mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-14 20:58:30 -04:00
33c1523905
add vector_mean_float() to DSP allow fft_start() to use ObjectBuffer<float> for lock-free access
96 lines
3.4 KiB
C++
96 lines
3.4 KiB
C++
/*
|
|
* This file is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Code by Andy Piper and the betaflight team
|
|
*/
|
|
#pragma once
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include "AP_HAL_ChibiOS_Namespace.h"
|
|
|
|
#if HAL_WITH_DSP
|
|
|
|
#include <arm_math.h>
|
|
|
|
#define DEBUG_FFT 0
|
|
|
|
// ChibiOS implementation of FFT analysis to run on STM32 processors
|
|
class ChibiOS::DSP : public AP_HAL::DSP {
|
|
public:
|
|
// initialise an FFT instance
|
|
virtual FFTWindowState* fft_init(uint16_t window_size, uint16_t sample_rate, uint8_t harmonics) override;
|
|
// start an FFT analysis with an ObjectBuffer
|
|
virtual void fft_start(FFTWindowState* state, FloatBuffer& samples, uint16_t advance) override;
|
|
// perform remaining steps of an FFT analysis
|
|
virtual uint16_t fft_analyse(FFTWindowState* state, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff) override;
|
|
|
|
// STM32-based FFT state
|
|
class FFTWindowStateARM : public AP_HAL::DSP::FFTWindowState {
|
|
friend class ChibiOS::DSP;
|
|
public:
|
|
FFTWindowStateARM(uint16_t window_size, uint16_t sample_rate, uint8_t harmonics);
|
|
virtual ~FFTWindowStateARM();
|
|
|
|
private:
|
|
// underlying CMSIS data structure for FFT analysis
|
|
arm_rfft_fast_instance_f32 _fft_instance;
|
|
};
|
|
|
|
protected:
|
|
void vector_max_float(const float* vin, uint16_t len, float* maxValue, uint16_t* maxIndex) const override {
|
|
uint32_t mindex;
|
|
arm_max_f32(vin, len, maxValue, &mindex);
|
|
*maxIndex = mindex;
|
|
}
|
|
void vector_scale_float(const float* vin, float scale, float* vout, uint16_t len) const override {
|
|
arm_scale_f32(vin, scale, vout, len);
|
|
}
|
|
float vector_mean_float(const float* vin, uint16_t len) const override {
|
|
float mean_value;
|
|
arm_mean_f32(vin, len, &mean_value);
|
|
return mean_value;
|
|
}
|
|
|
|
private:
|
|
// following are the six independent steps for calculating an FFT
|
|
void step_hanning(FFTWindowStateARM* fft, FloatBuffer& samples, uint16_t advance);
|
|
void step_arm_cfft_f32(FFTWindowStateARM* fft);
|
|
void step_bitreversal(FFTWindowStateARM* fft);
|
|
void step_stage_rfft_f32(FFTWindowStateARM* fft);
|
|
void step_arm_cmplx_mag_f32(FFTWindowStateARM* fft, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff);
|
|
uint16_t step_calc_frequencies_f32(FFTWindowStateARM* fft, uint16_t start_bin, uint16_t end_bin);
|
|
// candan's frequency interpolator
|
|
float calculate_candans_estimator(const FFTWindowStateARM* fft, uint16_t k) const;
|
|
|
|
#if DEBUG_FFT
|
|
class StepTimer {
|
|
public:
|
|
uint32_t _timer_total;
|
|
uint32_t _timer_avg;
|
|
uint8_t _time_ticks;
|
|
|
|
void time(uint32_t start);
|
|
};
|
|
|
|
uint32_t _output_count;
|
|
StepTimer _hanning_timer;
|
|
StepTimer _arm_cfft_f32_timer;
|
|
StepTimer _bitreversal_timer;
|
|
StepTimer _stage_rfft_f32_timer;
|
|
StepTimer _arm_cmplx_mag_f32_timer;
|
|
StepTimer _step_calc_frequencies;
|
|
#endif
|
|
};
|
|
|
|
#endif |