mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-24 17:48:35 -04:00
c17fffc20d
add PRIORITY_LED for led output thread
403 lines
13 KiB
C++
403 lines
13 KiB
C++
#pragma once
|
|
|
|
#include "AP_HAL_Namespace.h"
|
|
#include <stdint.h>
|
|
|
|
#define RC_OUTPUT_MIN_PULSEWIDTH 400
|
|
#define RC_OUTPUT_MAX_PULSEWIDTH 2100
|
|
|
|
/* Define the CH_n names, indexed from 1, if we don't have them already */
|
|
#ifndef CH_1
|
|
#define CH_1 0
|
|
#define CH_2 1
|
|
#define CH_3 2
|
|
#define CH_4 3
|
|
#define CH_5 4
|
|
#define CH_6 5
|
|
#define CH_7 6
|
|
#define CH_8 7
|
|
#define CH_9 8
|
|
#define CH_10 9
|
|
#define CH_11 10
|
|
#define CH_12 11
|
|
#define CH_13 12
|
|
#define CH_14 13
|
|
#define CH_15 14
|
|
#define CH_16 15
|
|
#define CH_17 16
|
|
#define CH_18 17
|
|
#define CH_19 18
|
|
#define CH_20 19
|
|
#define CH_21 20
|
|
#define CH_22 21
|
|
#define CH_23 22
|
|
#define CH_24 23
|
|
#define CH_25 24
|
|
#define CH_26 25
|
|
#define CH_27 26
|
|
#define CH_28 27
|
|
#define CH_29 28
|
|
#define CH_30 29
|
|
#define CH_31 30
|
|
#define CH_32 31
|
|
#define CH_NONE 255
|
|
#endif
|
|
|
|
class ByteBuffer;
|
|
|
|
class ExpandingString;
|
|
|
|
class AP_HAL::RCOutput {
|
|
public:
|
|
virtual void init() = 0;
|
|
|
|
/* Output freq (1/period) control */
|
|
virtual void set_freq(uint32_t chmask, uint16_t freq_hz) = 0;
|
|
virtual uint16_t get_freq(uint8_t chan) = 0;
|
|
|
|
/* Output active/highZ control, either by single channel at a time
|
|
* or a mask of channels */
|
|
virtual void enable_ch(uint8_t chan) = 0;
|
|
virtual void disable_ch(uint8_t chan) = 0;
|
|
|
|
/*
|
|
* Output a single channel, possibly grouped with previous writes if
|
|
* cork() has been called before.
|
|
*/
|
|
virtual void write(uint8_t chan, uint16_t period_us) = 0;
|
|
|
|
/*
|
|
* mark the channels in chanmask as reversible. This is needed for some ESC types (such as DShot)
|
|
* so that output scaling can be performed correctly. The chanmask passed is added (ORed) into any existing mask.
|
|
* The mask uses servo channel numbering
|
|
*/
|
|
virtual void set_reversible_mask(uint32_t chanmask) {}
|
|
|
|
/*
|
|
* mark the channels in chanmask as reversed.
|
|
* The chanmask passed is added (ORed) into any existing mask.
|
|
* The mask uses servo channel numbering
|
|
*/
|
|
virtual void set_reversed_mask(uint32_t chanmask) {}
|
|
virtual uint32_t get_reversed_mask() { return 0; }
|
|
|
|
/*
|
|
* Update channel masks at 1Hz allowing for actions such as dshot commands to be sent
|
|
*/
|
|
virtual void update_channel_masks() {}
|
|
|
|
/*
|
|
* Allow channel mask updates to be temporarily suspended
|
|
*/
|
|
virtual void disable_channel_mask_updates() {}
|
|
virtual void enable_channel_mask_updates() {}
|
|
|
|
/*
|
|
* Delay subsequent calls to write() going to the underlying hardware in
|
|
* order to group related writes together. When all the needed writes are
|
|
* done, call push() to commit the changes.
|
|
*/
|
|
virtual void cork() = 0;
|
|
|
|
/*
|
|
* Push pending changes to the underlying hardware. All changes between a
|
|
* call to cork() and push() are pushed together in a single transaction.
|
|
*/
|
|
virtual void push() = 0;
|
|
|
|
/* Read back current output state, as either single channel or
|
|
* array of channels. On boards that have a separate IO controller,
|
|
* this returns the latest output value that the IO controller has
|
|
* reported */
|
|
virtual uint16_t read(uint8_t chan) = 0;
|
|
virtual void read(uint16_t* period_us, uint8_t len) = 0;
|
|
|
|
/* Read the current input state. This returns the last value that was written. */
|
|
virtual uint16_t read_last_sent(uint8_t chan) { return read(chan); }
|
|
virtual void read_last_sent(uint16_t* period_us, uint8_t len) { read(period_us, len); };
|
|
|
|
/*
|
|
set PWM to send to a set of channels if the FMU firmware dies
|
|
*/
|
|
virtual void set_failsafe_pwm(uint32_t chmask, uint16_t period_us) {}
|
|
|
|
/*
|
|
force the safety switch on, disabling PWM output from the IO board
|
|
return false (indicating failure) by default so that boards with no safety switch
|
|
do not need to implement this method
|
|
*/
|
|
virtual bool force_safety_on(void) { return false; }
|
|
|
|
/*
|
|
force the safety switch off, enabling PWM output from the IO board
|
|
*/
|
|
virtual void force_safety_off(void) {}
|
|
|
|
/*
|
|
setup scaling of ESC output for ESCs that can output a
|
|
percentage of power (such as UAVCAN ESCs). The values are in
|
|
microseconds, and represent minimum and maximum PWM values which
|
|
will be used to convert channel writes into a percentage
|
|
*/
|
|
virtual void set_esc_scaling(uint16_t min_pwm, uint16_t max_pwm) {}
|
|
|
|
/*
|
|
return ESC scaling value from set_esc_scaling()
|
|
*/
|
|
virtual bool get_esc_scaling(uint16_t &min_pwm, uint16_t &max_pwm) { return false; }
|
|
|
|
/*
|
|
returns the pwm value scaled to [-1;1] regrading to set_esc_scaling ranges range without constraints.
|
|
*/
|
|
virtual float scale_esc_to_unity(uint16_t pwm) { return 0; }
|
|
|
|
/*
|
|
return the erpm and error rate for a channel if available
|
|
*/
|
|
virtual uint16_t get_erpm(uint8_t chan) const { return 0; }
|
|
virtual float get_erpm_error_rate(uint8_t chan) const { return 100.0f; }
|
|
|
|
/*
|
|
enable PX4IO SBUS out at the given rate
|
|
*/
|
|
virtual bool enable_px4io_sbus_out(uint16_t rate_hz) { return false; }
|
|
|
|
/*
|
|
* Optional method to control the update of the motors. Derived classes
|
|
* can implement it if their HAL layer requires.
|
|
*/
|
|
virtual void timer_tick(void) { }
|
|
|
|
/*
|
|
setup for serial output to an ESC using the given
|
|
baudrate. Assumes 1 start bit, 1 stop bit, LSB first and 8
|
|
databits. This is used for passthrough ESC configuration and
|
|
firmware flashing
|
|
|
|
While serial output is active normal output to all channels in
|
|
the chanmask is suspended. Output to some other channels (such
|
|
as those in the same channel timer groups) may also be stopped,
|
|
depending on the implementation
|
|
*/
|
|
virtual bool serial_setup_output(uint8_t chan, uint32_t baudrate, uint32_t chanmask) { return false; }
|
|
|
|
/*
|
|
write a set of bytes to an ESC, using settings from
|
|
serial_setup_output. This is a blocking call
|
|
*/
|
|
virtual bool serial_write_bytes(const uint8_t *bytes, uint16_t len) { return false; }
|
|
|
|
/*
|
|
read a series of bytes from a port, using serial parameters from serial_setup_output()
|
|
return the number of bytes read. This is a blocking call
|
|
*/
|
|
virtual uint16_t serial_read_bytes(uint8_t *buf, uint16_t len) { return 0; }
|
|
|
|
/*
|
|
stop serial output. This restores the previous output mode for
|
|
the channel and any other channels that were stopped by
|
|
serial_setup_output()
|
|
*/
|
|
virtual void serial_end(void) {}
|
|
|
|
/*
|
|
output modes. Allows for support of PWM, oneshot and dshot
|
|
*/
|
|
// this enum is used by BLH_OTYPE and ESC_PWM_TYPE on AP_Periph
|
|
// double check params are still correct when changing
|
|
enum output_mode {
|
|
MODE_PWM_NONE,
|
|
MODE_PWM_NORMAL,
|
|
MODE_PWM_ONESHOT,
|
|
MODE_PWM_ONESHOT125,
|
|
MODE_PWM_BRUSHED,
|
|
MODE_PWM_DSHOT150,
|
|
MODE_PWM_DSHOT300,
|
|
MODE_PWM_DSHOT600,
|
|
MODE_PWM_DSHOT1200,
|
|
MODE_NEOPIXEL, // same as MODE_PWM_DSHOT at 800kHz but it's an LED
|
|
MODE_PROFILED, // same as MODE_PWM_DSHOT using separate clock and data
|
|
};
|
|
// true when the output mode is of type dshot
|
|
// static to allow use in the ChibiOS thread stuff
|
|
static bool is_dshot_protocol(const enum output_mode mode);
|
|
|
|
static bool is_led_protocol(const enum output_mode mode) {
|
|
switch (mode) {
|
|
case MODE_NEOPIXEL:
|
|
case MODE_PROFILED:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// BLHeli32: https://github.com/bitdump/BLHeli/blob/master/BLHeli_32%20ARM/BLHeli_32%20Firmware%20specs/Digital_Cmd_Spec.txt
|
|
// BLHeli_S: https://github.com/bitdump/BLHeli/blob/master/BLHeli_S%20SiLabs/Dshotprog%20spec%20BLHeli_S.txt
|
|
enum BLHeliDshotCommand : uint8_t {
|
|
DSHOT_RESET = 0,
|
|
DSHOT_BEEP1 = 1,
|
|
DSHOT_BEEP2 = 2,
|
|
DSHOT_BEEP3 = 3,
|
|
DSHOT_BEEP4 = 4,
|
|
DSHOT_BEEP5 = 5,
|
|
DSHOT_ESC_INFO = 6,
|
|
DSHOT_ROTATE = 7,
|
|
DSHOT_ROTATE_ALTERNATE = 8,
|
|
DSHOT_3D_OFF = 9,
|
|
DSHOT_3D_ON = 10,
|
|
DSHOT_SAVE = 12,
|
|
DSHOT_NORMAL = 20,
|
|
DSHOT_REVERSE = 21,
|
|
// The following options are only available on BLHeli32
|
|
DSHOT_LED0_ON = 22,
|
|
DSHOT_LED1_ON = 23,
|
|
DSHOT_LED2_ON = 24,
|
|
DSHOT_LED3_ON = 25,
|
|
DSHOT_LED0_OFF = 26,
|
|
DSHOT_LED1_OFF = 27,
|
|
DSHOT_LED2_OFF = 28,
|
|
DSHOT_LED3_OFF = 29,
|
|
};
|
|
|
|
const uint8_t DSHOT_ZERO_THROTTLE = 48;
|
|
|
|
enum DshotEscType {
|
|
DSHOT_ESC_NONE = 0,
|
|
DSHOT_ESC_BLHELI = 1,
|
|
DSHOT_ESC_BLHELI_S = 2
|
|
};
|
|
|
|
virtual void set_output_mode(uint32_t mask, enum output_mode mode) {}
|
|
|
|
/*
|
|
* get output mode banner to inform user of how outputs are configured
|
|
*/
|
|
virtual bool get_output_mode_banner(char banner_msg[], uint8_t banner_msg_len) const { return false; }
|
|
|
|
/*
|
|
* return mask of channels that must be disabled because they share a group with a digital channel
|
|
*/
|
|
virtual uint32_t get_disabled_channels(uint32_t digital_mask) { return 0; }
|
|
|
|
/*
|
|
set default update rate
|
|
*/
|
|
virtual void set_default_rate(uint16_t rate_hz) {}
|
|
|
|
/*
|
|
enable telemetry request for a mask of channels. This is used
|
|
with DShot to get telemetry feedback
|
|
*/
|
|
virtual void set_telem_request_mask(uint32_t mask) {}
|
|
|
|
/*
|
|
enable bi-directional telemetry request for a mask of channels. This is used
|
|
with DShot to get telemetry feedback
|
|
*/
|
|
virtual void set_bidir_dshot_mask(uint32_t mask) {}
|
|
|
|
/*
|
|
mark escs as active for the purpose of sending dshot commands
|
|
*/
|
|
virtual void set_active_escs_mask(uint32_t mask) {}
|
|
|
|
/*
|
|
Set the dshot rate as a multiple of the loop rate
|
|
*/
|
|
virtual void set_dshot_rate(uint8_t dshot_rate, uint16_t loop_rate_hz) {}
|
|
|
|
/*
|
|
Set the dshot ESC type
|
|
*/
|
|
virtual void set_dshot_esc_type(DshotEscType esc_type) {}
|
|
|
|
virtual DshotEscType get_dshot_esc_type() const { return DSHOT_ESC_NONE; }
|
|
|
|
const static uint32_t ALL_CHANNELS = 255;
|
|
/*
|
|
Send a dshot command, if command timout is 0 then 10 commands are sent
|
|
chan is the servo channel to send the command to
|
|
*/
|
|
virtual void send_dshot_command(uint8_t command, uint8_t chan = ALL_CHANNELS, uint32_t command_timeout_ms = 0, uint16_t repeat_count = 10, bool priority = false) {}
|
|
|
|
/*
|
|
set the number of motor poles to be used in rpm calculations
|
|
*/
|
|
virtual void set_motor_poles(uint8_t poles) {}
|
|
|
|
/*
|
|
setup serial led output for a given channel number, with
|
|
the given max number of LEDs in the chain.
|
|
*/
|
|
virtual bool set_serial_led_num_LEDs(const uint16_t chan, uint8_t num_leds, output_mode mode = MODE_PWM_NONE, uint32_t clock_mask = 0) { return false; }
|
|
|
|
/*
|
|
setup serial led output data for a given output channel
|
|
and led number. A led number of -1 means all LEDs. LED 0 is the first LED
|
|
*/
|
|
virtual void set_serial_led_rgb_data(const uint16_t chan, int8_t led, uint8_t red, uint8_t green, uint8_t blue) {}
|
|
|
|
/*
|
|
trigger send of serial led
|
|
*/
|
|
virtual void serial_led_send(const uint16_t chan) {}
|
|
|
|
virtual void timer_info(ExpandingString &str) {}
|
|
|
|
/*
|
|
Can this driver handle gpio as well as RC
|
|
*/
|
|
virtual bool supports_gpio() { return false; };
|
|
|
|
/*
|
|
Writes gpio state to a channel
|
|
*/
|
|
virtual void write_gpio(uint8_t chan, bool active) {};
|
|
|
|
/*
|
|
* calculate the prescaler required to achieve the desire bitrate
|
|
*/
|
|
static uint32_t calculate_bitrate_prescaler(uint32_t timer_clock, uint32_t target_frequency, bool is_dshot);
|
|
|
|
/*
|
|
* bit width values for different protocols
|
|
*/
|
|
/*
|
|
* It seems ESCs are quite sensitive to the DSHOT duty cycle.
|
|
* Options are (ticks, percentage):
|
|
* 20/7/14, 35/70
|
|
* 11/4/8, 36/72
|
|
* 8/3/6, 37/75
|
|
*/
|
|
// bitwidths: 8/3/6 == 37%/75%
|
|
static constexpr uint32_t DSHOT_BIT_WIDTH_TICKS_DEFAULT = 8;
|
|
static constexpr uint32_t DSHOT_BIT_0_TICKS_DEFAULT = 3;
|
|
static constexpr uint32_t DSHOT_BIT_1_TICKS_DEFAULT = 6;
|
|
// bitwidths: 11/4/8 == 36%/72%
|
|
static constexpr uint32_t DSHOT_BIT_WIDTH_TICKS_S = 11;
|
|
static constexpr uint32_t DSHOT_BIT_0_TICKS_S = 4;
|
|
static constexpr uint32_t DSHOT_BIT_1_TICKS_S = 8;
|
|
|
|
static uint32_t DSHOT_BIT_WIDTH_TICKS;
|
|
static uint32_t DSHOT_BIT_0_TICKS;
|
|
static uint32_t DSHOT_BIT_1_TICKS;
|
|
|
|
// See WS2812B spec for expected pulse widths
|
|
static constexpr uint32_t NEOP_BIT_WIDTH_TICKS = 8;
|
|
static constexpr uint32_t NEOP_BIT_0_TICKS = 3;
|
|
static constexpr uint32_t NEOP_BIT_1_TICKS = 6;
|
|
// neopixel does not use pulse widths at all
|
|
static constexpr uint32_t PROFI_BIT_0_TICKS = 7;
|
|
static constexpr uint32_t PROFI_BIT_1_TICKS = 14;
|
|
|
|
// suitably long LED output period to support high LED counts
|
|
static constexpr uint32_t LED_OUTPUT_PERIOD_US = 10000;
|
|
|
|
protected:
|
|
|
|
// helper functions for implementation of get_output_mode_banner
|
|
void append_to_banner(char banner_msg[], uint8_t banner_msg_len, output_mode out_mode, uint8_t low_ch, uint8_t high_ch) const;
|
|
const char* get_output_mode_string(enum output_mode out_mode) const;
|
|
};
|