ardupilot/libraries/AC_Autorotation/AC_Autorotation.cpp

519 lines
20 KiB
C++

#include "AC_Autorotation.h"
#include <AP_Logger/AP_Logger.h>
#include <AP_RPM/AP_RPM.h>
#include <AP_AHRS/AP_AHRS.h>
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
// Autorotation controller defaults
#define HEAD_SPEED_TARGET_RATIO 1.0 // Normalised target main rotor head speed
const AP_Param::GroupInfo AC_Autorotation::var_info[] = {
// @Param: ENABLE
// @DisplayName: Enable settings for RSC Setpoint
// @Description: Allows you to enable (1) or disable (0) the autonomous autorotation capability.
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO_FLAGS("ENABLE", 1, AC_Autorotation, _param_enable, 0, AP_PARAM_FLAG_ENABLE),
// @Param: HS_P
// @DisplayName: P gain for head speed controller
// @Description: Increase value to increase sensitivity of head speed controller during autonomous autorotation.
// @Range: 0.3 1
// @Increment: 0.01
// @User: Standard
AP_SUBGROUPINFO(_p_hs, "HS_", 2, AC_Autorotation, AC_P),
// @Param: HS_SET_PT
// @DisplayName: Target Head Speed
// @Description: The target head speed in RPM during autorotation. Start by setting to desired hover speed and tune from there as necessary.
// @Units: RPM
// @Range: 1000 2800
// @Increment: 1
// @User: Standard
AP_GROUPINFO("HS_SET_PT", 3, AC_Autorotation, _param_head_speed_set_point, 1500),
// @Param: FWD_SP_TARG
// @DisplayName: Target Glide Body Frame Forward Speed
// @Description: Target ground speed in cm/s for the autorotation controller to try and achieve/ maintain during the glide phase.
// @Units: m/s
// @Range: 8 20
// @Increment: 0.5
// @User: Standard
AP_GROUPINFO("FWD_SP_TARG", 4, AC_Autorotation, _param_target_speed, 11),
// @Param: COL_FILT_E
// @DisplayName: Entry Phase Collective Filter
// @Description: Cut-off frequency for collective low pass filter. For the entry phase. Acts as a following trim. Must be higher than AROT_COL_FILT_G.
// @Units: Hz
// @Range: 0.2 0.5
// @Increment: 0.01
// @User: Standard
AP_GROUPINFO("COL_FILT_E", 5, AC_Autorotation, _param_col_entry_cutoff_freq, 0.7),
// @Param: COL_FILT_G
// @DisplayName: Glide Phase Collective Filter
// @Description: Cut-off frequency for collective low pass filter. For the glide phase. Acts as a following trim. Must be lower than AROT_COL_FILT_E.
// @Units: Hz
// @Range: 0.03 0.15
// @Increment: 0.01
// @User: Standard
AP_GROUPINFO("COL_FILT_G", 6, AC_Autorotation, _param_col_glide_cutoff_freq, 0.1),
// @Param: XY_ACC_MAX
// @DisplayName: Body Frame XY Acceleration Limit
// @Description: Maximum body frame acceleration allowed in the in speed controller. This limit defines a circular constraint in accel. Minimum used is 0.5 m/s/s.
// @Units: m/s/s
// @Range: 0.5 8.0
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("XY_ACC_MAX", 7, AC_Autorotation, _param_accel_max, 2.0),
// @Param: HS_SENSOR
// @DisplayName: Main Rotor RPM Sensor
// @Description: Allocate the RPM sensor instance to use for measuring head speed. RPM1 = 0. RPM2 = 1.
// @Units: s
// @Range: 0.5 3
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("HS_SENSOR", 8, AC_Autorotation, _param_rpm_instance, 0),
// @Param: FWD_P
// @DisplayName: Forward Speed Controller P Gain
// @Description: Converts the difference between desired forward speed and actual speed into an acceleration target that is passed to the pitch angle controller.
// @Range: 1.000 8.000
// @User: Standard
// @Param: FWD_I
// @DisplayName: Forward Speed Controller I Gain
// @Description: Corrects long-term difference in desired velocity to a target acceleration.
// @Range: 0.02 1.00
// @Increment: 0.01
// @User: Advanced
// @Param: FWD_IMAX
// @DisplayName: Forward Speed Controller I Gain Maximum
// @Description: Constrains the target acceleration that the I gain will output.
// @Range: 1.000 8.000
// @User: Standard
// @Param: FWD_D
// @DisplayName: Forward Speed Controller D Gain
// @Description: Provides damping to velocity controller.
// @Range: 0.00 1.00
// @Increment: 0.001
// @User: Advanced
// @Param: FWD_FF
// @DisplayName: Forward Speed Controller Feed Forward Gain
// @Description: Produces an output that is proportional to the magnitude of the target.
// @Range: 0 1
// @Increment: 0.01
// @User: Advanced
// @Param: FWD_FLTE
// @DisplayName: Forward Speed Controller Error Filter
// @Description: This filter low pass filter is applied to the input for P and I terms.
// @Range: 0 100
// @Units: Hz
// @User: Advanced
// @Param: FWD_FLTD
// @DisplayName: Forward Speed Controller input filter for D term
// @Description: This filter low pass filter is applied to the input for D terms.
// @Range: 0 100
// @Units: Hz
// @User: Advanced
AP_SUBGROUPINFO(_fwd_speed_pid, "FWD_", 9, AC_Autorotation, AC_PID_Basic),
AP_GROUPEND
};
// Constructor
AC_Autorotation::AC_Autorotation(AP_MotorsHeli*& motors, AC_AttitudeControl*& att_crtl) :
_motors_heli(motors),
_attitude_control(att_crtl)
{
AP_Param::setup_object_defaults(this, var_info);
}
void AC_Autorotation::init(void)
{
// Initialisation of head speed controller
// Set initial collective position to be the current collective position for smooth init
const float collective_out = _motors_heli->get_throttle_out();
// Reset feed forward filter
col_trim_lpf.reset(collective_out);
// Protect against divide by zero TODO: move this to an accessor function
_param_head_speed_set_point.set(MAX(_param_head_speed_set_point, 500.0));
// Reset the landed reason
_landed_reason.min_speed = false;
_landed_reason.land_col = false;
_landed_reason.is_still = false;
}
// Functions and config that are only to be done once at the beginning of the entry
void AC_Autorotation::init_entry(void)
{
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AROT: Entry Phase");
// Target head speed is set to rpm at initiation to prevent steps in controller
if (!get_norm_head_speed(_target_head_speed)) {
// Cannot get a valid RPM sensor reading so we default to not slewing the head speed target
_target_head_speed = HEAD_SPEED_TARGET_RATIO;
}
// The rate to move the head speed from the current measurement to the target
_hs_accel = (HEAD_SPEED_TARGET_RATIO - _target_head_speed) / (float(entry_time_ms)*1e-3);
// Set collective following trim low pass filter cut off frequency
col_trim_lpf.set_cutoff_frequency(_param_col_entry_cutoff_freq.get());
// Set collective low-pass cut off filter at 2 Hz
_motors_heli->set_throttle_filter_cutoff(2.0);
// Set speed target to maintain the current speed whilst we enter the autorotation
_desired_vel = _param_target_speed.get();
_target_vel = get_speed_forward();
// Reset I term of velocity PID
_fwd_speed_pid.reset_filter();
_fwd_speed_pid.set_integrator(0.0);
}
// The entry controller just a special case of the glide controller with head speed target slewing
void AC_Autorotation::run_entry(float pilot_norm_accel)
{
// Slowly change the target head speed until the target head speed matches the parameter defined value
float head_speed_norm;
if (!get_norm_head_speed(head_speed_norm)) {
// RPM sensor is bad, so we don't attempt to slew the head speed target as we do not know what head speed actually is
// The collective output handling of the rpm sensor failure is handled later in the head speed controller
head_speed_norm = HEAD_SPEED_TARGET_RATIO;
}
// Slew the head speed target from the initial condition to the target head speed ratio for the glide
const float max_change = _hs_accel * _dt;
_target_head_speed = constrain_float(HEAD_SPEED_TARGET_RATIO, _target_head_speed - max_change, _target_head_speed + max_change);
run_glide(pilot_norm_accel);
}
// Functions and config that are only to be done once at the beginning of the glide
void AC_Autorotation::init_glide(void)
{
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AROT: Glide Phase");
// Set collective following trim low pass filter cut off frequency
col_trim_lpf.set_cutoff_frequency(_param_col_glide_cutoff_freq.get());
// Ensure target head speed is set to setpoint, in case it didn't reach the target during entry
_target_head_speed = HEAD_SPEED_TARGET_RATIO;
// Ensure desired forward speed target is set to param value
_desired_vel = _param_target_speed.get();
}
// Maintain head speed and forward speed as we glide to the ground
void AC_Autorotation::run_glide(float pilot_norm_accel)
{
update_headspeed_controller();
update_forward_speed_controller(pilot_norm_accel);
}
void AC_Autorotation::update_headspeed_controller(void)
{
// Get current rpm and update healthy signal counters
float head_speed_norm;
if (!get_norm_head_speed(head_speed_norm)) {
// RPM sensor is bad, set collective to angle of -2 deg and hope for the best
_motors_heli->set_coll_from_ang(-2.0);
return;
}
// Calculate the head speed error.
_head_speed_error = head_speed_norm - _target_head_speed;
_p_term_hs = _p_hs.get_p(_head_speed_error);
// Adjusting collective trim using feed forward (not yet been updated, so this value is the previous time steps collective position)
_ff_term_hs = col_trim_lpf.apply(_motors_heli->get_throttle(), _dt);
// Calculate collective position to be set
const float collective_out = constrain_value((_p_term_hs + _ff_term_hs), 0.0f, 1.0f);
// Send collective to setting to motors output library
_motors_heli->set_throttle(collective_out);
#if HAL_LOGGING_ENABLED
// @LoggerMessage: ARHS
// @Vehicles: Copter
// @Description: helicopter AutoRotation Head Speed (ARHS) controller information
// @Field: TimeUS: Time since system startup
// @Field: Tar: Normalised target head speed
// @Field: Act: Normalised measured head speed
// @Field: Err: Head speed controller error
// @Field: P: P-term for head speed controller response
// @Field: FF: FF-term for head speed controller response
// Write to data flash log
AP::logger().WriteStreaming("ARHS",
"TimeUS,Tar,Act,Err,P,FF",
"s-----",
"F00000",
"Qfffff",
AP_HAL::micros64(),
_target_head_speed,
head_speed_norm,
_head_speed_error,
_p_term_hs,
_ff_term_hs);
#endif
}
// Get measured head speed and normalise by head speed set point. Returns false if a valid rpm measurement cannot be obtained
bool AC_Autorotation::get_norm_head_speed(float& norm_rpm) const
{
// Assuming zero rpm is safer as it will drive collective in the direction of increasing head speed
float current_rpm = 0.0;
#if AP_RPM_ENABLED
// Get singleton for RPM library
const AP_RPM *rpm = AP_RPM::get_singleton();
// Checking to ensure no nullptr, we do have a pre-arm check for this so it will be very bad if RPM has gone away
if (rpm == nullptr) {
return false;
}
// Check RPM sensor is returning a healthy status
if (!rpm->get_rpm(_param_rpm_instance.get(), current_rpm)) {
return false;
}
#endif
// Protect against div by zeros later in the code
float head_speed_set_point = MAX(1.0, _param_head_speed_set_point.get());
// Normalize the RPM by the setpoint
norm_rpm = current_rpm/head_speed_set_point;
return true;
}
// Update speed controller
void AC_Autorotation::update_forward_speed_controller(float pilot_norm_accel)
{
// Limiting the desired velocity based on the max acceleration limit to get an update target
const float min_vel = _target_vel - get_accel_max() * _dt;
const float max_vel = _target_vel + get_accel_max() * _dt;
_target_vel = constrain_float(_desired_vel, min_vel, max_vel); // (m/s)
// Calculate acceleration target
const float fwd_accel_target = _fwd_speed_pid.update_all(_target_vel, get_speed_forward(), _dt, _limit_accel); // (m/s/s)
// Build the body frame XY accel vector.
// Pilot can request as much as 1/2 of the max accel laterally to perform a turn.
// We only allow up to half as we need to prioritize building/maintaining airspeed.
Vector2f bf_accel_target = {fwd_accel_target, pilot_norm_accel * get_accel_max() * 0.5};
// Ensure we do not exceed the accel limit
_limit_accel = bf_accel_target.limit_length(get_accel_max());
// Calculate roll and pitch targets from angles, negative accel for negative pitch (pitch forward)
Vector2f angle_target = { accel_to_angle(-bf_accel_target.x), // Pitch
accel_to_angle(bf_accel_target.y)}; // Roll
// Ensure that the requested angles do not exceed angle max
_limit_accel |= angle_target.limit_length(_attitude_control->lean_angle_max_cd());
// we may have scaled the lateral accel in the angle limit scaling, so we need to
// back calculate the resulting accel from this constrained angle for the yaw rate calc
const float bf_lat_accel_target = angle_to_accel(angle_target.y);
// Calc yaw rate from desired body-frame accels
// this seems suspiciously simple, but it is correct
// accel = r * w^2, r = radius and w = angular rate
// radius can be calculated as the distance traveled in the time it takes to do 360 deg
// One rotation takes: (2*pi)/w seconds
// Distance traveled in that time: (s*2*pi)/w
// radius for that distance: ((s*2*pi)/w) / (2*pi)
// r = s / w
// accel = (s / w) * w^2
// accel = s * w
// w = accel / s
float yaw_rate_cds = 0.0;
if (!is_zero(_target_vel)) {
yaw_rate_cds = degrees(bf_lat_accel_target / _target_vel) * 100.0;
}
// Output to attitude controller
_attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(angle_target.y * 100.0, angle_target.x * 100.0, yaw_rate_cds);
#if HAL_LOGGING_ENABLED
// @LoggerMessage: ARSC
// @Vehicles: Copter
// @Description: Helicopter AutoRotation Speed Controller (ARSC) information
// @Field: TimeUS: Time since system startup
// @Field: Des: Desired forward velocity
// @Field: Tar: Target forward velocity
// @Field: Act: Measured forward velocity
// @Field: P: Velocity to acceleration P-term component
// @Field: I: Velocity to acceleration I-term component
// @Field: D: Velocity to acceleration D-term component
// @Field: FF: Velocity to acceleration feed forward component
// @Field: Lim: Accel limit flag
// @Field: FA: Forward acceleration target
// @Field: LA: Lateral acceleration target
const AP_PIDInfo& pid_info = _fwd_speed_pid.get_pid_info();
AP::logger().WriteStreaming("ARSC",
"TimeUS,Des,Tar,Act,P,I,D,FF,Lim,FA,LA",
"snnn-----oo",
"F0000000-00",
"QfffffffBff",
AP_HAL::micros64(),
_desired_vel,
pid_info.target,
pid_info.actual,
pid_info.P,
pid_info.I,
pid_info.D,
pid_info.FF,
uint8_t(_limit_accel),
bf_accel_target.x,
bf_accel_target.y);
#endif
}
// smoothly zero velocity and accel
void AC_Autorotation::run_landed(void)
{
_desired_vel *= 0.95;
update_forward_speed_controller(0.0);
}
// Determine the body frame forward speed
float AC_Autorotation::get_speed_forward(void) const
{
Vector3f vel_NED = {0,0,0};
const AP_AHRS &ahrs = AP::ahrs();
if (ahrs.get_velocity_NED(vel_NED)) {
vel_NED = ahrs.earth_to_body(vel_NED);
}
// TODO: need to improve the handling of the velocity NED not ok case
return vel_NED.x;
}
#if HAL_LOGGING_ENABLED
// Logging of lower rate autorotation specific variables. This is meant for stuff that
// doesn't need a high rate, e.g. controller variables that are need for tuning.
void AC_Autorotation::log_write_autorotation(void) const
{
// enum class for bitmask documentation in logging
enum class AC_Autorotation_Landed_Reason : uint8_t {
LOW_SPEED = 1<<0, // true if below 1 m/s
LAND_COL = 1<<1, // true if collective below land col min
IS_STILL = 1<<2, // passes inertial nav is_still() check
};
uint8_t reason = 0;
if (_landed_reason.min_speed) {
reason |= uint8_t(AC_Autorotation_Landed_Reason::LOW_SPEED);
}
if (_landed_reason.land_col) {
reason |= uint8_t(AC_Autorotation_Landed_Reason::LAND_COL);
}
if (_landed_reason.is_still) {
reason |= uint8_t(AC_Autorotation_Landed_Reason::IS_STILL);
}
// @LoggerMessage: AROT
// @Vehicles: Copter
// @Description: Helicopter AutoROTation (AROT) information
// @Field: TimeUS: Time since system startup
// @Field: LR: Landed Reason state flags
// @FieldBitmaskEnum: LR: AC_Autorotation_Landed_Reason
// Write to data flash log
AP::logger().WriteStreaming("AROT",
"TimeUS,LR",
"s-",
"F-",
"QB",
AP_HAL::micros64(),
_landed_reason);
}
#endif // HAL_LOGGING_ENABLED
// Arming checks for autorotation, mostly checking for miss-configurations
bool AC_Autorotation::arming_checks(size_t buflen, char *buffer) const
{
if (!enabled()) {
// Don't run arming checks if not enabled
return true;
}
// Check for correct RPM sensor config
#if AP_RPM_ENABLED
// Get singleton for RPM library
const AP_RPM *rpm = AP_RPM::get_singleton();
// Get current rpm, checking to ensure no nullptr
if (rpm == nullptr) {
hal.util->snprintf(buffer, buflen, "Can't access RPM");
return false;
}
// Sanity check that the designated rpm sensor instance is there
if (_param_rpm_instance.get() < 0) {
hal.util->snprintf(buffer, buflen, "RPM instance <0");
return false;
}
if (!rpm->enabled(_param_rpm_instance.get())) {
hal.util->snprintf(buffer, buflen, "RPM%i not enabled", _param_rpm_instance.get()+1);
return false;
}
#endif
// Check that heli motors is configured for autorotation
if (!_motors_heli->rsc_autorotation_enabled()) {
hal.util->snprintf(buffer, buflen, "H_RSC_AROT_* not configured");
return false;
}
return true;
}
// Check if we believe we have landed. We need the landed state to zero all
// controls and make sure that the copter landing detector will trip
bool AC_Autorotation::check_landed(void)
{
// minimum speed (m/s) used for "is moving" check
const float min_moving_speed = 1.0;
Vector3f velocity;
const AP_AHRS &ahrs = AP::ahrs();
_landed_reason.min_speed = ahrs.get_velocity_NED(velocity) && (velocity.length() < min_moving_speed);
_landed_reason.land_col = _motors_heli->get_below_land_min_coll();
_landed_reason.is_still = AP::ins().is_still();
return _landed_reason.min_speed && _landed_reason.land_col && _landed_reason.is_still;
}
// Dynamically update time step used in autorotation controllers
void AC_Autorotation::set_dt(float delta_sec)
{
if (is_positive(delta_sec)) {
_dt = delta_sec;
return;
}
_dt = 2.5e-3; // Assume 400 Hz
}