ardupilot/ArduCopter/control_rtl.cpp

496 lines
19 KiB
C++

#include "Copter.h"
/*
* Init and run calls for RTL flight mode
*
* There are two parts to RTL, the high level decision making which controls which state we are in
* and the lower implementation of the waypoint or landing controllers within those states
*/
// rtl_init - initialise rtl controller
bool Copter::rtl_init(bool ignore_checks)
{
if (position_ok() || ignore_checks) {
// initialise waypoint and spline controller
wp_nav->wp_and_spline_init();
rtl_build_path(!failsafe.terrain);
rtl_climb_start();
return true;
}else{
return false;
}
}
// re-start RTL with terrain following disabled
void Copter::rtl_restart_without_terrain()
{
// log an error
Log_Write_Error(ERROR_SUBSYSTEM_NAVIGATION, ERROR_CODE_RESTARTED_RTL);
if (rtl_path.terrain_used) {
rtl_build_path(false);
rtl_climb_start();
gcs_send_text(MAV_SEVERITY_CRITICAL,"Restarting RTL - Terrain data missing");
}
}
// rtl_run - runs the return-to-launch controller
// should be called at 100hz or more
void Copter::rtl_run()
{
// check if we need to move to next state
if (rtl_state_complete) {
switch (rtl_state) {
case RTL_InitialClimb:
rtl_return_start();
break;
case RTL_ReturnHome:
rtl_loiterathome_start();
break;
case RTL_LoiterAtHome:
if (rtl_path.land || failsafe.radio) {
rtl_land_start();
}else{
rtl_descent_start();
}
break;
case RTL_FinalDescent:
// do nothing
break;
case RTL_Land:
// do nothing - rtl_land_run will take care of disarming motors
break;
}
}
// call the correct run function
switch (rtl_state) {
case RTL_InitialClimb:
rtl_climb_return_run();
break;
case RTL_ReturnHome:
rtl_climb_return_run();
break;
case RTL_LoiterAtHome:
rtl_loiterathome_run();
break;
case RTL_FinalDescent:
rtl_descent_run();
break;
case RTL_Land:
rtl_land_run();
break;
}
}
// rtl_climb_start - initialise climb to RTL altitude
void Copter::rtl_climb_start()
{
rtl_state = RTL_InitialClimb;
rtl_state_complete = false;
// RTL_SPEED == 0 means use WPNAV_SPEED
if (g.rtl_speed_cms != 0) {
wp_nav->set_speed_xy(g.rtl_speed_cms);
}
// set the destination
if (!wp_nav->set_wp_destination(rtl_path.climb_target)) {
// this should not happen because rtl_build_path will have checked terrain data was available
Log_Write_Error(ERROR_SUBSYSTEM_NAVIGATION, ERROR_CODE_FAILED_TO_SET_DESTINATION);
set_mode(LAND, MODE_REASON_TERRAIN_FAILSAFE);
return;
}
wp_nav->set_fast_waypoint(true);
// hold current yaw during initial climb
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
// rtl_return_start - initialise return to home
void Copter::rtl_return_start()
{
rtl_state = RTL_ReturnHome;
rtl_state_complete = false;
if (!wp_nav->set_wp_destination(rtl_path.return_target)) {
// failure must be caused by missing terrain data, restart RTL
rtl_restart_without_terrain();
}
// initialise yaw to point home (maybe)
set_auto_yaw_mode(get_default_auto_yaw_mode(true));
}
// rtl_climb_return_run - implements the initial climb, return home and descent portions of RTL which all rely on the wp controller
// called by rtl_run at 100hz or more
void Copter::rtl_climb_return_run()
{
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || !motors->get_interlock()) {
#if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain());
attitude_control->set_throttle_out(0,false,g.throttle_filt);
#else
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
// multicopters do not stabilize roll/pitch/yaw when disarmed
// reset attitude control targets
attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif
// To-Do: re-initialise wpnav targets
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!failsafe.radio) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (!is_zero(target_yaw_rate)) {
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// run waypoint controller
failsafe_terrain_set_status(wp_nav->update_wpnav());
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control->update_z_controller();
// call attitude controller
if (auto_yaw_mode == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate, get_smoothing_gain());
}else{
// roll, pitch from waypoint controller, yaw heading from auto_heading()
attitude_control->input_euler_angle_roll_pitch_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), get_auto_heading(),true, get_smoothing_gain());
}
// check if we've completed this stage of RTL
rtl_state_complete = wp_nav->reached_wp_destination();
}
// rtl_loiterathome_start - initialise return to home
void Copter::rtl_loiterathome_start()
{
rtl_state = RTL_LoiterAtHome;
rtl_state_complete = false;
rtl_loiter_start_time = millis();
// yaw back to initial take-off heading yaw unless pilot has already overridden yaw
if(get_default_auto_yaw_mode(true) != AUTO_YAW_HOLD) {
set_auto_yaw_mode(AUTO_YAW_RESETTOARMEDYAW);
} else {
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
}
// rtl_climb_return_descent_run - implements the initial climb, return home and descent portions of RTL which all rely on the wp controller
// called by rtl_run at 100hz or more
void Copter::rtl_loiterathome_run()
{
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || !motors->get_interlock()) {
#if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain());
attitude_control->set_throttle_out(0,false,g.throttle_filt);
#else
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
// multicopters do not stabilize roll/pitch/yaw when disarmed
// reset attitude control targets
attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif
// To-Do: re-initialise wpnav targets
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!failsafe.radio) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (!is_zero(target_yaw_rate)) {
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// run waypoint controller
failsafe_terrain_set_status(wp_nav->update_wpnav());
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control->update_z_controller();
// call attitude controller
if (auto_yaw_mode == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate, get_smoothing_gain());
}else{
// roll, pitch from waypoint controller, yaw heading from auto_heading()
attitude_control->input_euler_angle_roll_pitch_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), get_auto_heading(),true, get_smoothing_gain());
}
// check if we've completed this stage of RTL
if ((millis() - rtl_loiter_start_time) >= (uint32_t)g.rtl_loiter_time.get()) {
if (auto_yaw_mode == AUTO_YAW_RESETTOARMEDYAW) {
// check if heading is within 2 degrees of heading when vehicle was armed
if (labs(wrap_180_cd(ahrs.yaw_sensor-initial_armed_bearing)) <= 200) {
rtl_state_complete = true;
}
} else {
// we have loitered long enough
rtl_state_complete = true;
}
}
}
// rtl_descent_start - initialise descent to final alt
void Copter::rtl_descent_start()
{
rtl_state = RTL_FinalDescent;
rtl_state_complete = false;
// Set wp navigation target to above home
wp_nav->init_loiter_target(wp_nav->get_wp_destination());
// initialise altitude target to stopping point
pos_control->set_target_to_stopping_point_z();
// initialise yaw
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
// rtl_descent_run - implements the final descent to the RTL_ALT
// called by rtl_run at 100hz or more
void Copter::rtl_descent_run()
{
int16_t roll_control = 0, pitch_control = 0;
float target_yaw_rate = 0;
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || !motors->get_interlock()) {
#if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain());
attitude_control->set_throttle_out(0,false,g.throttle_filt);
#else
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
// multicopters do not stabilize roll/pitch/yaw when disarmed
attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif
// set target to current position
wp_nav->init_loiter_target();
return;
}
// process pilot's input
if (!failsafe.radio) {
if ((g.throttle_behavior & THR_BEHAVE_HIGH_THROTTLE_CANCELS_LAND) != 0 && rc_throttle_control_in_filter.get() > LAND_CANCEL_TRIGGER_THR){
Log_Write_Event(DATA_LAND_CANCELLED_BY_PILOT);
// exit land if throttle is high
if (!set_mode(LOITER, MODE_REASON_THROTTLE_LAND_ESCAPE)) {
set_mode(ALT_HOLD, MODE_REASON_THROTTLE_LAND_ESCAPE);
}
}
if (g.land_repositioning) {
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// process pilot's roll and pitch input
roll_control = channel_roll->get_control_in();
pitch_control = channel_pitch->get_control_in();
}
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// process roll, pitch inputs
wp_nav->set_pilot_desired_acceleration(roll_control, pitch_control);
// run loiter controller
wp_nav->update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);
// call z-axis position controller
pos_control->set_alt_target_with_slew(rtl_path.descent_target.alt, G_Dt);
pos_control->update_z_controller();
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate, get_smoothing_gain());
// check if we've reached within 20cm of final altitude
rtl_state_complete = abs(rtl_path.descent_target.alt - current_loc.alt) < 20;
}
// rtl_loiterathome_start - initialise controllers to loiter over home
void Copter::rtl_land_start()
{
rtl_state = RTL_Land;
rtl_state_complete = false;
// Set wp navigation target to above home
wp_nav->init_loiter_target(wp_nav->get_wp_destination());
// initialise position and desired velocity
if (!pos_control->is_active_z()) {
pos_control->set_alt_target_to_current_alt();
pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z());
}
// initialise yaw
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
// rtl_returnhome_run - return home
// called by rtl_run at 100hz or more
void Copter::rtl_land_run()
{
// if not auto armed or landing completed or motor interlock not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || ap.land_complete || !motors->get_interlock()) {
#if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain());
attitude_control->set_throttle_out(0,false,g.throttle_filt);
#else
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
// multicopters do not stabilize roll/pitch/yaw when disarmed
attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif
// set target to current position
wp_nav->init_loiter_target();
// disarm when the landing detector says we've landed
if (ap.land_complete) {
init_disarm_motors();
}
// check if we've completed this stage of RTL
rtl_state_complete = ap.land_complete;
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
land_run_horizontal_control();
land_run_vertical_control();
// check if we've completed this stage of RTL
rtl_state_complete = ap.land_complete;
}
void Copter::rtl_build_path(bool terrain_following_allowed)
{
// origin point is our stopping point
Vector3f stopping_point;
pos_control->get_stopping_point_xy(stopping_point);
pos_control->get_stopping_point_z(stopping_point);
rtl_path.origin_point = Location_Class(stopping_point);
rtl_path.origin_point.change_alt_frame(Location_Class::ALT_FRAME_ABOVE_HOME);
// compute return target
rtl_compute_return_target(terrain_following_allowed);
// climb target is above our origin point at the return altitude
rtl_path.climb_target = Location_Class(rtl_path.origin_point.lat, rtl_path.origin_point.lng, rtl_path.return_target.alt, rtl_path.return_target.get_alt_frame());
// descent target is below return target at rtl_alt_final
rtl_path.descent_target = Location_Class(rtl_path.return_target.lat, rtl_path.return_target.lng, g.rtl_alt_final, Location_Class::ALT_FRAME_ABOVE_HOME);
// set land flag
rtl_path.land = g.rtl_alt_final <= 0;
}
// compute the return target - home or rally point
// return altitude in cm above home at which vehicle should return home
// return target's altitude is updated to a higher altitude that the vehicle can safely return at (frame may also be set)
void Copter::rtl_compute_return_target(bool terrain_following_allowed)
{
// set return target to nearest rally point or home position (Note: alt is absolute)
#if AC_RALLY == ENABLED
rtl_path.return_target = rally.calc_best_rally_or_home_location(current_loc, ahrs.get_home().alt);
#else
rtl_path.return_target = ahrs.get_home();
#endif
// curr_alt is current altitude above home or above terrain depending upon use_terrain
int32_t curr_alt = current_loc.alt;
// decide if we should use terrain altitudes
rtl_path.terrain_used = terrain_use() && terrain_following_allowed;
if (rtl_path.terrain_used) {
// attempt to retrieve terrain alt for current location, stopping point and origin
int32_t origin_terr_alt, return_target_terr_alt;
if (!rtl_path.origin_point.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_TERRAIN, origin_terr_alt) ||
!rtl_path.return_target.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_TERRAIN, return_target_terr_alt) ||
!current_loc.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_TERRAIN, curr_alt)) {
rtl_path.terrain_used = false;
Log_Write_Error(ERROR_SUBSYSTEM_TERRAIN, ERROR_CODE_MISSING_TERRAIN_DATA);
}
}
// convert return-target alt (which is an absolute alt) to alt-above-home or alt-above-terrain
if (!rtl_path.terrain_used || !rtl_path.return_target.change_alt_frame(Location_Class::ALT_FRAME_ABOVE_TERRAIN)) {
if (!rtl_path.return_target.change_alt_frame(Location_Class::ALT_FRAME_ABOVE_HOME)) {
// this should never happen but just in case
rtl_path.return_target.set_alt_cm(0, Location_Class::ALT_FRAME_ABOVE_HOME);
}
rtl_path.terrain_used = false;
}
// set new target altitude to return target altitude
// Note: this is alt-above-home or terrain-alt depending upon use_terrain
// Note: ignore negative altitudes which could happen if user enters negative altitude for rally point or terrain is higher at rally point compared to home
int32_t target_alt = MAX(rtl_path.return_target.alt, 0);
// increase target to maximum of current altitude + climb_min and rtl altitude
target_alt = MAX(target_alt, curr_alt + MAX(0, g.rtl_climb_min));
target_alt = MAX(target_alt, MAX(g.rtl_altitude, RTL_ALT_MIN));
// reduce climb if close to return target
float rtl_return_dist_cm = rtl_path.return_target.get_distance(rtl_path.origin_point) * 100.0f;
// don't allow really shallow slopes
if (g.rtl_cone_slope >= RTL_MIN_CONE_SLOPE) {
target_alt = MAX(curr_alt, MIN(target_alt, MAX(rtl_return_dist_cm*g.rtl_cone_slope, curr_alt+RTL_ABS_MIN_CLIMB)));
}
// set returned target alt to new target_alt
rtl_path.return_target.set_alt_cm(target_alt, rtl_path.terrain_used ? Location_Class::ALT_FRAME_ABOVE_TERRAIN : Location_Class::ALT_FRAME_ABOVE_HOME);
#if AC_FENCE == ENABLED
// ensure not above fence altitude if alt fence is enabled
// Note: because the rtl_path.climb_target's altitude is simply copied from the return_target's altitude,
// if terrain altitudes are being used, the code below which reduces the return_target's altitude can lead to
// the vehicle not climbing at all as RTL begins. This can be overly conservative and it might be better
// to apply the fence alt limit independently on the origin_point and return_target
if ((fence.get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) != 0) {
// get return target as alt-above-home so it can be compared to fence's alt
if (rtl_path.return_target.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_HOME, target_alt)) {
float fence_alt = fence.get_safe_alt_max()*100.0f;
if (target_alt > fence_alt) {
// reduce target alt to the fence alt
rtl_path.return_target.alt -= (target_alt - fence_alt);
}
}
}
#endif
// ensure we do not descend
rtl_path.return_target.alt = MAX(rtl_path.return_target.alt, curr_alt);
}