filterStatus.flags.terrain_alt = gndOffsetValid && filterHealthy; // terrain height estimate valid
|
|
filterStatus.flags.const_pos_mode = (PV_AidingMode == AID_NONE) && filterHealthy; // constant position mode
|
|
filterStatus.flags.pred_horiz_pos_rel = ((optFlowNavPossible || gpsNavPossible) && filterHealthy) || filterStatus.flags.horiz_pos_rel; // we should be able to estimate a relative position when we enter flight mode
|
|
filterStatus.flags.pred_horiz_pos_abs = (gpsNavPossible && filterHealthy) || filterStatus.flags.horiz_pos_abs; // we should be able to estimate an absolute position when we enter flight mode
|
|
filterStatus.flags.takeoff_detected = takeOffDetected; // takeoff for optical flow navigation has been detected
|
|
filterStatus.flags.takeoff = dal.get_takeoff_expected(); // The EKF has been told to expect takeoff and is in a ground effect mitigation mode
|
|
filterStatus.flags.touchdown = dal.get_touchdown_expected(); // The EKF has been told to detect touchdown and is in a ground effect mitigation mode
|
|
filterStatus.flags.using_gps = ((imuSampleTime_ms - lastPosPassTime_ms) < 4000) && (PV_AidingMode == AID_ABSOLUTE);
|
|
filterStatus.flags.gps_glitching = !gpsAccuracyGood && (PV_AidingMode == AID_ABSOLUTE) && !extNavUsedForPos; // GPS glitching is affecting navigation accuracy
|
|
filterStatus.flags.gps_quality_good = gpsGoodToAlign;
|
|
filterStatus.flags.initalized = filterStatus.flags.initalized || healthy();
|
|
}
|
|
|
|
void NavEKF2_core::runYawEstimatorPrediction()
|
|
{
|
|
if (yawEstimator != nullptr && frontend->_fusionModeGPS <= 1) {
|
|
float trueAirspeed;
|
|
if (is_positive(defaultAirSpeed) && assume_zero_sideslip()) {
|
|
if (imuDataDelayed.time_ms - tasDataDelayed.time_ms < 5000) {
|
|
trueAirspeed = tasDataDelayed.tas;
|
|
} else {
|
|
trueAirspeed = defaultAirSpeed * dal.get_EAS2TAS();
|
|
}
|
|
} else {
|
|
trueAirspeed = 0.0f;
|
|
}
|
|
|
|
yawEstimator->update(imuDataDelayed.delAng, imuDataDelayed.delVel, imuDataDelayed.delAngDT, imuDataDelayed.delVelDT, EKFGSF_run_filterbank, trueAirspeed);
|
|
}
|
|
}
|
|
|
|
void NavEKF2_core::runYawEstimatorCorrection()
|
|
{
|
|
if (yawEstimator != nullptr && frontend->_fusionModeGPS <= 1 && EKFGSF_run_filterbank) {
|
|
if (gpsDataToFuse) {
|
|
Vector2f gpsVelNE = Vector2f(gpsDataDelayed.vel.x, gpsDataDelayed.vel.y);
|
|
float gpsVelAcc = fmaxf(gpsSpdAccuracy, frontend->_gpsHorizVelNoise);
|
|
yawEstimator->fuseVelData(gpsVelNE, gpsVelAcc);
|
|
}
|
|
|
|
// action an external reset request
|
|
if (EKFGSF_yaw_reset_request_ms > 0 && imuSampleTime_ms - EKFGSF_yaw_reset_request_ms < YAW_RESET_TO_GSF_TIMEOUT_MS) {
|
|
EKFGSF_resetMainFilterYaw();
|
|
}
|
|
}
|
|
}
|
|
|
|
// request a reset the yaw to the GSF estimate
|
|
// request times out after YAW_RESET_TO_GSF_TIMEOUT_MS if it cannot be actioned
|
|
void NavEKF2_core::EKFGSF_requestYawReset()
|
|
{
|
|
EKFGSF_yaw_reset_request_ms = imuSampleTime_ms;
|
|
}
|