ardupilot/libraries/AC_PID/AC_PID.cpp
2023-01-08 21:03:25 +11:00

352 lines
10 KiB
C++

/// @file AC_PID.cpp
/// @brief Generic PID algorithm
#include <AP_Math/AP_Math.h>
#include "AC_PID.h"
const AP_Param::GroupInfo AC_PID::var_info[] = {
// @Param: P
// @DisplayName: PID Proportional Gain
// @Description: P Gain which produces an output value that is proportional to the current error value
AP_GROUPINFO("P", 0, AC_PID, _kp, 0),
// @Param: I
// @DisplayName: PID Integral Gain
// @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error
AP_GROUPINFO("I", 1, AC_PID, _ki, 0),
// @Param: D
// @DisplayName: PID Derivative Gain
// @Description: D Gain which produces an output that is proportional to the rate of change of the error
AP_GROUPINFO("D", 2, AC_PID, _kd, 0),
// 3 was for uint16 IMAX
// @Param: FF
// @DisplayName: FF FeedForward Gain
// @Description: FF Gain which produces an output value that is proportional to the demanded input
AP_GROUPINFO("FF", 4, AC_PID, _kff, 0),
// @Param: IMAX
// @DisplayName: PID Integral Maximum
// @Description: The maximum/minimum value that the I term can output
AP_GROUPINFO("IMAX", 5, AC_PID, _kimax, 0),
// 6 was for float FILT
// 7 is for float ILMI and FF
// index 8 was for AFF
// @Param: FLTT
// @DisplayName: PID Target filter frequency in Hz
// @Description: Target filter frequency in Hz
// @Units: Hz
AP_GROUPINFO("FLTT", 9, AC_PID, _filt_T_hz, AC_PID_TFILT_HZ_DEFAULT),
// @Param: FLTE
// @DisplayName: PID Error filter frequency in Hz
// @Description: Error filter frequency in Hz
// @Units: Hz
AP_GROUPINFO("FLTE", 10, AC_PID, _filt_E_hz, AC_PID_EFILT_HZ_DEFAULT),
// @Param: FLTD
// @DisplayName: PID Derivative term filter frequency in Hz
// @Description: Derivative filter frequency in Hz
// @Units: Hz
AP_GROUPINFO("FLTD", 11, AC_PID, _filt_D_hz, AC_PID_DFILT_HZ_DEFAULT),
// @Param: SMAX
// @DisplayName: Slew rate limit
// @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.
// @Range: 0 200
// @Increment: 0.5
// @User: Advanced
AP_GROUPINFO("SMAX", 12, AC_PID, _slew_rate_max, 0),
AP_GROUPEND
};
// Constructor
AC_PID::AC_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz,
float initial_srmax, float initial_srtau)
{
// load parameter values from eeprom
AP_Param::setup_object_defaults(this, var_info);
_kp.set_and_default(initial_p);
_ki.set_and_default(initial_i);
_kd.set_and_default(initial_d);
_kff.set_and_default(initial_ff);
_kimax.set_and_default(initial_imax);
_filt_T_hz.set_and_default(initial_filt_T_hz);
_filt_E_hz.set_and_default(initial_filt_E_hz);
_filt_D_hz.set_and_default(initial_filt_D_hz);
_slew_rate_max.set_and_default(initial_srmax);
_slew_rate_tau.set_and_default(initial_srtau);
// reset input filter to first value received
_flags._reset_filter = true;
memset(&_pid_info, 0, sizeof(_pid_info));
// slew limit scaler allows for plane to use degrees/sec slew
// limit
_slew_limit_scale = 1;
}
// filt_T_hz - set target filter hz
void AC_PID::filt_T_hz(float hz)
{
_filt_T_hz.set(fabsf(hz));
}
// filt_E_hz - set error filter hz
void AC_PID::filt_E_hz(float hz)
{
_filt_E_hz.set(fabsf(hz));
}
// filt_D_hz - set derivative filter hz
void AC_PID::filt_D_hz(float hz)
{
_filt_D_hz.set(fabsf(hz));
}
// slew_limit - set slew limit
void AC_PID::slew_limit(float smax)
{
_slew_rate_max.set(fabsf(smax));
}
// update_all - set target and measured inputs to PID controller and calculate outputs
// target and error are filtered
// the derivative is then calculated and filtered
// the integral is then updated based on the setting of the limit flag
float AC_PID::update_all(float target, float measurement, float dt, bool limit)
{
// don't process inf or NaN
if (!isfinite(target) || !isfinite(measurement)) {
return 0.0f;
}
// reset input filter to value received
if (_flags._reset_filter) {
_flags._reset_filter = false;
_target = target;
_error = _target - measurement;
_derivative = 0.0f;
} else {
float error_last = _error;
_target += get_filt_T_alpha(dt) * (target - _target);
_error += get_filt_E_alpha(dt) * ((_target - measurement) - _error);
// calculate and filter derivative
if (is_positive(dt)) {
float derivative = (_error - error_last) / dt;
_derivative += get_filt_D_alpha(dt) * (derivative - _derivative);
}
}
// update I term
update_i(dt, limit);
float P_out = (_error * _kp);
float D_out = (_derivative * _kd);
// calculate slew limit modifier for P+D
_pid_info.Dmod = _slew_limiter.modifier((_pid_info.P + _pid_info.D) * _slew_limit_scale, dt);
_pid_info.slew_rate = _slew_limiter.get_slew_rate();
P_out *= _pid_info.Dmod;
D_out *= _pid_info.Dmod;
_pid_info.target = _target;
_pid_info.actual = measurement;
_pid_info.error = _error;
_pid_info.P = P_out;
_pid_info.D = D_out;
return P_out + _integrator + D_out;
}
// update_error - set error input to PID controller and calculate outputs
// target is set to zero and error is set and filtered
// the derivative then is calculated and filtered
// the integral is then updated based on the setting of the limit flag
// Target and Measured must be set manually for logging purposes.
// todo: remove function when it is no longer used.
float AC_PID::update_error(float error, float dt, bool limit)
{
// don't process inf or NaN
if (!isfinite(error)) {
return 0.0f;
}
_target = 0.0f;
// reset input filter to value received
if (_flags._reset_filter) {
_flags._reset_filter = false;
_error = error;
_derivative = 0.0f;
} else {
float error_last = _error;
_error += get_filt_E_alpha(dt) * (error - _error);
// calculate and filter derivative
if (is_positive(dt)) {
float derivative = (_error - error_last) / dt;
_derivative += get_filt_D_alpha(dt) * (derivative - _derivative);
}
}
// update I term
update_i(dt, limit);
float P_out = (_error * _kp);
float D_out = (_derivative * _kd);
// calculate slew limit modifier for P+D
_pid_info.Dmod = _slew_limiter.modifier((_pid_info.P + _pid_info.D) * _slew_limit_scale, dt);
_pid_info.slew_rate = _slew_limiter.get_slew_rate();
P_out *= _pid_info.Dmod;
D_out *= _pid_info.Dmod;
_pid_info.target = 0.0f;
_pid_info.actual = 0.0f;
_pid_info.error = _error;
_pid_info.P = P_out;
_pid_info.D = D_out;
return P_out + _integrator + D_out;
}
// update_i - update the integral
// If the limit flag is set the integral is only allowed to shrink
void AC_PID::update_i(float dt, bool limit)
{
if (!is_zero(_ki) && is_positive(dt)) {
// Ensure that integrator can only be reduced if the output is saturated
if (!limit || ((is_positive(_integrator) && is_negative(_error)) || (is_negative(_integrator) && is_positive(_error)))) {
_integrator += ((float)_error * _ki) * dt;
_integrator = constrain_float(_integrator, -_kimax, _kimax);
}
} else {
_integrator = 0.0f;
}
_pid_info.I = _integrator;
_pid_info.limit = limit;
}
float AC_PID::get_p() const
{
return _error * _kp;
}
float AC_PID::get_i() const
{
return _integrator;
}
float AC_PID::get_d() const
{
return _kd * _derivative;
}
float AC_PID::get_ff()
{
_pid_info.FF = _target * _kff;
return _target * _kff;
}
void AC_PID::reset_I()
{
_integrator = 0.0;
_pid_info.I = 0.0;
}
void AC_PID::load_gains()
{
_kp.load();
_ki.load();
_kd.load();
_kff.load();
_kimax.load();
_kimax.set(fabsf(_kimax));
_filt_T_hz.load();
_filt_E_hz.load();
_filt_D_hz.load();
}
// save_gains - save gains to eeprom
void AC_PID::save_gains()
{
_kp.save();
_ki.save();
_kd.save();
_kff.save();
_kimax.save();
_filt_T_hz.save();
_filt_E_hz.save();
_filt_D_hz.save();
}
/// Overload the function call operator to permit easy initialisation
void AC_PID::operator()(float p_val, float i_val, float d_val, float ff_val, float imax_val, float input_filt_T_hz, float input_filt_E_hz, float input_filt_D_hz)
{
_kp.set(p_val);
_ki.set(i_val);
_kd.set(d_val);
_kff.set(ff_val);
_kimax.set(fabsf(imax_val));
_filt_T_hz.set(input_filt_T_hz);
_filt_E_hz.set(input_filt_E_hz);
_filt_D_hz.set(input_filt_D_hz);
}
// get_filt_T_alpha - get the target filter alpha
float AC_PID::get_filt_T_alpha(float dt) const
{
return calc_lowpass_alpha_dt(dt, _filt_T_hz);
}
// get_filt_E_alpha - get the error filter alpha
float AC_PID::get_filt_E_alpha(float dt) const
{
return calc_lowpass_alpha_dt(dt, _filt_E_hz);
}
// get_filt_D_alpha - get the derivative filter alpha
float AC_PID::get_filt_D_alpha(float dt) const
{
return calc_lowpass_alpha_dt(dt, _filt_D_hz);
}
void AC_PID::set_integrator(float target, float measurement, float integrator)
{
set_integrator(target - measurement, integrator);
}
void AC_PID::set_integrator(float error, float integrator)
{
_integrator = constrain_float(integrator - error * _kp, -_kimax, _kimax);
_pid_info.I = _integrator;
}
void AC_PID::set_integrator(float integrator)
{
_integrator = constrain_float(integrator, -_kimax, _kimax);
_pid_info.I = _integrator;
}
void AC_PID::relax_integrator(float integrator, float dt, float time_constant)
{
integrator = constrain_float(integrator, -_kimax, _kimax);
if (is_positive(dt)) {
_integrator = _integrator + (integrator - _integrator) * (dt / (dt + time_constant));
}
_pid_info.I = _integrator;
}