mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-18 14:48:28 -04:00
d030f2888b
this is much more efficient than pushing them one at a time
330 lines
7.9 KiB
C++
330 lines
7.9 KiB
C++
#pragma once
|
|
|
|
#include <atomic>
|
|
#include <stdint.h>
|
|
|
|
/*
|
|
* Circular buffer of bytes.
|
|
*/
|
|
class ByteBuffer {
|
|
public:
|
|
ByteBuffer(uint32_t size);
|
|
~ByteBuffer(void);
|
|
|
|
// number of bytes available to be read
|
|
uint32_t available(void) const;
|
|
|
|
// Discards the buffer content, emptying it.
|
|
void clear(void);
|
|
|
|
// number of bytes space available to write
|
|
uint32_t space(void) const;
|
|
|
|
// true if available() is zero
|
|
bool empty(void) const;
|
|
|
|
// write bytes to ringbuffer. Returns number of bytes written
|
|
uint32_t write(const uint8_t *data, uint32_t len);
|
|
|
|
// read bytes from ringbuffer. Returns number of bytes read
|
|
uint32_t read(uint8_t *data, uint32_t len);
|
|
|
|
// read a byte from ring buffer. Returns true on success, false otherwise
|
|
bool read_byte(uint8_t *data);
|
|
|
|
/*
|
|
update bytes at the read pointer. Used to update an object without
|
|
popping it
|
|
*/
|
|
bool update(const uint8_t *data, uint32_t len);
|
|
|
|
// return size of ringbuffer
|
|
uint32_t get_size(void) const { return size; }
|
|
|
|
// set size of ringbuffer, caller responsible for locking
|
|
bool set_size(uint32_t size);
|
|
|
|
// advance the read pointer (discarding bytes)
|
|
bool advance(uint32_t n);
|
|
|
|
// Returns the pointer and size to a contiguous read of the next available data
|
|
const uint8_t *readptr(uint32_t &available_bytes);
|
|
|
|
// peek one byte without advancing read pointer. Return byte
|
|
// or -1 if none available
|
|
int16_t peek(uint32_t ofs) const;
|
|
|
|
/*
|
|
read len bytes without advancing the read pointer
|
|
*/
|
|
uint32_t peekbytes(uint8_t *data, uint32_t len);
|
|
|
|
// Similar to peekbytes(), but will fill out IoVec struct with
|
|
// both parts of the ring buffer if wraparound is happening, or
|
|
// just one part. Returns the number of parts written to.
|
|
struct IoVec {
|
|
uint8_t *data;
|
|
uint32_t len;
|
|
};
|
|
uint8_t peekiovec(IoVec vec[2], uint32_t len);
|
|
|
|
// Reserve `len` bytes and fills out `vec` with both parts of the
|
|
// ring buffer (if wraparound is happening), or just one contiguous
|
|
// part. Returns the number of `vec` elements filled out. Can be used
|
|
// with system calls such as `readv()`.
|
|
//
|
|
// After a call to 'reserve()', 'write()' should never be called
|
|
// until 'commit()' is called!
|
|
uint8_t reserve(IoVec vec[2], uint32_t len);
|
|
|
|
/*
|
|
* "Releases" the memory previously reserved by 'reserve()' to be read.
|
|
* Committer must inform how many bytes were actually written in 'len'.
|
|
*/
|
|
bool commit(uint32_t len);
|
|
|
|
private:
|
|
uint8_t *buf;
|
|
uint32_t size;
|
|
|
|
std::atomic<uint32_t> head{0}; // where to read data
|
|
std::atomic<uint32_t> tail{0}; // where to write data
|
|
};
|
|
|
|
/*
|
|
ring buffer class for objects of fixed size
|
|
*/
|
|
template <class T>
|
|
class ObjectBuffer {
|
|
public:
|
|
ObjectBuffer(uint32_t _size) {
|
|
buffer = new ByteBuffer((_size * sizeof(T))+1);
|
|
}
|
|
~ObjectBuffer(void) {
|
|
delete buffer;
|
|
}
|
|
|
|
// Discards the buffer content, emptying it.
|
|
void clear(void)
|
|
{
|
|
buffer->clear();
|
|
}
|
|
|
|
// return number of objects available to be read
|
|
uint32_t available(void) const {
|
|
return buffer->available() / sizeof(T);
|
|
}
|
|
|
|
// return number of objects that could be written
|
|
uint32_t space(void) const {
|
|
return buffer->space() / sizeof(T);
|
|
}
|
|
|
|
// true is available() == 0
|
|
bool empty(void) const {
|
|
return buffer->empty();
|
|
}
|
|
|
|
// push one object
|
|
bool push(const T &object) {
|
|
if (buffer->space() < sizeof(T)) {
|
|
return false;
|
|
}
|
|
return buffer->write((uint8_t*)&object, sizeof(T)) == sizeof(T);
|
|
}
|
|
|
|
// push N objects
|
|
bool push(const T *object, uint32_t n) {
|
|
if (buffer->space() < n*sizeof(T)) {
|
|
return false;
|
|
}
|
|
return buffer->write((uint8_t*)object, n*sizeof(T)) == n*sizeof(T);
|
|
}
|
|
|
|
/*
|
|
throw away an object
|
|
*/
|
|
bool pop(void) {
|
|
return buffer->advance(sizeof(T));
|
|
}
|
|
|
|
/*
|
|
pop earliest object off the queue
|
|
*/
|
|
bool pop(T &object) {
|
|
if (buffer->available() < sizeof(T)) {
|
|
return false;
|
|
}
|
|
return buffer->read((uint8_t*)&object, sizeof(T)) == sizeof(T);
|
|
}
|
|
|
|
|
|
/*
|
|
* push_force() is semantically equivalent to:
|
|
* if (!push(t)) { pop(); push(t); }
|
|
*/
|
|
bool push_force(const T &object) {
|
|
if (buffer->space() < sizeof(T)) {
|
|
buffer->advance(sizeof(T));
|
|
}
|
|
return push(object);
|
|
}
|
|
|
|
/*
|
|
* push_force() N objects
|
|
*/
|
|
bool push_force(const T *object, uint32_t n) {
|
|
uint32_t _space = buffer->space();
|
|
if (_space < sizeof(T)*n) {
|
|
buffer->advance(sizeof(T)*(n-_space));
|
|
}
|
|
return push(object, n);
|
|
}
|
|
|
|
/*
|
|
peek copies an object out without advancing the read pointer
|
|
*/
|
|
bool peek(T &object) {
|
|
return buffer->peekbytes((uint8_t*)&object, sizeof(T)) == sizeof(T);
|
|
}
|
|
|
|
/* update the object at the front of the queue (the one that would
|
|
be fetched by pop()) */
|
|
bool update(const T &object) {
|
|
return buffer->update((uint8_t*)&object, sizeof(T));
|
|
}
|
|
|
|
private:
|
|
ByteBuffer *buffer = nullptr;
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
ring buffer class for objects of fixed size with pointer
|
|
access. Note that this is not thread safe, buf offers efficient
|
|
array-like access
|
|
*/
|
|
template <class T>
|
|
class ObjectArray {
|
|
public:
|
|
ObjectArray(uint16_t size_) {
|
|
_size = size_;
|
|
_head = _count = 0;
|
|
_buffer = new T[_size];
|
|
}
|
|
~ObjectArray(void) {
|
|
delete[] _buffer;
|
|
}
|
|
|
|
// return total number of objects
|
|
uint16_t size(void) const {
|
|
return _size;
|
|
}
|
|
|
|
// return number of objects available to be read
|
|
uint16_t available(void) const {
|
|
return _count;
|
|
}
|
|
|
|
// return number of objects that could be written
|
|
uint16_t space(void) const {
|
|
return _size - _count;
|
|
}
|
|
|
|
// true is available() == 0
|
|
bool empty(void) const {
|
|
return _count == 0;
|
|
}
|
|
|
|
// push one object
|
|
bool push(const T &object) {
|
|
if (space() == 0) {
|
|
return false;
|
|
}
|
|
_buffer[(_head+_count)%_size] = object;
|
|
_count++;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
throw away an object
|
|
*/
|
|
bool pop(void) {
|
|
if (empty()) {
|
|
return false;
|
|
}
|
|
_head = (_head+1) % _size;
|
|
_count--;
|
|
return true;
|
|
}
|
|
|
|
// Discards the buffer content, emptying it.
|
|
void clear(void)
|
|
{
|
|
_head = _count = 0;
|
|
}
|
|
|
|
/*
|
|
pop earliest object off the queue
|
|
*/
|
|
bool pop(T &object) {
|
|
if (empty()) {
|
|
return false;
|
|
}
|
|
object = _buffer[_head];
|
|
return pop();
|
|
}
|
|
|
|
|
|
/*
|
|
* push_force() is semantically equivalent to:
|
|
* if (!push(t)) { pop(); push(t); }
|
|
*/
|
|
bool push_force(const T &object) {
|
|
if (space() == 0) {
|
|
pop();
|
|
}
|
|
return push(object);
|
|
}
|
|
|
|
/*
|
|
remove the Nth element from the array. First element is zero
|
|
*/
|
|
bool remove(uint16_t n) {
|
|
if (n >= _count) {
|
|
return false;
|
|
}
|
|
if (n == _count-1) {
|
|
// remove last element
|
|
_count--;
|
|
return true;
|
|
}
|
|
if (n == 0) {
|
|
// remove first element
|
|
return pop();
|
|
}
|
|
// take advantage of the [] operator for simple shift of the array elements
|
|
for (uint16_t i=n; i<_count-1; i++) {
|
|
*(*this)[i] = *(*this)[i+1];
|
|
}
|
|
_count--;
|
|
return true;
|
|
}
|
|
|
|
// allow array indexing, based on current head. Returns a pointer
|
|
// to the object or nullptr
|
|
T * operator[](uint16_t i) {
|
|
if (i >= _count) {
|
|
return nullptr;
|
|
}
|
|
return &_buffer[(_head+i)%_size];
|
|
}
|
|
|
|
private:
|
|
T *_buffer;
|
|
uint16_t _size; // total buffer size
|
|
uint16_t _count; // number in buffer now
|
|
uint16_t _head; // first element
|
|
};
|