ardupilot/libraries/AP_Radio/driver_bk2425.cpp

699 lines
24 KiB
C++

// --------------------------------------------------------------------
// low level driver for the beken radio on SPI
// --------------------------------------------------------------------
#include "driver_bk2425.h"
#if defined(HAL_RCINPUT_WITH_AP_RADIO) && CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_CHIBIOS_SKYVIPER_F412
#include <utility>
#include <AP_HAL_ChibiOS/AP_HAL_ChibiOS.h>
using namespace ChibiOS;
//#pragma GCC optimize("O0")
extern const AP_HAL::HAL& hal;
// --------------------------------------------------------------------
// Radio initialisation tables
// --------------------------------------------------------------------
#if (TX_SPEED==250)
ITX_SPEED Radio_Beken::gTxSpeed = ITX_250;
#elif (TX_SPEED==100)
ITX_SPEED Radio_Beken::gTxSpeed = ITX_1000;
#elif (TX_SPEED==2000)
ITX_SPEED Radio_Beken::gTxSpeed = ITX_2000;
#endif
// --------------------------------------------------------------------
static const uint8_t Bank1_RegTable[ITX_MAX][IREG_MAX][5]= {
// (TX_SPEED == 250u) // [ITX_250]
{
{ BK2425_R1_4, 0xf9,0x96,0x8a,0xdb }, // 0xDB8A96f9ul, // [IREG1_4] REG4 250kbps
{ BK2425_R1_5, 0x24,0x06,0x0f,0xb6 }, // 0xB60F0624ul, // [IREG1_5] REG5 250kbps
PLL_SPEED, // [IREG1_12] REG12
{ BK2425_R1_13, 0x36,0xb4,0x80,0x00 }, // 0x36B48000ul, // [IREG1_13] REG13
{ BK2425_R1_4, 0xff,0x96,0x8a,0xdb }, // 0xDB8A96f9ul, // [IREG1_4A] REG4 250kbps
},
// (TX_SPEED == 1000u) [ITX_1000]
{
{ BK2425_R1_4, 0xf9,0x96,0x82,0x1b }, // 0x1B8296f9ul, // [IREG1_4] REG4 1Mbps
{ BK2425_R1_5, 0x24,0x06,0x0f,0xa6 }, // 0xA60F0624ul, // [IREG1_5] REG5 1Mbps
PLL_SPEED, // [IREG1_12] REG12
{ BK2425_R1_13, 0x36,0xb4,0x80,0x00 }, // 0x36B48000ul, // [IREG1_13] REG13
{ BK2425_R1_4, 0xff,0x96,0x82,0x1b }, // 0x1B8296f9ul, // [IREG1_4A] REG4 1Mbps
},
// (TX_SPEED == 2000u) [ITX_2000]
{
{ BK2425_R1_4, 0xf9,0x96,0x82,0xdb }, // 0xdb8296f9ul, // [IREG1_4] REG4 2Mbps
{ BK2425_R1_5, 0x24,0x06,0x0f,0xb6 }, // 0xb60f0624ul, // [IREG1_5] REG5 2Mbps
PLL_SPEED, // [IREG1_12] REG12
{ BK2425_R1_13, 0x36,0xb4,0x80,0x00 }, // 0x36B48000ul, // [IREG1_13] REG13
{ BK2425_R1_4, 0xff,0x96,0x82,0xdb }, // 0xdb8296f9ul, // [IREG1_4A] REG4 2Mbps
},
// (TX_SPEED == 0u) // [ITX_CARRIER]
{
{ BK2425_R1_4, 0xf9,0x96,0x82,0x21 }, // 0xF9968221ul, // [IREG1_4] REG4 carrier
{ BK2425_R1_5, 0x24,0x06,0x0f,0xb6 }, // 0xB60F0624ul, // [IREG1_5] REG5 250kbps
PLL_SPEED, // [IREG1_12] REG12
{ BK2425_R1_13, 0x36,0xb4,0x80,0x00 }, // 0x36B48000ul, // [IREG1_13] REG13
{ BK2425_R1_4, 0xff,0x96,0x82,0x21 }, // 0xDB8A96f9ul, // [IREG1_4A] REG4 250kbps
}
};
// --------------------------------------------------------------------
static const uint8_t Bank0_Reg6[ITX_MAX][2] = {
{BK_RF_SETUP, 0x27}, // 250kbps (6) 0x27=250kbps
{BK_RF_SETUP, 0x07}, // 1000kbps (6) 0x07=1Mbps, high gain, high txpower
{BK_RF_SETUP, 0x2F}, // 2000kbps (6) 0x2F=2Mbps, high gain, high txpower
{BK_RF_SETUP, 0x37}, // 250kbps (6) 0x10=carrier
};
// --------------------------------------------------------------------
static const uint8_t Bank1_Reg14[]= {
0x41,0x20,0x08,0x04,0x81,0x20,0xcf,0xF7,0xfe,0xff,0xff
};
// --------------------------------------------------------------------
// Bank0 register initialization value
static const uint8_t Bank0_Reg[][2]= {
#if 0
{BK_CONFIG, BK_CONFIG_PWR_UP | BK_CONFIG_PRIM_RX }, // (0) 0x0F=Rx, PowerUp, no crc, all interrupts enabled
{BK_EN_AA, 0x00}, // (1) 0x00=No auto acknowledge packets on all 6 data pipes (0..5)
{BK_EN_RXADDR, 0x02}, // (2) 0x01=1 or 2 out of 6 data pipes enabled (pairing heartbeat and my tx)
{BK_SETUP_AW, 0x03}, // (3) 0x01=3 byte address width
#else
{BK_CONFIG, BK_CONFIG_EN_CRC | BK_CONFIG_CRCO | BK_CONFIG_PWR_UP | BK_CONFIG_PRIM_RX }, // (0) 0x0F=Rx, PowerUp, crc16, all interrupts enabled
{BK_EN_AA, 0x00}, // (1) 0x00=No auto acknowledge packets on all 6 data pipes (0..5)
{BK_EN_RXADDR, 0x03}, // (2) 0x01=1 or 2 out of 6 data pipes enabled (pairing heartbeat and my tx)
{BK_SETUP_AW, 0x03}, // (3) 0x03=5 byte address width
#endif
{BK_SETUP_RETR, 0x00}, // (4) 0x00=No retransmissions
{BK_RF_CH, 0x17}, // (5) 0x17=2423Mhz default frequency
// Comment in Beken code says that 0x0F or 0x2F=2Mbps; 0x07=1Mbps; 0x27=250Kbps
#if (TX_SPEED == 2000)
{BK_RF_SETUP, 0x2F}, // (6) 0x2F=2Mbps, high gain, high txpower
#elif (TX_SPEED == 1000)
{BK_RF_SETUP, 0x07}, // (6) 0x07=1Mbps, high gain, high txpower
#elif (TX_SPEED == 250)
{BK_RF_SETUP, 0x27}, // (6) 0x27=250kbps
//{BK_RF_SETUP, 0x21}, // (6) 0x27=250kbps, lowest txpower
#endif
{BK_STATUS, 0x07}, // (7) 7=no effect
{BK_OBSERVE_TX, 0x00}, // (8) (no effect)
{BK_CD, 0x00}, // (9) Carrier detect (no effect)
// (10) = 5 byte register
// (11) = 5 byte register
{BK_RX_ADDR_P2, 0xc3}, // (12) rx address for data pipe 2
{BK_RX_ADDR_P3, 0xc4}, // (13) rx address for data pipe 3
{BK_RX_ADDR_P4, 0xc5}, // (14) rx address for data pipe 4
{BK_RX_ADDR_P5, 0xc6}, // (15) rx address for data pipe 5
// (16) = 5 byte register
{BK_RX_PW_P0, PACKET_LENGTH_RX_CTRL}, // (17) size of rx data pipe 0
{BK_RX_PW_P1, PACKET_LENGTH_RX_BIND}, // (18) size of rx data pipe 1
{BK_RX_PW_P2, 0x20}, // (19) size of rx data pipe 2
{BK_RX_PW_P3, 0x20}, // (20) size of rx data pipe 3
{BK_RX_PW_P4, 0x20}, // (21) size of rx data pipe 4
{BK_RX_PW_P5, 0x20}, // (22) size of rx data pipe 5
{BK_FIFO_STATUS,0x00}, // (23) fifo status
// (24,25,26,27)
{BK_DYNPD, 0x3F}, // (28) 0x3f=enable dynamic payload length for all 6 data pipes
{BK_FEATURE, BK_FEATURE_EN_DPL | BK_FEATURE_EN_ACK_PAY | BK_FEATURE_EN_DYN_ACK } // (29) 7=enable ack, no ack, dynamic payload length
};
// ----------------------------------------------------------------------------
const uint8_t RegPower[8][2] = {
{ OUTPUT_POWER_REG4_0, OUTPUT_POWER_REG6_0 },
{ OUTPUT_POWER_REG4_1, OUTPUT_POWER_REG6_1 },
{ OUTPUT_POWER_REG4_2, OUTPUT_POWER_REG6_2 },
{ OUTPUT_POWER_REG4_3, OUTPUT_POWER_REG6_3 },
{ OUTPUT_POWER_REG4_4, OUTPUT_POWER_REG6_4 },
{ OUTPUT_POWER_REG4_5, OUTPUT_POWER_REG6_5 },
{ OUTPUT_POWER_REG4_6, OUTPUT_POWER_REG6_6 },
{ OUTPUT_POWER_REG4_7, OUTPUT_POWER_REG6_7 },
};
// --------------------------------------------------------------------
// Generic functions
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// constructor
Radio_Beken::Radio_Beken(AP_HAL::OwnPtr<AP_HAL::SPIDevice> _dev) :
dev(std::move(_dev))
{
ResetAddress();
}
// --------------------------------------------------------------------
// Use the default addresses
void Radio_Beken::ResetAddress(void)
{
// Set the default address
TX_Address[0] = 0x33;
TX_Address[1] = RX0_Address[1] = 0x00;
TX_Address[2] = RX0_Address[2] = 0x59;
TX_Address[3] = RX0_Address[3] = 0x00;
TX_Address[4] = RX0_Address[4] = 0x00;
RX0_Address[0] = 0x31;
RX1_Address[0] = 0x32;
RX1_Address[1] = 0x99;
RX1_Address[2] = 0x59;
RX1_Address[3] = 0xC6;
RX1_Address[4] = 0x2D;
}
// --------------------------------------------------------------------
// Raw SPI access functions
// --------------------------------------------------------------------
// --------------------------------------------------------------------
void Radio_Beken::ReadRegisterMulti(uint8_t address, uint8_t *data, uint8_t len)
{
uint8_t tx[len+1];
uint8_t rx[len+1];
memset(tx, 0, len+1);
memset(rx, 0, len+1);
tx[0] = address;
DEBUG2_HIGH();
(void)dev->transfer_fullduplex(tx, rx, len+1);
DEBUG2_LOW();
memcpy(data, &rx[1], len);
}
// --------------------------------------------------------------------
void Radio_Beken::WriteRegisterMulti(uint8_t address, const uint8_t *data, uint8_t len)
{
uint8_t tx[len+1];
uint8_t rx[len+1];
memset(rx, 0, len+1);
tx[0] = address;
memcpy(&tx[1], data, len);
DEBUG2_HIGH();
(void)dev->transfer_fullduplex(tx, rx, len+1);
DEBUG2_LOW();
}
// --------------------------------------------------------------------
// Low-level Beken functions
// --------------------------------------------------------------------
// --------------------------------------------------------------------
uint8_t Radio_Beken::ReadStatus(void)
{
uint8_t tx = BK_NOP;
uint8_t rx = 0;
DEBUG2_HIGH();
(void)dev->transfer_fullduplex(&tx, &rx, 1);
DEBUG2_LOW();
return rx; // Status
}
// --------------------------------------------------------------------
uint8_t Radio_Beken::ReadReg(uint8_t reg)
{
uint8_t tx[2];
uint8_t rx[2];
memset(tx, 0, 2);
memset(rx, 0, 2);
tx[0] = reg | BK_READ_REG;
DEBUG2_HIGH();
(void)dev->transfer_fullduplex(tx, rx, 2);
DEBUG2_LOW();
return rx[1];
}
// --------------------------------------------------------------------
uint8_t Radio_Beken::Strobe(uint8_t address)
{
uint8_t tx = address;
uint8_t rx = 0;
DEBUG2_HIGH();
(void)dev->transfer_fullduplex(&tx, &rx, 1);
DEBUG2_LOW();
return rx; // Status
}
// --------------------------------------------------------------------
// Set which register bank we are accessing
void Radio_Beken::SetRBank(uint8_t bank) // 1:Bank1 0:Bank0
{
uint8_t lastbank = ReadStatus() & BK_STATUS_RBANK;
if (!lastbank != !bank) {
uint8_t tx[2];
uint8_t rx[2];
tx[0] = BK_ACTIVATE_CMD;
tx[1] = 0x53;
DEBUG2_HIGH();
(void)dev->transfer_fullduplex(&tx[0], &rx[0], 2);
DEBUG2_LOW();
}
}
// --------------------------------------------------------------------
void Radio_Beken::WriteReg(uint8_t address, uint8_t data)
{
uint8_t tx[2];
uint8_t rx[2];
memset(rx, 0, 2);
tx[0] = address; // done by caller | BK_WRITE_REG;
tx[1] = data;
DEBUG2_HIGH();
(void)dev->transfer_fullduplex(tx, rx, 2);
DEBUG2_LOW();
}
// --------------------------------------------------------------------
void Radio_Beken::WriteRegisterMultiBank1(uint8_t address, const uint8_t *data, uint8_t length)
{
SetRBank(1);
WriteRegisterMulti(address, data, length);
SetRBank(0);
}
// --------------------------------------------------------------------
// High-level Beken functions
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// Set the radio transmission power of the beken
// Prerequisite: We should be in idle mode before calling this function
void Radio_Beken::SetPower(uint8_t power)
{
if (power > 7) {
power = 7;
}
uint8_t oldready = bkReady;
bkReady = 0;
hal.scheduler->delay(100); // delay more than 50ms.
SetRBank(1);
{
const uint8_t* p = &Bank1_RegTable[fcc.CW_mode ? ITX_CARRIER : gTxSpeed][IREG1_4][0];
uint8_t idx = *p++;
uint8_t buf[4];
buf[0] = *p++;
buf[1] = *p++;
buf[2] = *p++;
buf[3] = *p++;
buf[0] &= ~0x38;
buf[0] |= (RegPower[power][0] << 3); // Bits 27..29
WriteRegisterMulti((BK_WRITE_REG|idx), buf, 4);
}
hal.scheduler->delay(100); // delay more than 50ms.
SetRBank(0);
hal.scheduler->delay(100);
uint8_t setup = ReadReg(BK_RF_SETUP);
setup &= ~(3 << 1);
setup |= (RegPower[power][1] << 1); // Bits 1..2
if (fcc.CW_mode) {
setup |= 0x10;
}
WriteReg(BK_WRITE_REG|BK_RF_SETUP, setup);
bkReady = oldready;
fcc.power = power;
}
// --------------------------------------------------------------------
// Set the physical radio transmission frequency of the beken
void Radio_Beken::SetChannel(uint8_t freq)
{
lastTxChannel = freq;
WriteReg(BK_WRITE_REG|BK_RF_CH, freq);
}
// --------------------------------------------------------------------
// Set the radio transmission mode of the beken
// Enable/disable the carrier sending mode
// Prerequisite: We should be in idle mode before calling this function
void Radio_Beken::SetCwMode(uint8_t cw)
{
uint8_t oldready = bkReady;
bkReady = 0;
hal.scheduler->delay(100); // delay more than 50ms.
SetRBank(1);
{
const uint8_t* p = &Bank1_RegTable[cw ? ITX_CARRIER : gTxSpeed][IREG1_4][0];
uint8_t idx = *p++;
uint8_t buf[4];
buf[0] = *p++;
buf[1] = *p++;
buf[2] = *p++;
buf[3] = *p++;
buf[0] &= ~0x38;
buf[0] |= (RegPower[fcc.power & 7][0] << 3); // Bits 27..29
WriteRegisterMulti((BK_WRITE_REG|idx), buf, 4);
}
hal.scheduler->delay(100); // delay more than 50ms.
SetRBank(0);
hal.scheduler->delay(100); // delay more than 50ms.
uint8_t setup = ReadReg(BK_RF_SETUP);
setup &= ~(3 << 1);
setup |= (RegPower[fcc.power & 7][1] << 1); // Bits 1..2
if (cw) {
setup |= 0x10;
}
WriteReg((BK_WRITE_REG|BK_RF_SETUP), setup);
fcc.CW_mode = cw != 0;
bkReady = oldready;
}
// --------------------------------------------------------------------
// Enable/disable the CRC receive mode
// Prerequisite: We should be in idle mode before calling this function
void Radio_Beken::SetCrcMode(uint8_t disable_crc)
{
uint8_t oldready = bkReady;
bkReady = 0;
uint8_t config = ReadReg(BK_CONFIG);
if (disable_crc) {
config &= ~(BK_CONFIG_EN_CRC | BK_CONFIG_CRCO); // Disable CRC
} else {
config |= (BK_CONFIG_EN_CRC | BK_CONFIG_CRCO); // Enable CRC
}
WriteReg((BK_WRITE_REG|BK_CONFIG), config);
fcc.disable_crc = (disable_crc != 0);
bkReady = oldready;
}
// ----------------------------------------------------------------------------
// Enable the carrier detect feature: Bank1 Reg5 Bit 18
void Radio_Beken::EnableCarrierDetect(bool bEnable)
{
if (bEnable == fcc.enable_cd) {
return;
}
uint8_t oldready = bkReady;
bkReady = 0;
SetRBank(1);
{
const uint8_t* p = &Bank1_RegTable[gTxSpeed][IREG1_5][0];
uint8_t idx = *p++;
uint8_t buf[4];
buf[0] = *p++;
buf[1] = *p++;
buf[2] = *p++;
buf[3] = *p++;
if (bEnable) {
buf[1] &= ~0x04;
}
WriteRegisterMulti((BK_WRITE_REG|idx), buf, 4);
}
SetRBank(0);
bkReady = oldready;
fcc.enable_cd = bEnable;
}
// ----------------------------------------------------------------------------
// Returns true if a carrier is detected
bool Radio_Beken::CarrierDetect(void)
{
if (fcc.enable_cd) {
if (ReadReg(BK_CD) & 0x01) {
return true;
}
}
return false;
}
// ----------------------------------------------------------------------------
void Radio_Beken::SetFactoryMode(uint8_t factory)
{
uint8_t oldready = bkReady;
bkReady = 0;
// Set receive/transmit addresses
if (factory) {
// For factory modes, use fixed addresses
TX_Address[0] = 0x35;
TX_Address[1] = RX1_Address[1] = RX0_Address[1] = 0x99;
TX_Address[2] = RX1_Address[2] = RX0_Address[2] = 0x59;
TX_Address[3] = RX1_Address[3] = RX0_Address[3] = 0xC6;
TX_Address[4] = RX1_Address[4] = RX0_Address[4] = factory;
RX0_Address[0] = 0x34;
RX1_Address[0] = 0x43;
} else {
// For normal modes, use the default addresses
ResetAddress();
}
// Write the addresses to the registers
WriteRegisterMulti((BK_WRITE_REG|BK_RX_ADDR_P0), RX0_Address, 5);
WriteRegisterMulti((BK_WRITE_REG|BK_RX_ADDR_P1), RX1_Address, 5);
WriteRegisterMulti((BK_WRITE_REG|BK_TX_ADDR), TX_Address, 5);
WriteReg(BK_WRITE_REG|BK_EN_RXADDR, 0x03);
// Frequency is set by the caller
fcc.factory_mode = factory;
bkReady = oldready;
}
// ----------------------------------------------------------------------------
bool Radio_Beken::Reset(void)
{
//...
hal.scheduler->delay_microseconds(1000);
return 0;
}
// ----------------------------------------------------------------------------
// Delay after changing chip-enable
// This can be called from within the interrupt response thread
void Radio_Beken::DelayCE(void)
{
DEBUG1_LOW();
hal.scheduler->delay_microseconds(50);
DEBUG1_HIGH();
}
// ----------------------------------------------------------------------------
bool Radio_Beken::WasTxMode(void)
{
// Were we transmitting something?
return bkMode == BKRADIO_TX;
}
// ----------------------------------------------------------------------------
bool Radio_Beken::WasRxMode(void)
{
// Were we receiving something?
return bkMode == BKRADIO_RX;
}
// ----------------------------------------------------------------------------
// Switch to Rx mode
void Radio_Beken::SwitchToRxMode(void)
{
uint8_t value;
Strobe(BK_FLUSH_RX); // flush Rx
value = ReadStatus(); // read register STATUS's value
WriteReg(BK_WRITE_REG|BK_STATUS, value); // clear RX_DR or TX_DS or MAX_RT interrupt flag
BEKEN_CE_LOW();
DelayCE();
value = ReadReg(BK_CONFIG); // read register CONFIG's value
value |= BK_CONFIG_PRIM_RX; // set bit 0
value |= BK_CONFIG_PWR_UP;
WriteReg(BK_WRITE_REG | BK_CONFIG, value); // Set PWR_UP bit, enable CRC(2 length) & Prim:RX. RX_DR enabled..
BEKEN_CE_HIGH();
//BEKEN_PA_LOW(); // we dont have a PA on the RX side
bkMode = BKRADIO_RX;
}
// ----------------------------------------------------------------------------
// switch to Tx mode
void Radio_Beken::SwitchToTxMode(void)
{
uint8_t value;
Strobe(BK_FLUSH_TX); // flush half-sent Tx
Strobe(BK_FLUSH_RX); // flush half-received rx
// BEKEN_PA_HIGH();
BEKEN_CE_LOW();
DelayCE();
value = ReadReg(BK_CONFIG); // read register CONFIG's value
value &= ~BK_CONFIG_PRIM_RX; // Clear bit 0 (PTX)
value |= BK_CONFIG_PWR_UP;
WriteReg(BK_WRITE_REG | BK_CONFIG, value); // Set PWR_UP bit, enable CRC(2 length) & Prim:RX. RX_DR enabled.
// BEKEN_CE_HIGH();
bkMode = BKRADIO_TX;
}
// ----------------------------------------------------------------------------
// switch to Idle mode
void Radio_Beken::SwitchToIdleMode(void)
{
Strobe(BK_FLUSH_TX); // flush Tx
Strobe(BK_FLUSH_RX); // flush Rx
BEKEN_PA_LOW();
BEKEN_CE_LOW();
DelayCE();
bkMode = BKRADIO_IDLE;
}
// ----------------------------------------------------------------------------
// Switch to Sleep mode
void Radio_Beken::SwitchToSleepMode(void)
{
uint8_t value;
Strobe(BK_FLUSH_RX); // flush Rx
Strobe(BK_FLUSH_TX); // flush Tx
value = ReadStatus(); // read register STATUS's value
WriteReg(BK_WRITE_REG|BK_STATUS, value); // clear RX_DR or TX_DS or MAX_RT interrupt flag
BEKEN_PA_LOW();
BEKEN_CE_LOW();
DelayCE();
value = ReadReg(BK_CONFIG); // read register CONFIG's value
value |= BK_CONFIG_PRIM_RX; // Receive mode
value &= ~BK_CONFIG_PWR_UP; // Power down
WriteReg(BK_WRITE_REG | BK_CONFIG, value); // Clear PWR_UP bit, enable CRC(2 length) & Prim:RX. RX_DR enabled..
// Stay low
BEKEN_CE_LOW();
bkMode = BKRADIO_SLEEP;
}
// ----------------------------------------------------------------------------
void Radio_Beken::InitBank0Registers(ITX_SPEED spd)
{
int8_t i;
//********************Write Bank0 register******************
for (i=20; i >= 0; i--) { // From BK_FIFO_STATUS back to beginning of table
uint8_t idx = Bank0_Reg[i][0];
uint8_t value = Bank0_Reg[i][1];
if (idx == BK_RF_SETUP) { // Adjust for speed
value = Bank0_Reg6[spd][1];
}
WriteReg((BK_WRITE_REG|idx), value);
}
// Enable features
i = ReadReg(BK_FEATURE);
if (i == 0) { // i!=0 showed that chip has been actived. So do not active again (as that would toggle these features off again).
WriteReg(BK_ACTIVATE_CMD,0x73); // Activate the BK_FEATURE register. (This command must NOT have BK_WRITE_REG set)
}
for (i = 22; i >= 21; i--) {
WriteReg((BK_WRITE_REG|Bank0_Reg[i][0]),Bank0_Reg[i][1]);
}
// Set the various 5 byte addresses
WriteRegisterMulti((BK_WRITE_REG|BK_RX_ADDR_P0),RX0_Address,5); // reg 10 - Rx0 addr
WriteRegisterMulti((BK_WRITE_REG|BK_RX_ADDR_P1),RX1_Address,5); // REG 11 - Rx1 addr
WriteRegisterMulti((BK_WRITE_REG|BK_TX_ADDR),TX_Address,5); // REG 16 - TX addr
WriteReg(BK_WRITE_REG|BK_EN_RXADDR, 0x03);
}
// ----------------------------------------------------------------------------
void Radio_Beken::InitBank1Registers(ITX_SPEED spd)
{
int16_t i;
for (i = IREG1_4; i <= IREG1_13; i++) {
const uint8_t* p = &Bank1_RegTable[spd][i][0];
uint8_t idx = *p++;
WriteRegisterMulti((BK_WRITE_REG|idx), p, 4);
}
WriteRegisterMulti((BK_WRITE_REG|BK2425_R1_14),&(Bank1_Reg14[0]),11);
//toggle REG4<25,26>
{
const uint8_t* p = &Bank1_RegTable[spd][IREG1_4A][0];
uint8_t idx = *p++;
WriteRegisterMulti((BK_WRITE_REG|idx), p, 4);
}
{
const uint8_t* p = &Bank1_RegTable[spd][IREG1_4][0];
uint8_t idx = *p++;
WriteRegisterMulti((BK_WRITE_REG|idx), p, 4);
}
}
// ----------------------------------------------------------------------------
// Set the rx and tx addresses
void Radio_Beken::SetAddresses(const uint8_t* txaddr)
{
TX_Address[1] = RX0_Address[1] = txaddr[1];
TX_Address[3] = RX0_Address[3] = txaddr[3];
TX_Address[4] = RX0_Address[4] = txaddr[4];
WriteRegisterMulti((BK_WRITE_REG|BK_RX_ADDR_P0), RX0_Address, 5);
WriteRegisterMulti((BK_WRITE_REG|BK_TX_ADDR), TX_Address, 5);
WriteReg(BK_WRITE_REG|BK_EN_RXADDR, 0x03);
}
// ----------------------------------------------------------------------------
bool Radio_Beken::ClearAckOverflow(void)
{
uint8_t status = ReadStatus();
if ((BK_STATUS_MAX_RT & status) == 0) {
return false;
} else {
WriteReg((BK_WRITE_REG|BK_STATUS), BK_STATUS_MAX_RT);
return true;
}
}
// ----------------------------------------------------------------------------
// Write a data packet
bool Radio_Beken::SendPacket(uint8_t type, ///< WR_TX_PLOAD or W_TX_PAYLOAD_NOACK_CMD
const uint8_t* pbuf, ///< a buffer pointer
uint8_t len) ///< packet length in bytes
{
uint8_t fifo_sta = ReadReg(BK_FIFO_STATUS); // read register FIFO_STATUS's value
bool returnValue = ClearAckOverflow();
if (!(fifo_sta & BK_FIFO_STATUS_TX_FULL)) { // if not full, send data
numTxPackets++;
WriteRegisterMulti(type, pbuf, len); // Writes data to buffer A0,B0,A8
BEKEN_CE_HIGH(); // Wait until FIFO has the data before sending it.
}
return returnValue;
}
// ----------------------------------------------------------------------------
// For debugging - tell us the current beken register values (from bank 0)
// This just prints it to the UART rather than to the console over WiFi
void Radio_Beken::DumpRegisters(void)
{
uint8_t i;
for (i = 0; i <= BK_FEATURE; ++i) {
uint8_t len = 1;
switch (i) {
case 10: case 11: case 16: len = 5; break;
case 24: case 25: case 26: case 27: len = 0; break;
default: len = 1; break;
};
if (len == 1) {
//printf("Bank0reg%d : %x\r\n", i, ReadReg(i));
} else if (len == 5) {
uint8_t data[5];
ReadRegisterMulti(i, &data[0], len);
//printf("Bank0reg%d : %x %x %x %x %x\r\n", i, data[0], data[1], data[2], data[3], data[4]);
}
}
SetRBank(1);
for (i = IREG1_4; i <= IREG1_13; ++i) {
uint8_t len = 4;
uint8_t data[4];
ReadRegisterMulti(i, &data[0], len);
//uint8_t idx = Bank1_RegTable[0][i][0];
//printf("Bank1reg%d : %x %x %x %x\r\n", idx, data[0], data[1], data[2], data[3]);
}
SetRBank(0);
}
#endif // HAL_RCINPUT_WITH_AP_RADIO