mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-18 06:38:29 -04:00
392 lines
15 KiB
C++
392 lines
15 KiB
C++
#include "Rover.h"
|
|
|
|
#include <AP_RangeFinder/RangeFinder_Backend.h>
|
|
|
|
// initialise compass
|
|
void Rover::init_compass()
|
|
{
|
|
if (!g.compass_enabled) {
|
|
return;
|
|
}
|
|
|
|
if (!compass.init()|| !compass.read()) {
|
|
hal.console->printf("Compass initialisation failed!\n");
|
|
g.compass_enabled = false;
|
|
} else {
|
|
ahrs.set_compass(&compass);
|
|
}
|
|
}
|
|
|
|
/*
|
|
if the compass is enabled then try to accumulate a reading
|
|
also update initial location used for declination
|
|
*/
|
|
void Rover::compass_accumulate(void)
|
|
{
|
|
if (!g.compass_enabled) {
|
|
return;
|
|
}
|
|
|
|
compass.accumulate();
|
|
|
|
// update initial location used for declination
|
|
if (!compass_init_location) {
|
|
Location loc;
|
|
if (ahrs.get_position(loc)) {
|
|
compass.set_initial_location(loc.lat, loc.lng);
|
|
compass_init_location = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Rover::init_barometer(bool full_calibration)
|
|
{
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Calibrating barometer");
|
|
if (full_calibration) {
|
|
barometer.calibrate();
|
|
} else {
|
|
barometer.update_calibration();
|
|
}
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Barometer calibration complete");
|
|
}
|
|
|
|
void Rover::init_rangefinder(void)
|
|
{
|
|
rangefinder.init();
|
|
}
|
|
|
|
// init beacons used for non-gps position estimates
|
|
void Rover::init_beacon()
|
|
{
|
|
g2.beacon.init();
|
|
}
|
|
|
|
// update beacons
|
|
void Rover::update_beacon()
|
|
{
|
|
g2.beacon.update();
|
|
}
|
|
|
|
// init visual odometry sensor
|
|
void Rover::init_visual_odom()
|
|
{
|
|
g2.visual_odom.init();
|
|
}
|
|
|
|
// update visual odometry sensor
|
|
void Rover::update_visual_odom()
|
|
{
|
|
// check for updates
|
|
if (g2.visual_odom.enabled() && (g2.visual_odom.get_last_update_ms() != visual_odom_last_update_ms)) {
|
|
visual_odom_last_update_ms = g2.visual_odom.get_last_update_ms();
|
|
const float time_delta_sec = g2.visual_odom.get_time_delta_usec() / 1000000.0f;
|
|
ahrs.writeBodyFrameOdom(g2.visual_odom.get_confidence(),
|
|
g2.visual_odom.get_position_delta(),
|
|
g2.visual_odom.get_angle_delta(),
|
|
time_delta_sec,
|
|
visual_odom_last_update_ms,
|
|
g2.visual_odom.get_pos_offset());
|
|
// log sensor data
|
|
DataFlash.Log_Write_VisualOdom(time_delta_sec,
|
|
g2.visual_odom.get_angle_delta(),
|
|
g2.visual_odom.get_position_delta(),
|
|
g2.visual_odom.get_confidence());
|
|
}
|
|
}
|
|
|
|
// update wheel encoders
|
|
void Rover::update_wheel_encoder()
|
|
{
|
|
// exit immediately if not enabled
|
|
if (g2.wheel_encoder.num_sensors() == 0) {
|
|
return;
|
|
}
|
|
|
|
// update encoders
|
|
g2.wheel_encoder.update();
|
|
|
|
// initialise on first iteration
|
|
const uint32_t now = AP_HAL::millis();
|
|
if (wheel_encoder_last_ekf_update_ms == 0) {
|
|
wheel_encoder_last_ekf_update_ms = now;
|
|
for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) {
|
|
wheel_encoder_last_angle_rad[i] = g2.wheel_encoder.get_delta_angle(i);
|
|
wheel_encoder_last_update_ms[i] = g2.wheel_encoder.get_last_reading_ms(i);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// calculate delta angle and delta time and send to EKF
|
|
// use time of last ping from wheel encoder
|
|
// send delta time (time between this wheel encoder time and previous wheel encoder time)
|
|
// in case where wheel hasn't moved, count = 0 (cap the delta time at 50ms - or system time)
|
|
// use system clock of last update instead of time of last ping
|
|
const float system_dt = (now - wheel_encoder_last_ekf_update_ms) / 1000.0f;
|
|
for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) {
|
|
// calculate angular change (in radians)
|
|
const float curr_angle_rad = g2.wheel_encoder.get_delta_angle(i);
|
|
const float delta_angle = curr_angle_rad - wheel_encoder_last_angle_rad[i];
|
|
wheel_encoder_last_angle_rad[i] = curr_angle_rad;
|
|
|
|
// calculate delta time
|
|
float delta_time;
|
|
const uint32_t latest_sensor_update_ms = g2.wheel_encoder.get_last_reading_ms(i);
|
|
const uint32_t sensor_diff_ms = latest_sensor_update_ms - wheel_encoder_last_update_ms[i];
|
|
|
|
// if we have not received any sensor updates, or time difference is too high then use time since last update to the ekf
|
|
// check for old or insane sensor update times
|
|
if (sensor_diff_ms == 0 || sensor_diff_ms > 100) {
|
|
delta_time = system_dt;
|
|
wheel_encoder_last_update_ms[i] = wheel_encoder_last_ekf_update_ms;
|
|
} else {
|
|
delta_time = sensor_diff_ms / 1000.0f;
|
|
wheel_encoder_last_update_ms[i] = latest_sensor_update_ms;
|
|
}
|
|
|
|
/* delAng is the measured change in angular position from the previous measurement where a positive rotation is produced by forward motion of the vehicle (rad)
|
|
* delTime is the time interval for the measurement of delAng (sec)
|
|
* timeStamp_ms is the time when the rotation was last measured (msec)
|
|
* posOffset is the XYZ body frame position of the wheel hub (m)
|
|
*/
|
|
EKF3.writeWheelOdom(delta_angle, delta_time, wheel_encoder_last_update_ms[i], g2.wheel_encoder.get_position(i), g2.wheel_encoder.get_wheel_radius(i));
|
|
|
|
// calculate rpm for reporting to GCS
|
|
if (is_positive(delta_time)) {
|
|
wheel_encoder_rpm[i] = (delta_angle / M_2PI) / (delta_time / 60.0f);
|
|
} else {
|
|
wheel_encoder_rpm[i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
// record system time update for next iteration
|
|
wheel_encoder_last_ekf_update_ms = now;
|
|
}
|
|
|
|
// read_battery - reads battery voltage and current and invokes failsafe
|
|
// should be called at 10hz
|
|
void Rover::read_battery(void)
|
|
{
|
|
battery.read();
|
|
}
|
|
|
|
// read the receiver RSSI as an 8 bit number for MAVLink
|
|
// RC_CHANNELS_SCALED message
|
|
void Rover::read_receiver_rssi(void)
|
|
{
|
|
receiver_rssi = rssi.read_receiver_rssi_uint8();
|
|
}
|
|
|
|
// Calibrate compass
|
|
void Rover::compass_cal_update() {
|
|
if (!hal.util->get_soft_armed()) {
|
|
compass.compass_cal_update();
|
|
}
|
|
}
|
|
|
|
// Accel calibration
|
|
|
|
void Rover::accel_cal_update() {
|
|
if (hal.util->get_soft_armed()) {
|
|
return;
|
|
}
|
|
ins.acal_update();
|
|
// check if new trim values, and set them float trim_roll, trim_pitch;
|
|
float trim_roll, trim_pitch;
|
|
if (ins.get_new_trim(trim_roll, trim_pitch)) {
|
|
ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
|
|
}
|
|
}
|
|
|
|
// read the rangefinders
|
|
void Rover::read_rangefinders(void)
|
|
{
|
|
rangefinder.update();
|
|
|
|
AP_RangeFinder_Backend *s0 = rangefinder.get_backend(0);
|
|
AP_RangeFinder_Backend *s1 = rangefinder.get_backend(1);
|
|
|
|
if (s0 == nullptr || s0->status() == RangeFinder::RangeFinder_NotConnected) {
|
|
// this makes it possible to disable rangefinder at runtime
|
|
return;
|
|
}
|
|
|
|
if (s1 != nullptr && s1->has_data()) {
|
|
// we have two rangefinders
|
|
obstacle.rangefinder1_distance_cm = s0->distance_cm();
|
|
obstacle.rangefinder2_distance_cm = s1->distance_cm();
|
|
if (obstacle.rangefinder1_distance_cm < static_cast<uint16_t>(g.rangefinder_trigger_cm) &&
|
|
obstacle.rangefinder1_distance_cm < static_cast<uint16_t>(obstacle.rangefinder2_distance_cm)) {
|
|
// we have an object on the left
|
|
if (obstacle.detected_count < 127) {
|
|
obstacle.detected_count++;
|
|
}
|
|
if (obstacle.detected_count == g.rangefinder_debounce) {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder1 obstacle %u cm",
|
|
static_cast<uint32_t>(obstacle.rangefinder1_distance_cm));
|
|
}
|
|
obstacle.detected_time_ms = AP_HAL::millis();
|
|
obstacle.turn_angle = g.rangefinder_turn_angle;
|
|
} else if (obstacle.rangefinder2_distance_cm < static_cast<uint16_t>(g.rangefinder_trigger_cm)) {
|
|
// we have an object on the right
|
|
if (obstacle.detected_count < 127) {
|
|
obstacle.detected_count++;
|
|
}
|
|
if (obstacle.detected_count == g.rangefinder_debounce) {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder2 obstacle %u cm",
|
|
static_cast<uint32_t>(obstacle.rangefinder2_distance_cm));
|
|
}
|
|
obstacle.detected_time_ms = AP_HAL::millis();
|
|
obstacle.turn_angle = -g.rangefinder_turn_angle;
|
|
}
|
|
} else {
|
|
// we have a single rangefinder
|
|
obstacle.rangefinder1_distance_cm = s0->distance_cm();
|
|
obstacle.rangefinder2_distance_cm = 0;
|
|
if (obstacle.rangefinder1_distance_cm < static_cast<uint16_t>(g.rangefinder_trigger_cm)) {
|
|
// obstacle detected in front
|
|
if (obstacle.detected_count < 127) {
|
|
obstacle.detected_count++;
|
|
}
|
|
if (obstacle.detected_count == g.rangefinder_debounce) {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder obstacle %u cm",
|
|
static_cast<uint32_t>(obstacle.rangefinder1_distance_cm));
|
|
}
|
|
obstacle.detected_time_ms = AP_HAL::millis();
|
|
obstacle.turn_angle = g.rangefinder_turn_angle;
|
|
}
|
|
}
|
|
|
|
Log_Write_Rangefinder();
|
|
|
|
// no object detected - reset after the turn time
|
|
if (obstacle.detected_count >= g.rangefinder_debounce &&
|
|
AP_HAL::millis() > obstacle.detected_time_ms + g.rangefinder_turn_time*1000) {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Obstacle passed");
|
|
obstacle.detected_count = 0;
|
|
obstacle.turn_angle = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
update AP_Button
|
|
*/
|
|
void Rover::button_update(void)
|
|
{
|
|
button.update();
|
|
}
|
|
|
|
// initialise proximity sensor
|
|
void Rover::init_proximity(void)
|
|
{
|
|
g2.proximity.init();
|
|
g2.proximity.set_rangefinder(&rangefinder);
|
|
}
|
|
|
|
// update proximity sensor
|
|
void Rover::update_proximity(void)
|
|
{
|
|
g2.proximity.update();
|
|
}
|
|
|
|
// update error mask of sensors and subsystems. The mask
|
|
// uses the MAV_SYS_STATUS_* values from mavlink. If a bit is set
|
|
// then it indicates that the sensor or subsystem is present but
|
|
// not functioning correctly.
|
|
void Rover::update_sensor_status_flags(void)
|
|
{
|
|
// default sensors present
|
|
control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT;
|
|
|
|
// first what sensors/controllers we have
|
|
if (g.compass_enabled) {
|
|
control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present
|
|
}
|
|
if (gps.status() > AP_GPS::NO_GPS) {
|
|
control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS;
|
|
}
|
|
if (g2.visual_odom.enabled()) {
|
|
control_sensors_present |= MAV_SYS_STATUS_SENSOR_VISION_POSITION;
|
|
}
|
|
if (rover.DataFlash.logging_present()) { // primary logging only (usually File)
|
|
control_sensors_present |= MAV_SYS_STATUS_LOGGING;
|
|
}
|
|
if (rover.g2.proximity.get_status() > AP_Proximity::Proximity_NotConnected) {
|
|
control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
|
|
}
|
|
|
|
// all present sensors enabled by default except rate control, attitude stabilization, yaw, altitude, position control and motor output which we will set individually
|
|
control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL &
|
|
~MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION &
|
|
~MAV_SYS_STATUS_SENSOR_YAW_POSITION &
|
|
~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL &
|
|
~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS &
|
|
~MAV_SYS_STATUS_LOGGING);
|
|
if (control_mode->attitude_stabilized()) {
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // 3D angular rate control
|
|
}
|
|
if (control_mode->is_autopilot_mode()) {
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_YAW_POSITION; // yaw position
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; // X/Y position control
|
|
}
|
|
|
|
if (rover.DataFlash.logging_enabled()) {
|
|
control_sensors_enabled |= MAV_SYS_STATUS_LOGGING;
|
|
}
|
|
|
|
// set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED)
|
|
if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) {
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS;
|
|
}
|
|
|
|
// default to all healthy except compass and gps which we set individually
|
|
control_sensors_health = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_3D_MAG & ~MAV_SYS_STATUS_SENSOR_GPS);
|
|
if (g.compass_enabled && compass.healthy(0) && ahrs.use_compass()) {
|
|
control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG;
|
|
}
|
|
if (gps.is_healthy()) {
|
|
control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS;
|
|
}
|
|
if (g2.visual_odom.enabled() && !g2.visual_odom.healthy()) {
|
|
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_VISION_POSITION;
|
|
}
|
|
if (!ins.get_gyro_health_all() || !ins.gyro_calibrated_ok_all()) {
|
|
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO;
|
|
}
|
|
if (!ins.get_accel_health_all()) {
|
|
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL;
|
|
}
|
|
|
|
if (ahrs.initialised() && !ahrs.healthy()) {
|
|
// AHRS subsystem is unhealthy
|
|
control_sensors_health &= ~MAV_SYS_STATUS_AHRS;
|
|
}
|
|
|
|
if (rangefinder.num_sensors() > 0) {
|
|
control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
|
|
if (g.rangefinder_trigger_cm > 0) {
|
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
|
|
}
|
|
AP_RangeFinder_Backend *s = rangefinder.get_backend(0);
|
|
if (s != nullptr && s->has_data()) {
|
|
control_sensors_health |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
|
|
}
|
|
}
|
|
if (rover.g2.proximity.get_status() < AP_Proximity::Proximity_Good) {
|
|
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_LASER_POSITION;
|
|
}
|
|
if (rover.DataFlash.logging_failed()) {
|
|
control_sensors_health &= ~MAV_SYS_STATUS_LOGGING;
|
|
}
|
|
|
|
if (!initialised || ins.calibrating()) {
|
|
// while initialising the gyros and accels are not enabled
|
|
control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
|
|
control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
|
|
}
|
|
#if FRSKY_TELEM_ENABLED == ENABLED
|
|
// give mask of error flags to Frsky_Telemetry
|
|
frsky_telemetry.update_sensor_status_flags(~control_sensors_health & control_sensors_enabled & control_sensors_present);
|
|
#endif
|
|
}
|