mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-09 17:38:32 -04:00
296 lines
15 KiB
Python
296 lines
15 KiB
Python
from LogAnalyzer import Test,TestResult
|
|
import DataflashLog
|
|
|
|
from math import sqrt
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
class TestFlow(Test):
|
|
'''test optical flow sensor scale factor calibration'''
|
|
#
|
|
# Use the following procedure to log the calibration data. is assumed that the optical flow sensor has been
|
|
# correctly aligned, is focussed and the test is performed over a textured surface with adequate lighting.
|
|
# Note that the strobing effect from non incandescent artifical lighting can produce poor optical flow measurements.
|
|
#
|
|
# 1) Set LOG_DISARMED and FLOW_TYPE to 10 and verify that ATT and OF messages are being logged onboard
|
|
# 2) Place on level ground, apply power and wait for EKF to complete attitude alignment
|
|
# 3) Keeping the copter level, lift it to shoulder height and rock between +-20 and +-30 degrees
|
|
# in roll about an axis that passes through the flow sensor lens assembly. The time taken to rotate from
|
|
# maximum left roll to maximum right roll should be about 1 second.
|
|
# 4) Repeat 3) about the pitch axis
|
|
# 5) Holding the copter level, lower it to the ground and remove power
|
|
# 6) Transfer the logfile from the sdcard.
|
|
# 7) Open a terminal and cd to the ardupilot/Tools/LogAnalyzer directory
|
|
# 8) Enter to run the analysis 'python LogAnalyzer.py <log file name including full path>'
|
|
# 9) Check the OpticalFlow test status printed to the screen. The analysis plots are saved to
|
|
# flow_calibration.pdf and the recommended scale factors to flow_calibration.param
|
|
|
|
def __init__(self):
|
|
Test.__init__(self)
|
|
self.name = "OpticalFlow"
|
|
|
|
def run(self, logdata, verbose):
|
|
self.result = TestResult()
|
|
self.result.status = TestResult.StatusType.GOOD
|
|
|
|
def FAIL():
|
|
self.result.status = TestResult.StatusType.FAIL
|
|
|
|
def WARN():
|
|
if self.result.status != TestResult.StatusType.FAIL:
|
|
self.result.status = TestResult.StatusType.WARN
|
|
|
|
try:
|
|
# tuning parameters used by the algorithm
|
|
tilt_threshold = 15 # roll and pitch threshold used to start and stop calibration (deg)
|
|
quality_threshold = 124 # minimum flow quality required for data to be used by the curve fit (N/A)
|
|
min_rate_threshold = 0.0 # if the gyro rate is less than this, the data will not be used by the curve fit (rad/sec)
|
|
max_rate_threshold = 2.0 # if the gyro rate is greter than this, the data will not be used by the curve fit (rad/sec)
|
|
param_std_threshold = 5.0 # maximum allowable 1-std uncertainty in scaling parameter (scale factor * 1000)
|
|
param_abs_threshold = 200 # max/min allowable scale factor parameter. Values of FLOW_FXSCALER and FLOW_FYSCALER outside the range of +-param_abs_threshold indicate a sensor configuration problem.
|
|
min_num_points = 100 # minimum number of points required for a curve fit - this is necessary, but not sufficient condition - the standard deviation estimate of the fit gradient is also important.
|
|
|
|
# get the existing scale parameters
|
|
flow_fxscaler = logdata.parameters["FLOW_FXSCALER"]
|
|
flow_fyscaler = logdata.parameters["FLOW_FYSCALER"]
|
|
|
|
# load required optical flow data
|
|
if "OF" in logdata.channels:
|
|
flowX = np.zeros(len(logdata.channels["OF"]["flowX"].listData))
|
|
for i in range(len(logdata.channels["OF"]["flowX"].listData)):
|
|
(line, flowX[i]) = logdata.channels["OF"]["flowX"].listData[i]
|
|
|
|
bodyX = np.zeros(len(logdata.channels["OF"]["bodyX"].listData))
|
|
for i in range(len(logdata.channels["OF"]["bodyX"].listData)):
|
|
(line, bodyX[i]) = logdata.channels["OF"]["bodyX"].listData[i]
|
|
|
|
flowY = np.zeros(len(logdata.channels["OF"]["flowY"].listData))
|
|
for i in range(len(logdata.channels["OF"]["flowY"].listData)):
|
|
(line, flowY[i]) = logdata.channels["OF"]["flowY"].listData[i]
|
|
|
|
bodyY = np.zeros(len(logdata.channels["OF"]["bodyY"].listData))
|
|
for i in range(len(logdata.channels["OF"]["bodyY"].listData)):
|
|
(line, bodyY[i]) = logdata.channels["OF"]["bodyY"].listData[i]
|
|
|
|
flow_time_us = np.zeros(len(logdata.channels["OF"]["TimeUS"].listData))
|
|
for i in range(len(logdata.channels["OF"]["TimeUS"].listData)):
|
|
(line, flow_time_us[i]) = logdata.channels["OF"]["TimeUS"].listData[i]
|
|
|
|
flow_qual = np.zeros(len(logdata.channels["OF"]["Qual"].listData))
|
|
for i in range(len(logdata.channels["OF"]["Qual"].listData)):
|
|
(line, flow_qual[i]) = logdata.channels["OF"]["Qual"].listData[i]
|
|
|
|
else:
|
|
FAIL()
|
|
self.result.statusMessage = "FAIL: no optical flow data\n"
|
|
return
|
|
|
|
# load required attitude data
|
|
if "ATT" in logdata.channels:
|
|
Roll = np.zeros(len(logdata.channels["ATT"]["Roll"].listData))
|
|
for i in range(len(logdata.channels["ATT"]["Roll"].listData)):
|
|
(line, Roll[i]) = logdata.channels["ATT"]["Roll"].listData[i]
|
|
|
|
Pitch = np.zeros(len(logdata.channels["ATT"]["Pitch"].listData))
|
|
for i in range(len(logdata.channels["ATT"]["Pitch"].listData)):
|
|
(line, Pitch[i]) = logdata.channels["ATT"]["Pitch"].listData[i]
|
|
|
|
att_time_us = np.zeros(len(logdata.channels["ATT"]["TimeUS"].listData))
|
|
for i in range(len(logdata.channels["ATT"]["TimeUS"].listData)):
|
|
(line, att_time_us[i]) = logdata.channels["ATT"]["TimeUS"].listData[i]
|
|
|
|
else:
|
|
FAIL()
|
|
self.result.statusMessage = "FAIL: no attitude data\n"
|
|
return
|
|
|
|
# calculate the start time for the roll calibration
|
|
startTime = int(0)
|
|
startRollIndex = int(0)
|
|
for i in range(len(Roll)):
|
|
if abs(Roll[i]) > tilt_threshold:
|
|
startTime = att_time_us[i]
|
|
break
|
|
for i in range(len(flow_time_us)):
|
|
if flow_time_us[i] > startTime:
|
|
startRollIndex = i
|
|
break
|
|
|
|
# calculate the end time for the roll calibration
|
|
endTime = int(0)
|
|
endRollIndex = int(0)
|
|
for i in range(len(Roll)-1,-1,-1):
|
|
if abs(Roll[i]) > tilt_threshold:
|
|
endTime = att_time_us[i]
|
|
break
|
|
for i in range(len(flow_time_us)-1,-1,-1):
|
|
if flow_time_us[i] < endTime:
|
|
endRollIndex = i
|
|
break
|
|
|
|
# check we have enough roll data points
|
|
if (endRollIndex - startRollIndex <= min_num_points):
|
|
FAIL()
|
|
self.result.statusMessage = "FAIL: insufficient roll data pointsa\n"
|
|
return
|
|
|
|
# resample roll test data excluding data before first movement and after last movement
|
|
# also exclude data where there is insufficient angular rate
|
|
flowX_resampled = []
|
|
bodyX_resampled = []
|
|
flowX_time_us_resampled = []
|
|
for i in range(len(Roll)):
|
|
if (i >= startRollIndex) and (i <= endRollIndex) and (abs(bodyX[i]) > min_rate_threshold) and (abs(bodyX[i]) < max_rate_threshold) and (flow_qual[i] > quality_threshold):
|
|
flowX_resampled.append(flowX[i])
|
|
bodyX_resampled.append(bodyX[i])
|
|
flowX_time_us_resampled.append(flow_time_us[i])
|
|
|
|
# calculate the start time for the pitch calibration
|
|
startTime = 0
|
|
startPitchIndex = int(0)
|
|
for i in range(len(Pitch)):
|
|
if abs(Pitch[i]) > tilt_threshold:
|
|
startTime = att_time_us[i]
|
|
break
|
|
for i in range(len(flow_time_us)):
|
|
if flow_time_us[i] > startTime:
|
|
startPitchIndex = i
|
|
break
|
|
|
|
# calculate the end time for the pitch calibration
|
|
endTime = 0
|
|
endPitchIndex = int(0)
|
|
for i in range(len(Pitch)-1,-1,-1):
|
|
if abs(Pitch[i]) > tilt_threshold:
|
|
endTime = att_time_us[i]
|
|
break
|
|
for i in range(len(flow_time_us)-1,-1,-1):
|
|
if flow_time_us[i] < endTime:
|
|
endPitchIndex = i
|
|
break
|
|
|
|
# check we have enough pitch data points
|
|
if (endPitchIndex - startPitchIndex <= min_num_points):
|
|
FAIL()
|
|
self.result.statusMessage = "FAIL: insufficient pitch data pointsa\n"
|
|
return
|
|
|
|
# resample pitch test data excluding data before first movement and after last movement
|
|
# also exclude data where there is insufficient or too much angular rate
|
|
flowY_resampled = []
|
|
bodyY_resampled = []
|
|
flowY_time_us_resampled = []
|
|
for i in range(len(Roll)):
|
|
if (i >= startPitchIndex) and (i <= endPitchIndex) and (abs(bodyY[i]) > min_rate_threshold) and (abs(bodyY[i]) < max_rate_threshold) and (flow_qual[i] > quality_threshold):
|
|
flowY_resampled.append(flowY[i])
|
|
bodyY_resampled.append(bodyY[i])
|
|
flowY_time_us_resampled.append(flow_time_us[i])
|
|
|
|
# fit a straight line to the flow vs body rate data and calculate the scale factor parameter required to achieve a slope of 1
|
|
coef_flow_x , cov_x = np.polyfit(bodyX_resampled,flowX_resampled,1,rcond=None, full=False, w=None, cov=True)
|
|
coef_flow_y , cov_y = np.polyfit(bodyY_resampled,flowY_resampled,1,rcond=None, full=False, w=None, cov=True)
|
|
|
|
# taking the exisiting scale factor parameters into account, calculate the parameter values reequired to achieve a unity slope
|
|
flow_fxscaler_new = int(1000 * (((1 + 0.001 * float(flow_fxscaler))/coef_flow_x[0] - 1)))
|
|
flow_fyscaler_new = int(1000 * (((1 + 0.001 * float(flow_fyscaler))/coef_flow_y[0] - 1)))
|
|
|
|
# Do a sanity check on the scale factor variance
|
|
if sqrt(cov_x[0][0]) > param_std_threshold or sqrt(cov_y[0][0]) > param_std_threshold:
|
|
FAIL()
|
|
self.result.statusMessage = "FAIL: inaccurate fit - poor quality or insufficient data\nFLOW_FXSCALER 1STD = %u\nFLOW_FYSCALER 1STD = %u\n" % (round(1000*sqrt(cov_x[0][0])),round(1000*sqrt(cov_y[0][0])))
|
|
|
|
# Do a sanity check on the scale factors
|
|
if abs(flow_fxscaler_new) > param_abs_threshold or abs(flow_fyscaler_new) > param_abs_threshold:
|
|
FAIL()
|
|
self.result.statusMessage = "FAIL: required scale factors are excessive\nFLOW_FXSCALER=%i\nFLOW_FYSCALER=%i\n" % (flow_fxscaler,flow_fyscaler)
|
|
|
|
# display recommended scale factors
|
|
self.result.statusMessage = "Set FLOW_FXSCALER to %i\nSet FLOW_FYSCALER to %i\n\nCal plots saved to flow_calibration.pdf\nCal parameters saved to flow_calibration.param\n\nFLOW_FXSCALER 1STD = %u\nFLOW_FYSCALER 1STD = %u\n" % (flow_fxscaler_new,flow_fyscaler_new,round(1000*sqrt(cov_x[0][0])),round(1000*sqrt(cov_y[0][0])))
|
|
|
|
# calculate fit display data
|
|
body_rate_display = [-max_rate_threshold,max_rate_threshold]
|
|
fit_coef_x = np.poly1d(coef_flow_x)
|
|
flowX_display = fit_coef_x(body_rate_display)
|
|
fit_coef_y = np.poly1d(coef_flow_y)
|
|
flowY_display = fit_coef_y(body_rate_display)
|
|
|
|
# plot and save calibration test points to PDF
|
|
from matplotlib.backends.backend_pdf import PdfPages
|
|
output_plot_filename = "flow_calibration.pdf"
|
|
pp = PdfPages(output_plot_filename)
|
|
|
|
plt.figure(1,figsize=(20,13))
|
|
plt.subplot(2,1,1)
|
|
plt.plot(bodyX_resampled,flowX_resampled,'b', linestyle=' ', marker='o',label="test points")
|
|
plt.plot(body_rate_display,flowX_display,'r',linewidth=2.5,label="linear fit")
|
|
plt.title('X axis flow rate vs gyro rate')
|
|
plt.ylabel('flow rate (rad/s)')
|
|
plt.xlabel('gyro rate (rad/sec)')
|
|
plt.grid()
|
|
plt.legend(loc='upper left')
|
|
|
|
# draw plots
|
|
plt.subplot(2,1,2)
|
|
plt.plot(bodyY_resampled,flowY_resampled,'b', linestyle=' ', marker='o',label="test points")
|
|
plt.plot(body_rate_display,flowY_display,'r',linewidth=2.5,label="linear fit")
|
|
plt.title('Y axis flow rate vs gyro rate')
|
|
plt.ylabel('flow rate (rad/s)')
|
|
plt.xlabel('gyro rate (rad/sec)')
|
|
plt.grid()
|
|
plt.legend(loc='upper left')
|
|
|
|
pp.savefig()
|
|
|
|
plt.figure(2,figsize=(20,13))
|
|
plt.subplot(2,1,1)
|
|
plt.plot(flow_time_us,flowX,'b',label="flow rate - all")
|
|
plt.plot(flow_time_us,bodyX,'r',label="gyro rate - all")
|
|
plt.plot(flowX_time_us_resampled,flowX_resampled,'c', linestyle=' ', marker='o',label="flow rate - used")
|
|
plt.plot(flowX_time_us_resampled,bodyX_resampled,'m', linestyle=' ', marker='o',label="gyro rate - used")
|
|
plt.title('X axis flow and body rate vs time')
|
|
plt.ylabel('rate (rad/s)')
|
|
plt.xlabel('time (usec)')
|
|
plt.grid()
|
|
plt.legend(loc='upper left')
|
|
|
|
# draw plots
|
|
plt.subplot(2,1,2)
|
|
plt.plot(flow_time_us,flowY,'b',label="flow rate - all")
|
|
plt.plot(flow_time_us,bodyY,'r',label="gyro rate - all")
|
|
plt.plot(flowY_time_us_resampled,flowY_resampled,'c', linestyle=' ', marker='o',label="flow rate - used")
|
|
plt.plot(flowY_time_us_resampled,bodyY_resampled,'m', linestyle=' ', marker='o',label="gyro rate - used")
|
|
plt.title('Y axis flow and body rate vs time')
|
|
plt.ylabel('rate (rad/s)')
|
|
plt.xlabel('time (usec)')
|
|
plt.grid()
|
|
plt.legend(loc='upper left')
|
|
|
|
pp.savefig()
|
|
|
|
# close the pdf file
|
|
pp.close()
|
|
|
|
# close all figures
|
|
plt.close("all")
|
|
|
|
# write correction parameters to file
|
|
test_results_filename = "flow_calibration.param"
|
|
file = open(test_results_filename,"w")
|
|
file.write("FLOW_FXSCALER"+" "+str(flow_fxscaler_new)+"\n")
|
|
file.write("FLOW_FYSCALER"+" "+str(flow_fyscaler_new)+"\n")
|
|
file.close()
|
|
|
|
except KeyError as e:
|
|
self.result.status = TestResult.StatusType.FAIL
|
|
self.result.statusMessage = str(e) + ' not found'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|