mirror of https://github.com/ArduPilot/ardupilot
99 lines
3.4 KiB
C++
99 lines
3.4 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include "Rover.h"
|
|
|
|
void Rover::init_barometer(void)
|
|
{
|
|
gcs_send_text_P(SEVERITY_LOW, PSTR("Calibrating barometer"));
|
|
barometer.calibrate();
|
|
gcs_send_text_P(SEVERITY_LOW, PSTR("barometer calibration complete"));
|
|
}
|
|
|
|
void Rover::init_sonar(void)
|
|
{
|
|
sonar.init();
|
|
}
|
|
|
|
// read_battery - reads battery voltage and current and invokes failsafe
|
|
// should be called at 10hz
|
|
void Rover::read_battery(void)
|
|
{
|
|
battery.read();
|
|
}
|
|
|
|
// read the receiver RSSI as an 8 bit number for MAVLink
|
|
// RC_CHANNELS_SCALED message
|
|
void Rover::read_receiver_rssi(void)
|
|
{
|
|
rssi_analog_source->set_pin(g.rssi_pin);
|
|
float ret = rssi_analog_source->voltage_average() * 50;
|
|
receiver_rssi = constrain_int16(ret, 0, 255);
|
|
}
|
|
|
|
// read the sonars
|
|
void Rover::read_sonars(void)
|
|
{
|
|
sonar.update();
|
|
|
|
if (sonar.status() == RangeFinder::RangeFinder_NotConnected) {
|
|
// this makes it possible to disable sonar at runtime
|
|
return;
|
|
}
|
|
|
|
if (sonar.has_data(1)) {
|
|
// we have two sonars
|
|
obstacle.sonar1_distance_cm = sonar.distance_cm(0);
|
|
obstacle.sonar2_distance_cm = sonar.distance_cm(1);
|
|
if (obstacle.sonar1_distance_cm <= (uint16_t)g.sonar_trigger_cm &&
|
|
obstacle.sonar1_distance_cm <= (uint16_t)obstacle.sonar2_distance_cm) {
|
|
// we have an object on the left
|
|
if (obstacle.detected_count < 127) {
|
|
obstacle.detected_count++;
|
|
}
|
|
if (obstacle.detected_count == g.sonar_debounce) {
|
|
gcs_send_text_fmt(PSTR("Sonar1 obstacle %u cm"),
|
|
(unsigned)obstacle.sonar1_distance_cm);
|
|
}
|
|
obstacle.detected_time_ms = hal.scheduler->millis();
|
|
obstacle.turn_angle = g.sonar_turn_angle;
|
|
} else if (obstacle.sonar2_distance_cm <= (uint16_t)g.sonar_trigger_cm) {
|
|
// we have an object on the right
|
|
if (obstacle.detected_count < 127) {
|
|
obstacle.detected_count++;
|
|
}
|
|
if (obstacle.detected_count == g.sonar_debounce) {
|
|
gcs_send_text_fmt(PSTR("Sonar2 obstacle %u cm"),
|
|
(unsigned)obstacle.sonar2_distance_cm);
|
|
}
|
|
obstacle.detected_time_ms = hal.scheduler->millis();
|
|
obstacle.turn_angle = -g.sonar_turn_angle;
|
|
}
|
|
} else {
|
|
// we have a single sonar
|
|
obstacle.sonar1_distance_cm = sonar.distance_cm(0);
|
|
obstacle.sonar2_distance_cm = 0;
|
|
if (obstacle.sonar1_distance_cm <= (uint16_t)g.sonar_trigger_cm) {
|
|
// obstacle detected in front
|
|
if (obstacle.detected_count < 127) {
|
|
obstacle.detected_count++;
|
|
}
|
|
if (obstacle.detected_count == g.sonar_debounce) {
|
|
gcs_send_text_fmt(PSTR("Sonar obstacle %u cm"),
|
|
(unsigned)obstacle.sonar1_distance_cm);
|
|
}
|
|
obstacle.detected_time_ms = hal.scheduler->millis();
|
|
obstacle.turn_angle = g.sonar_turn_angle;
|
|
}
|
|
}
|
|
|
|
Log_Write_Sonar();
|
|
|
|
// no object detected - reset after the turn time
|
|
if (obstacle.detected_count >= g.sonar_debounce &&
|
|
hal.scheduler->millis() > obstacle.detected_time_ms + g.sonar_turn_time*1000) {
|
|
gcs_send_text_fmt(PSTR("Obstacle passed"));
|
|
obstacle.detected_count = 0;
|
|
obstacle.turn_angle = 0;
|
|
}
|
|
}
|