ardupilot/ArduPlane/GCS_Mavlink.pde

2404 lines
76 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// default sensors are present and healthy: gyro, accelerometer, barometer, rate_control, attitude_stabilization, yaw_position, altitude control, x/y position control, motor_control
#define MAVLINK_SENSOR_PRESENT_DEFAULT (MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE | MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL | MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION | MAV_SYS_STATUS_SENSOR_YAW_POSITION | MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL | MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL | MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS)
// use this to prevent recursion during sensor init
static bool in_mavlink_delay;
// true when we have received at least 1 MAVLink packet
static bool mavlink_active;
// true if we are out of time in our event timeslice
static bool gcs_out_of_time;
// check if a message will fit in the payload space available
#define CHECK_PAYLOAD_SIZE(id) if (payload_space < MAVLINK_MSG_ID_ ## id ## _LEN) return false
/*
* !!NOTE!!
*
* the use of NOINLINE separate functions for each message type avoids
* a compiler bug in gcc that would cause it to use far more stack
* space than is needed. Without the NOINLINE we use the sum of the
* stack needed for each message type. Please be careful to follow the
* pattern below when adding any new messages
*/
static NOINLINE void send_heartbeat(mavlink_channel_t chan)
{
uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
uint8_t system_status = is_flying() ? MAV_STATE_ACTIVE : MAV_STATE_STANDBY;
uint32_t custom_mode = control_mode;
if (failsafe.state != FAILSAFE_NONE) {
system_status = MAV_STATE_CRITICAL;
}
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
switch (control_mode) {
case MANUAL:
case TRAINING:
case ACRO:
base_mode = MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
break;
case STABILIZE:
case FLY_BY_WIRE_A:
case FLY_BY_WIRE_B:
case CRUISE:
base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED;
break;
case AUTO:
case RTL:
case LOITER:
case GUIDED:
case CIRCLE:
base_mode = MAV_MODE_FLAG_GUIDED_ENABLED |
MAV_MODE_FLAG_STABILIZE_ENABLED;
// note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
// APM does in any mode, as that is defined as "system finds its own goal
// positions", which APM does not currently do
break;
case INITIALISING:
system_status = MAV_STATE_CALIBRATING;
break;
}
if (!training_manual_pitch || !training_manual_roll) {
base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED;
}
if (control_mode != MANUAL && control_mode != INITIALISING) {
// stabiliser of some form is enabled
base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED;
}
if (g.stick_mixing != STICK_MIXING_DISABLED && control_mode != INITIALISING) {
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
}
#if HIL_MODE != HIL_MODE_DISABLED
base_mode |= MAV_MODE_FLAG_HIL_ENABLED;
#endif
// we are armed if we are not initialising
if (control_mode != INITIALISING && arming.is_armed()) {
base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
mavlink_msg_heartbeat_send(
chan,
MAV_TYPE_FIXED_WING,
MAV_AUTOPILOT_ARDUPILOTMEGA,
base_mode,
custom_mode,
system_status);
}
static NOINLINE void send_attitude(mavlink_channel_t chan)
{
Vector3f omega = ahrs.get_gyro();
mavlink_msg_attitude_send(
chan,
millis(),
ahrs.roll,
ahrs.pitch - radians(g.pitch_trim_cd*0.01),
ahrs.yaw,
omega.x,
omega.y,
omega.z);
}
#if GEOFENCE_ENABLED == ENABLED
static NOINLINE void send_fence_status(mavlink_channel_t chan)
{
geofence_send_status(chan);
}
#endif
static NOINLINE void send_extended_status1(mavlink_channel_t chan)
{
uint32_t control_sensors_present;
uint32_t control_sensors_enabled;
uint32_t control_sensors_health;
// default sensors present
control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT;
// first what sensors/controllers we have
if (g.compass_enabled) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present
}
if (airspeed.enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
if (g_gps != NULL && g_gps->status() > GPS::NO_GPS) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS;
}
// all present sensors enabled by default except rate control, attitude stabilization, yaw, altitude, position control and motor output which we will set individually
control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL & ~MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION & ~MAV_SYS_STATUS_SENSOR_YAW_POSITION & ~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & ~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS);
if (airspeed.enabled() && airspeed.use()) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
switch (control_mode) {
case MANUAL:
break;
case ACRO:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
break;
case STABILIZE:
case FLY_BY_WIRE_A:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
break;
case FLY_BY_WIRE_B:
case CRUISE:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS; // motor control
break;
case TRAINING:
if (!training_manual_roll || !training_manual_pitch) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
}
break;
case AUTO:
case RTL:
case LOITER:
case GUIDED:
case CIRCLE:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_YAW_POSITION; // yaw position
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; // altitude control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; // X/Y position control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS; // motor control
break;
case INITIALISING:
break;
}
// default to all healthy
control_sensors_health = control_sensors_present & ~(MAV_SYS_STATUS_SENSOR_3D_MAG |
MAV_SYS_STATUS_SENSOR_GPS |
MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE);
if (g.compass_enabled && compass.healthy() && ahrs.use_compass()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG;
}
if (g_gps != NULL && g_gps->status() >= GPS::GPS_OK_FIX_3D) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS;
}
if (!ins.healthy()) {
control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
}
if (airspeed.healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
int16_t battery_current = -1;
int8_t battery_remaining = -1;
if (battery.monitoring() == AP_BATT_MONITOR_VOLTAGE_AND_CURRENT) {
battery_remaining = battery.capacity_remaining_pct();
battery_current = battery.current_amps() * 100;
}
mavlink_msg_sys_status_send(
chan,
control_sensors_present,
control_sensors_enabled,
control_sensors_health,
(uint16_t)(scheduler.load_average(20000) * 1000),
battery.voltage() * 1000, // mV
battery_current, // in 10mA units
battery_remaining, // in %
0, // comm drops %,
0, // comm drops in pkts,
0, 0, 0, 0);
}
static void NOINLINE send_location(mavlink_channel_t chan)
{
uint32_t fix_time;
// if we have a GPS fix, take the time as the last fix time. That
// allows us to correctly calculate velocities and extrapolate
// positions.
// If we don't have a GPS fix then we are dead reckoning, and will
// use the current boot time as the fix time.
if (g_gps->status() >= GPS::GPS_OK_FIX_2D) {
fix_time = g_gps->last_fix_time;
} else {
fix_time = millis();
}
mavlink_msg_global_position_int_send(
chan,
fix_time,
current_loc.lat, // in 1E7 degrees
current_loc.lng, // in 1E7 degrees
g_gps->altitude_cm * 10, // millimeters above sea level
relative_altitude() * 1.0e3, // millimeters above ground
g_gps->velocity_north() * 100, // X speed cm/s (+ve North)
g_gps->velocity_east() * 100, // Y speed cm/s (+ve East)
g_gps->velocity_down() * -100, // Z speed cm/s (+ve up)
ahrs.yaw_sensor);
}
static void NOINLINE send_nav_controller_output(mavlink_channel_t chan)
{
mavlink_msg_nav_controller_output_send(
chan,
nav_roll_cd * 0.01,
nav_pitch_cd * 0.01,
nav_controller->nav_bearing_cd() * 0.01f,
nav_controller->target_bearing_cd() * 0.01f,
wp_distance,
altitude_error_cm * 0.01,
airspeed_error_cm,
nav_controller->crosstrack_error());
}
static void NOINLINE send_gps_raw(mavlink_channel_t chan)
{
static uint32_t last_send_time;
if (last_send_time != 0 && last_send_time == g_gps->last_fix_time && g_gps->status() >= GPS::GPS_OK_FIX_3D) {
return;
}
last_send_time = g_gps->last_fix_time;
mavlink_msg_gps_raw_int_send(
chan,
g_gps->last_fix_time*(uint64_t)1000,
g_gps->status(),
g_gps->latitude, // in 1E7 degrees
g_gps->longitude, // in 1E7 degrees
g_gps->altitude_cm * 10, // in mm
g_gps->hdop,
65535,
g_gps->ground_speed_cm, // cm/s
g_gps->ground_course_cd, // 1/100 degrees,
g_gps->num_sats);
}
static void NOINLINE send_system_time(mavlink_channel_t chan)
{
mavlink_msg_system_time_send(
chan,
g_gps->time_epoch_usec(),
hal.scheduler->millis());
}
#if HIL_MODE != HIL_MODE_DISABLED
void NOINLINE send_servo_out(mavlink_channel_t chan)
{
// normalized values scaled to -10000 to 10000
// This is used for HIL. Do not change without discussing with
// HIL maintainers
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
10000 * channel_roll->norm_output(),
10000 * channel_pitch->norm_output(),
10000 * channel_throttle->norm_output(),
10000 * channel_rudder->norm_output(),
0,
0,
0,
0,
receiver_rssi);
}
#endif
static void NOINLINE send_radio_in(mavlink_channel_t chan)
{
mavlink_msg_rc_channels_raw_send(
chan,
millis(),
0, // port
hal.rcin->read(CH_1),
hal.rcin->read(CH_2),
hal.rcin->read(CH_3),
hal.rcin->read(CH_4),
hal.rcin->read(CH_5),
hal.rcin->read(CH_6),
hal.rcin->read(CH_7),
hal.rcin->read(CH_8),
receiver_rssi);
}
static void NOINLINE send_radio_out(mavlink_channel_t chan)
{
#if HIL_MODE != HIL_MODE_DISABLED
if (!g.hil_servos) {
mavlink_msg_servo_output_raw_send(
chan,
micros(),
0, // port
RC_Channel::rc_channel(0)->radio_out,
RC_Channel::rc_channel(1)->radio_out,
RC_Channel::rc_channel(2)->radio_out,
RC_Channel::rc_channel(3)->radio_out,
RC_Channel::rc_channel(4)->radio_out,
RC_Channel::rc_channel(5)->radio_out,
RC_Channel::rc_channel(6)->radio_out,
RC_Channel::rc_channel(7)->radio_out);
return;
}
#endif
mavlink_msg_servo_output_raw_send(
chan,
micros(),
0, // port
hal.rcout->read(0),
hal.rcout->read(1),
hal.rcout->read(2),
hal.rcout->read(3),
hal.rcout->read(4),
hal.rcout->read(5),
hal.rcout->read(6),
hal.rcout->read(7));
}
static void NOINLINE send_vfr_hud(mavlink_channel_t chan)
{
float aspeed;
if (airspeed.enabled()) {
aspeed = airspeed.get_airspeed();
} else if (!ahrs.airspeed_estimate(&aspeed)) {
aspeed = 0;
}
float throttle_norm = channel_throttle->norm_output() * 100;
throttle_norm = constrain_int16(throttle_norm, -100, 100);
uint16_t throttle = ((uint16_t)(throttle_norm + 100)) / 2;
mavlink_msg_vfr_hud_send(
chan,
aspeed,
(float)g_gps->ground_speed_cm * 0.01f,
(ahrs.yaw_sensor / 100) % 360,
throttle,
current_loc.alt / 100.0,
barometer.get_climb_rate());
}
static void NOINLINE send_raw_imu1(mavlink_channel_t chan)
{
const Vector3f &accel = ins.get_accel();
const Vector3f &gyro = ins.get_gyro();
const Vector3f &mag = compass.get_field();
mavlink_msg_raw_imu_send(
chan,
micros(),
accel.x * 1000.0 / GRAVITY_MSS,
accel.y * 1000.0 / GRAVITY_MSS,
accel.z * 1000.0 / GRAVITY_MSS,
gyro.x * 1000.0,
gyro.y * 1000.0,
gyro.z * 1000.0,
mag.x,
mag.y,
mag.z);
if (ins.get_gyro_count() <= 1 &&
ins.get_accel_count() <= 1 &&
compass.get_count() <= 1) {
return;
}
const Vector3f &accel2 = ins.get_accel(1);
const Vector3f &gyro2 = ins.get_gyro(1);
const Vector3f &mag2 = compass.get_field(1);
mavlink_msg_scaled_imu2_send(
chan,
millis(),
accel2.x * 1000.0f / GRAVITY_MSS,
accel2.y * 1000.0f / GRAVITY_MSS,
accel2.z * 1000.0f / GRAVITY_MSS,
gyro2.x * 1000.0f,
gyro2.y * 1000.0f,
gyro2.z * 1000.0f,
mag2.x,
mag2.y,
mag2.z);
}
static void NOINLINE send_raw_imu2(mavlink_channel_t chan)
{
float pressure = barometer.get_pressure();
mavlink_msg_scaled_pressure_send(
chan,
millis(),
pressure*0.01f, // hectopascal
(pressure - barometer.get_ground_pressure())*0.01f, // hectopascal
barometer.get_temperature()*100); // 0.01 degrees C
}
static void NOINLINE send_raw_imu3(mavlink_channel_t chan)
{
// run this message at a much lower rate - otherwise it
// pointlessly wastes quite a lot of bandwidth
static uint8_t counter;
if (counter++ < 10) {
return;
}
counter = 0;
Vector3f mag_offsets = compass.get_offsets();
Vector3f accel_offsets = ins.get_accel_offsets();
Vector3f gyro_offsets = ins.get_gyro_offsets();
mavlink_msg_sensor_offsets_send(chan,
mag_offsets.x,
mag_offsets.y,
mag_offsets.z,
compass.get_declination(),
barometer.get_pressure(),
barometer.get_temperature()*100,
gyro_offsets.x,
gyro_offsets.y,
gyro_offsets.z,
accel_offsets.x,
accel_offsets.y,
accel_offsets.z);
}
static void NOINLINE send_ahrs(mavlink_channel_t chan)
{
const Vector3f &omega_I = ahrs.get_gyro_drift();
mavlink_msg_ahrs_send(
chan,
omega_I.x,
omega_I.y,
omega_I.z,
0,
0,
ahrs.get_error_rp(),
ahrs.get_error_yaw());
}
#if HIL_MODE != HIL_MODE_DISABLED
/*
keep last HIL_STATE message to allow sending SIM_STATE
*/
static mavlink_hil_state_t last_hil_state;
#endif
// report simulator state
static void NOINLINE send_simstate(mavlink_channel_t chan)
{
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
sitl.simstate_send(chan);
#elif HIL_MODE != HIL_MODE_DISABLED
mavlink_msg_simstate_send(chan,
last_hil_state.roll,
last_hil_state.pitch,
last_hil_state.yaw,
last_hil_state.xacc*0.001*GRAVITY_MSS,
last_hil_state.yacc*0.001*GRAVITY_MSS,
last_hil_state.zacc*0.001*GRAVITY_MSS,
last_hil_state.rollspeed,
last_hil_state.pitchspeed,
last_hil_state.yawspeed,
last_hil_state.lat,
last_hil_state.lon);
#endif
}
// report NavEKF state
static void NOINLINE send_ekf(mavlink_channel_t chan)
{
#if AP_AHRS_NAVEKF_AVAILABLE
Vector3f euler;
struct Location loc;
if (ahrs.get_secondary_attitude(euler) && ahrs.get_secondary_position(loc)) {
mavlink_msg_ahrs2_send(chan,
euler.x,
euler.y,
euler.z,
loc.alt*1.0e-2f,
loc.lat,
loc.lng);
}
#endif
}
static void NOINLINE send_hwstatus(mavlink_channel_t chan)
{
mavlink_msg_hwstatus_send(
chan,
hal.analogin->board_voltage()*1000,
hal.i2c->lockup_count());
}
static void NOINLINE send_wind(mavlink_channel_t chan)
{
Vector3f wind = ahrs.wind_estimate();
mavlink_msg_wind_send(
chan,
degrees(atan2f(-wind.y, -wind.x)), // use negative, to give
// direction wind is coming from
wind.length(),
wind.z);
}
static void NOINLINE send_rangefinder(mavlink_channel_t chan)
{
if (!sonar.enabled()) {
// no sonar to report
return;
}
mavlink_msg_rangefinder_send(
chan,
sonar.distance_cm() * 0.01f,
sonar.voltage());
}
static void NOINLINE send_current_waypoint(mavlink_channel_t chan)
{
mavlink_msg_mission_current_send(
chan,
g.command_index);
}
static void NOINLINE send_statustext(mavlink_channel_t chan)
{
mavlink_statustext_t *s = &gcs[chan-MAVLINK_COMM_0].pending_status;
mavlink_msg_statustext_send(
chan,
s->severity,
s->text);
}
// are we still delaying telemetry to try to avoid Xbee bricking?
static bool telemetry_delayed(mavlink_channel_t chan)
{
uint32_t tnow = millis() >> 10;
if (tnow > (uint32_t)g.telem_delay) {
return false;
}
if (chan == MAVLINK_COMM_0 && hal.gpio->usb_connected()) {
// this is USB telemetry, so won't be an Xbee
return false;
}
// we're either on the 2nd UART, or no USB cable is connected
// we need to delay telemetry by the TELEM_DELAY time
return true;
}
// try to send a message, return false if it won't fit in the serial tx buffer
static bool mavlink_try_send_message(mavlink_channel_t chan, enum ap_message id)
{
int16_t payload_space = comm_get_txspace(chan) - MAVLINK_NUM_NON_PAYLOAD_BYTES;
if (telemetry_delayed(chan)) {
return false;
}
// if we don't have at least 1ms remaining before the main loop
// wants to fire then don't send a mavlink message. We want to
// prioritise the main flight control loop over communications
if (!in_mavlink_delay && scheduler.time_available_usec() < 1200) {
gcs_out_of_time = true;
return false;
}
switch (id) {
case MSG_HEARTBEAT:
CHECK_PAYLOAD_SIZE(HEARTBEAT);
gcs[chan-MAVLINK_COMM_0].last_heartbeat_time = hal.scheduler->millis();
send_heartbeat(chan);
return true;
case MSG_EXTENDED_STATUS1:
CHECK_PAYLOAD_SIZE(SYS_STATUS);
send_extended_status1(chan);
CHECK_PAYLOAD_SIZE(POWER_STATUS);
gcs[chan-MAVLINK_COMM_0].send_power_status();
break;
case MSG_EXTENDED_STATUS2:
CHECK_PAYLOAD_SIZE(MEMINFO);
gcs[chan-MAVLINK_COMM_0].send_meminfo();
break;
case MSG_ATTITUDE:
CHECK_PAYLOAD_SIZE(ATTITUDE);
send_attitude(chan);
break;
case MSG_LOCATION:
CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT);
send_location(chan);
break;
case MSG_NAV_CONTROLLER_OUTPUT:
if (control_mode != MANUAL) {
CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT);
send_nav_controller_output(chan);
}
break;
case MSG_GPS_RAW:
CHECK_PAYLOAD_SIZE(GPS_RAW_INT);
send_gps_raw(chan);
break;
case MSG_SYSTEM_TIME:
CHECK_PAYLOAD_SIZE(SYSTEM_TIME);
send_system_time(chan);
break;
case MSG_SERVO_OUT:
#if HIL_MODE != HIL_MODE_DISABLED
CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED);
send_servo_out(chan);
#endif
break;
case MSG_RADIO_IN:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW);
send_radio_in(chan);
break;
case MSG_RADIO_OUT:
CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW);
send_radio_out(chan);
break;
case MSG_VFR_HUD:
CHECK_PAYLOAD_SIZE(VFR_HUD);
send_vfr_hud(chan);
break;
case MSG_RAW_IMU1:
CHECK_PAYLOAD_SIZE(RAW_IMU);
send_raw_imu1(chan);
break;
case MSG_RAW_IMU2:
CHECK_PAYLOAD_SIZE(SCALED_PRESSURE);
send_raw_imu2(chan);
break;
case MSG_RAW_IMU3:
CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS);
send_raw_imu3(chan);
break;
case MSG_CURRENT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_CURRENT);
send_current_waypoint(chan);
break;
case MSG_NEXT_PARAM:
CHECK_PAYLOAD_SIZE(PARAM_VALUE);
gcs[chan-MAVLINK_COMM_0].queued_param_send();
break;
case MSG_NEXT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_REQUEST);
gcs[chan-MAVLINK_COMM_0].queued_waypoint_send();
break;
case MSG_STATUSTEXT:
CHECK_PAYLOAD_SIZE(STATUSTEXT);
send_statustext(chan);
break;
#if GEOFENCE_ENABLED == ENABLED
case MSG_FENCE_STATUS:
CHECK_PAYLOAD_SIZE(FENCE_STATUS);
send_fence_status(chan);
break;
#endif
case MSG_AHRS:
CHECK_PAYLOAD_SIZE(AHRS);
send_ahrs(chan);
break;
case MSG_SIMSTATE:
CHECK_PAYLOAD_SIZE(SIMSTATE);
send_simstate(chan);
CHECK_PAYLOAD_SIZE(AHRS2);
send_ekf(chan);
break;
case MSG_HWSTATUS:
CHECK_PAYLOAD_SIZE(HWSTATUS);
send_hwstatus(chan);
break;
case MSG_RANGEFINDER:
CHECK_PAYLOAD_SIZE(RANGEFINDER);
send_rangefinder(chan);
break;
case MSG_WIND:
CHECK_PAYLOAD_SIZE(WIND);
send_wind(chan);
break;
case MSG_RETRY_DEFERRED:
break; // just here to prevent a warning
case MSG_LIMITS_STATUS:
// unused
break;
}
return true;
}
#define MAX_DEFERRED_MESSAGES MSG_RETRY_DEFERRED
static struct mavlink_queue {
enum ap_message deferred_messages[MAX_DEFERRED_MESSAGES];
uint8_t next_deferred_message;
uint8_t num_deferred_messages;
} mavlink_queue[MAVLINK_COMM_NUM_BUFFERS];
// send a message using mavlink
static void mavlink_send_message(mavlink_channel_t chan, enum ap_message id)
{
uint8_t i, nextid;
struct mavlink_queue *q = &mavlink_queue[(uint8_t)chan];
// see if we can send the deferred messages, if any
while (q->num_deferred_messages != 0) {
if (!mavlink_try_send_message(chan,
q->deferred_messages[q->next_deferred_message])) {
break;
}
q->next_deferred_message++;
if (q->next_deferred_message == MAX_DEFERRED_MESSAGES) {
q->next_deferred_message = 0;
}
q->num_deferred_messages--;
}
if (id == MSG_RETRY_DEFERRED) {
return;
}
// this message id might already be deferred
for (i=0, nextid = q->next_deferred_message; i < q->num_deferred_messages; i++) {
if (q->deferred_messages[nextid] == id) {
// its already deferred, discard
return;
}
nextid++;
if (nextid == MAX_DEFERRED_MESSAGES) {
nextid = 0;
}
}
if (q->num_deferred_messages != 0 ||
!mavlink_try_send_message(chan, id)) {
// can't send it now, so defer it
if (q->num_deferred_messages == MAX_DEFERRED_MESSAGES) {
// the defer buffer is full, discard
return;
}
nextid = q->next_deferred_message + q->num_deferred_messages;
if (nextid >= MAX_DEFERRED_MESSAGES) {
nextid -= MAX_DEFERRED_MESSAGES;
}
q->deferred_messages[nextid] = id;
q->num_deferred_messages++;
}
}
void mavlink_send_text(mavlink_channel_t chan, gcs_severity severity, const char *str)
{
if (telemetry_delayed(chan)) {
return;
}
if (severity == SEVERITY_LOW) {
// send via the deferred queuing system
mavlink_statustext_t *s = &gcs[chan-MAVLINK_COMM_0].pending_status;
s->severity = (uint8_t)severity;
strncpy((char *)s->text, str, sizeof(s->text));
mavlink_send_message(chan, MSG_STATUSTEXT);
} else {
// send immediately
mavlink_msg_statustext_send(chan, severity, str);
}
}
/*
default stream rates to 1Hz
*/
const AP_Param::GroupInfo GCS_MAVLINK::var_info[] PROGMEM = {
// @Param: RAW_SENS
// @DisplayName: Raw sensor stream rate
// @Description: Raw sensor stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 1),
// @Param: EXT_STAT
// @DisplayName: Extended status stream rate to ground station
// @Description: Extended status stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 1),
// @Param: RC_CHAN
// @DisplayName: RC Channel stream rate to ground station
// @Description: RC Channel stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 1),
// @Param: RAW_CTRL
// @DisplayName: Raw Control stream rate to ground station
// @Description: Raw Control stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 1),
// @Param: POSITION
// @DisplayName: Position stream rate to ground station
// @Description: Position stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 1),
// @Param: EXTRA1
// @DisplayName: Extra data type 1 stream rate to ground station
// @Description: Extra data type 1 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 1),
// @Param: EXTRA2
// @DisplayName: Extra data type 2 stream rate to ground station
// @Description: Extra data type 2 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 1),
// @Param: EXTRA3
// @DisplayName: Extra data type 3 stream rate to ground station
// @Description: Extra data type 3 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 1),
// @Param: PARAMS
// @DisplayName: Parameter stream rate to ground station
// @Description: Parameter stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 10),
AP_GROUPEND
};
void
GCS_MAVLINK::update(void)
{
// receive new packets
mavlink_message_t msg;
mavlink_status_t status;
status.packet_rx_drop_count = 0;
// process received bytes
uint16_t nbytes = comm_get_available(chan);
for (uint16_t i=0; i<nbytes; i++)
{
uint8_t c = comm_receive_ch(chan);
#if CLI_ENABLED == ENABLED
/* allow CLI to be started by hitting enter 3 times, if no
* heartbeat packets have been received */
if (mavlink_active == 0 && (millis() - _cli_timeout) < 20000 &&
comm_is_idle(chan)) {
if (c == '\n' || c == '\r') {
crlf_count++;
} else {
crlf_count = 0;
}
if (crlf_count == 3) {
run_cli(_port);
}
}
#endif
// Try to get a new message
if (mavlink_parse_char(chan, c, &msg, &status)) {
// we exclude radio packets to make it possible to use the
// CLI over the radio
if (msg.msgid != MAVLINK_MSG_ID_RADIO && msg.msgid != MAVLINK_MSG_ID_RADIO_STATUS) {
mavlink_active = true;
}
handleMessage(&msg);
}
}
if (!waypoint_receiving) {
return;
}
uint32_t tnow = millis();
if (waypoint_receiving &&
waypoint_request_i <= waypoint_request_last &&
tnow > waypoint_timelast_request + 500 + (stream_slowdown*20)) {
waypoint_timelast_request = tnow;
send_message(MSG_NEXT_WAYPOINT);
}
// stop waypoint receiving if timeout
if (waypoint_receiving && (millis() - waypoint_timelast_receive) > waypoint_receive_timeout) {
waypoint_receiving = false;
}
}
// see if we should send a stream now. Called at 50Hz
bool GCS_MAVLINK::stream_trigger(enum streams stream_num)
{
if (stream_num >= NUM_STREAMS) {
return false;
}
float rate = (uint8_t)streamRates[stream_num].get();
// send at a much lower rate while handling waypoints and
// parameter sends
if ((stream_num != STREAM_PARAMS) &&
(waypoint_receiving || _queued_parameter != NULL)) {
rate *= 0.25;
}
if (rate <= 0) {
return false;
}
if (stream_ticks[stream_num] == 0) {
// we're triggering now, setup the next trigger point
if (rate > 50) {
rate = 50;
}
stream_ticks[stream_num] = (50 / rate) + stream_slowdown;
return true;
}
// count down at 50Hz
stream_ticks[stream_num]--;
return false;
}
void
GCS_MAVLINK::data_stream_send(void)
{
gcs_out_of_time = false;
if (!in_mavlink_delay) {
handle_log_send(DataFlash);
}
if (_queued_parameter != NULL) {
if (streamRates[STREAM_PARAMS].get() <= 0) {
streamRates[STREAM_PARAMS].set(10);
}
if (stream_trigger(STREAM_PARAMS)) {
send_message(MSG_NEXT_PARAM);
}
}
if (gcs_out_of_time) return;
if (in_mavlink_delay) {
#if HIL_MODE != HIL_MODE_DISABLED
// in HIL we need to keep sending servo values to ensure
// the simulator doesn't pause, otherwise our sensor
// calibration could stall
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
}
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_RADIO_OUT);
}
#endif
// don't send any other stream types while in the delay callback
return;
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_RAW_SENSORS)) {
send_message(MSG_RAW_IMU1);
send_message(MSG_RAW_IMU2);
send_message(MSG_RAW_IMU3);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTENDED_STATUS)) {
send_message(MSG_EXTENDED_STATUS1);
send_message(MSG_EXTENDED_STATUS2);
send_message(MSG_CURRENT_WAYPOINT);
send_message(MSG_GPS_RAW);
send_message(MSG_NAV_CONTROLLER_OUTPUT);
send_message(MSG_FENCE_STATUS);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_POSITION)) {
// sent with GPS read
send_message(MSG_LOCATION);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_RADIO_OUT);
send_message(MSG_RADIO_IN);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTRA1)) {
send_message(MSG_ATTITUDE);
send_message(MSG_SIMSTATE);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTRA2)) {
send_message(MSG_VFR_HUD);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTRA3)) {
send_message(MSG_AHRS);
send_message(MSG_HWSTATUS);
send_message(MSG_WIND);
send_message(MSG_RANGEFINDER);
send_message(MSG_SYSTEM_TIME);
}
}
void
GCS_MAVLINK::send_message(enum ap_message id)
{
mavlink_send_message(chan, id);
}
void
GCS_MAVLINK::send_text_P(gcs_severity severity, const prog_char_t *str)
{
mavlink_statustext_t m;
uint8_t i;
for (i=0; i<sizeof(m.text); i++) {
m.text[i] = pgm_read_byte((const prog_char *)(str++));
if (m.text[i] == '\0') {
break;
}
}
if (i < sizeof(m.text)) m.text[i] = 0;
mavlink_send_text(chan, severity, (const char *)m.text);
}
void GCS_MAVLINK::handleMessage(mavlink_message_t* msg)
{
struct Location tell_command = {}; // command for telemetry
switch (msg->msgid) {
case MAVLINK_MSG_ID_REQUEST_DATA_STREAM:
{
// decode
mavlink_request_data_stream_t packet;
mavlink_msg_request_data_stream_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
int16_t freq = 0; // packet frequency
if (packet.start_stop == 0)
freq = 0; // stop sending
else if (packet.start_stop == 1)
freq = packet.req_message_rate; // start sending
else
break;
switch (packet.req_stream_id) {
case MAV_DATA_STREAM_ALL:
// note that we don't set STREAM_PARAMS - that is internal only
for (uint8_t i=0; i<STREAM_PARAMS; i++) {
streamRates[i].set_and_save_ifchanged(freq);
}
break;
case MAV_DATA_STREAM_RAW_SENSORS:
streamRates[STREAM_RAW_SENSORS].set_and_save_ifchanged(freq);
break;
case MAV_DATA_STREAM_EXTENDED_STATUS:
streamRates[STREAM_EXTENDED_STATUS].set_and_save_ifchanged(freq);
break;
case MAV_DATA_STREAM_RC_CHANNELS:
streamRates[STREAM_RC_CHANNELS].set_and_save_ifchanged(freq);
break;
case MAV_DATA_STREAM_RAW_CONTROLLER:
streamRates[STREAM_RAW_CONTROLLER].set_and_save_ifchanged(freq);
break;
case MAV_DATA_STREAM_POSITION:
streamRates[STREAM_POSITION].set_and_save_ifchanged(freq);
break;
case MAV_DATA_STREAM_EXTRA1:
streamRates[STREAM_EXTRA1].set_and_save_ifchanged(freq);
break;
case MAV_DATA_STREAM_EXTRA2:
streamRates[STREAM_EXTRA2].set_and_save_ifchanged(freq);
break;
case MAV_DATA_STREAM_EXTRA3:
streamRates[STREAM_EXTRA3].set_and_save_ifchanged(freq);
break;
}
break;
}
case MAVLINK_MSG_ID_COMMAND_LONG:
{
// decode
mavlink_command_long_t packet;
mavlink_msg_command_long_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) break;
uint8_t result = MAV_RESULT_UNSUPPORTED;
// do command
send_text_P(SEVERITY_LOW,PSTR("command received: "));
switch(packet.command) {
case MAV_CMD_NAV_LOITER_UNLIM:
set_mode(LOITER);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
set_mode(RTL);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_MISSION_START:
set_mode(AUTO);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_PREFLIGHT_CALIBRATION:
if (packet.param1 == 1 ||
packet.param2 == 1) {
startup_INS_ground(true);
} else if (packet.param3 == 1) {
init_barometer();
if (airspeed.enabled()) {
zero_airspeed();
}
}
if (packet.param4 == 1) {
trim_radio();
}
#if !defined( __AVR_ATmega1280__ )
if (packet.param5 == 1) {
float trim_roll, trim_pitch;
AP_InertialSensor_UserInteract_MAVLink interact(chan);
if(ins.calibrate_accel(&interact, trim_roll, trim_pitch)) {
// reset ahrs's trim to suggested values from calibration routine
ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
}
}
#endif
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_COMPONENT_ARM_DISARM:
if (packet.target_component == MAV_COMP_ID_SYSTEM_CONTROL) {
if (packet.param1 == 1.0f) {
// run pre_arm_checks and arm_checks and display failures
if (arming.arm(AP_Arming::MAVLINK)) {
//only log if arming was successful
channel_throttle->enable_out();
Log_Arm_Disarm();
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
} else if (packet.param1 == 0.0f) {
if (arming.disarm()) {
if (arming.arming_required() == AP_Arming::YES_ZERO_PWM) {
channel_throttle->disable_out();
}
// reset the mission on disarm
change_command(0);
//only log if disarming was successful
Log_Arm_Disarm();
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
} else {
result = MAV_RESULT_UNSUPPORTED;
}
} else {
result = MAV_RESULT_UNSUPPORTED;
}
break;
case MAV_CMD_DO_SET_MODE:
switch ((uint16_t)packet.param1) {
case MAV_MODE_MANUAL_ARMED:
case MAV_MODE_MANUAL_DISARMED:
set_mode(MANUAL);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_MODE_AUTO_ARMED:
case MAV_MODE_AUTO_DISARMED:
set_mode(AUTO);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_MODE_STABILIZE_DISARMED:
case MAV_MODE_STABILIZE_ARMED:
set_mode(FLY_BY_WIRE_A);
result = MAV_RESULT_ACCEPTED;
break;
default:
result = MAV_RESULT_UNSUPPORTED;
}
break;
case MAV_CMD_DO_SET_SERVO:
if (ServoRelayEvents.do_set_servo(packet.param1, packet.param2)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_REPEAT_SERVO:
if (ServoRelayEvents.do_repeat_servo(packet.param1, packet.param2, packet.param3, packet.param4*1000)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_SET_RELAY:
if (ServoRelayEvents.do_set_relay(packet.param1, packet.param2)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_REPEAT_RELAY:
if (ServoRelayEvents.do_repeat_relay(packet.param1, packet.param2, packet.param3*1000)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN:
if (packet.param1 == 1 || packet.param1 == 3) {
// when packet.param1 == 3 we reboot to hold in bootloader
hal.scheduler->reboot(packet.param1 == 3);
result = MAV_RESULT_ACCEPTED;
}
break;
default:
break;
}
mavlink_msg_command_ack_send(
chan,
packet.command,
result);
break;
}
case MAVLINK_MSG_ID_SET_MODE:
{
// decode
mavlink_set_mode_t packet;
mavlink_msg_set_mode_decode(msg, &packet);
if (!(packet.base_mode & MAV_MODE_FLAG_CUSTOM_MODE_ENABLED)) {
// we ignore base_mode as there is no sane way to map
// from that bitmap to a APM flight mode. We rely on
// custom_mode instead.
break;
}
switch (packet.custom_mode) {
case MANUAL:
case CIRCLE:
case STABILIZE:
case TRAINING:
case ACRO:
case FLY_BY_WIRE_A:
case FLY_BY_WIRE_B:
case CRUISE:
case AUTO:
case RTL:
case LOITER:
set_mode((enum FlightMode)packet.custom_mode);
break;
}
break;
}
case MAVLINK_MSG_ID_MISSION_REQUEST_LIST:
{
// decode
mavlink_mission_request_list_t packet;
mavlink_msg_mission_request_list_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
// Start sending waypoints
mavlink_msg_mission_count_send(
chan,msg->sysid,
msg->compid,
g.command_total + 1); // + home
waypoint_receiving = false;
waypoint_dest_sysid = msg->sysid;
waypoint_dest_compid = msg->compid;
break;
}
// XXX read a WP from EEPROM and send it to the GCS
case MAVLINK_MSG_ID_MISSION_REQUEST:
{
// decode
mavlink_mission_request_t packet;
mavlink_msg_mission_request_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
// send waypoint
tell_command = get_cmd_with_index_raw(packet.seq);
// set frame of waypoint
uint8_t frame;
if (tell_command.options & MASK_OPTIONS_RELATIVE_ALT) {
frame = MAV_FRAME_GLOBAL_RELATIVE_ALT; // reference frame
} else {
frame = MAV_FRAME_GLOBAL; // reference frame
}
float param1 = 0, param2 = 0, param3 = 0, param4 = 0;
// time that the mav should loiter in milliseconds
uint8_t current = 0; // 1 (true), 0 (false)
if (packet.seq == (uint16_t)g.command_index)
current = 1;
uint8_t autocontinue = 1; // 1 (true), 0 (false)
float x = 0, y = 0, z = 0;
if (tell_command.id < MAV_CMD_NAV_LAST || tell_command.id == MAV_CMD_CONDITION_CHANGE_ALT) {
// command needs scaling
x = tell_command.lat/1.0e7; // local (x), global (latitude)
y = tell_command.lng/1.0e7; // local (y), global (longitude)
z = tell_command.alt/1.0e2;
}
switch (tell_command.id) { // Switch to map APM command fields inot MAVLink command fields
case MAV_CMD_NAV_LOITER_TIME:
case MAV_CMD_NAV_LOITER_TURNS:
if (tell_command.options & MASK_OPTIONS_LOITER_DIRECTION) {
param3 = -abs(g.loiter_radius);
} else {
param3 = abs(g.loiter_radius);
}
case MAV_CMD_NAV_TAKEOFF:
case MAV_CMD_DO_SET_HOME:
param1 = tell_command.p1;
break;
case MAV_CMD_NAV_LOITER_UNLIM:
if (tell_command.options & MASK_OPTIONS_LOITER_DIRECTION) {
param3 = -abs(g.loiter_radius);
} else {
param3 = abs(g.loiter_radius);
}
break;
case MAV_CMD_CONDITION_CHANGE_ALT:
x=0; // Clear fields loaded above that we don't want sent for this command
y=0;
case MAV_CMD_CONDITION_DELAY:
case MAV_CMD_CONDITION_DISTANCE:
param1 = tell_command.lat;
break;
case MAV_CMD_DO_JUMP:
param2 = tell_command.lat;
param1 = tell_command.p1;
break;
case MAV_CMD_DO_REPEAT_SERVO:
param4 = tell_command.lng*0.001f; // time
param3 = tell_command.lat; // repeat
param2 = tell_command.alt; // pwm
param1 = tell_command.p1; // channel
break;
case MAV_CMD_DO_REPEAT_RELAY:
param3 = tell_command.lat*0.001f; // time
param2 = tell_command.alt; // count
param1 = tell_command.p1; // relay number
break;
case MAV_CMD_DO_CHANGE_SPEED:
param3 = tell_command.lat;
param2 = tell_command.alt;
param1 = tell_command.p1;
break;
case MAV_CMD_DO_SET_PARAMETER:
case MAV_CMD_DO_SET_RELAY:
case MAV_CMD_DO_SET_SERVO:
param2 = tell_command.alt;
param1 = tell_command.p1;
break;
case MAV_CMD_DO_SET_CAM_TRIGG_DIST:
param1 = tell_command.alt;
break;
}
mavlink_msg_mission_item_send(chan,msg->sysid,
msg->compid,
packet.seq,
frame,
tell_command.id,
current,
autocontinue,
param1,
param2,
param3,
param4,
x,
y,
z);
break;
}
case MAVLINK_MSG_ID_MISSION_ACK:
{
// decode
mavlink_mission_ack_t packet;
mavlink_msg_mission_ack_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_LIST:
{
// decode
mavlink_param_request_list_t packet;
mavlink_msg_param_request_list_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// mark the firmware version in the tlog
send_text_P(SEVERITY_LOW, PSTR(FIRMWARE_STRING));
#if defined(PX4_GIT_VERSION) && defined(NUTTX_GIT_VERSION)
send_text_P(SEVERITY_LOW, PSTR("PX4: " PX4_GIT_VERSION " NuttX: " NUTTX_GIT_VERSION));
#endif
// send system ID if we can
char sysid[40];
if (hal.util->get_system_id(sysid)) {
mavlink_send_text(chan, SEVERITY_LOW, sysid);
}
// Start sending parameters - next call to ::update will kick the first one out
_queued_parameter = AP_Param::first(&_queued_parameter_token, &_queued_parameter_type);
_queued_parameter_index = 0;
_queued_parameter_count = _count_parameters();
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_READ:
{
// decode
mavlink_param_request_read_t packet;
mavlink_msg_param_request_read_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
enum ap_var_type p_type;
AP_Param *vp;
char param_name[AP_MAX_NAME_SIZE+1];
if (packet.param_index != -1) {
AP_Param::ParamToken token;
vp = AP_Param::find_by_index(packet.param_index, &p_type, &token);
if (vp == NULL) {
gcs_send_text_fmt(PSTR("Unknown parameter index %d"), packet.param_index);
break;
}
vp->copy_name_token(token, param_name, AP_MAX_NAME_SIZE, true);
param_name[AP_MAX_NAME_SIZE] = 0;
} else {
strncpy(param_name, packet.param_id, AP_MAX_NAME_SIZE);
param_name[AP_MAX_NAME_SIZE] = 0;
vp = AP_Param::find(param_name, &p_type);
if (vp == NULL) {
gcs_send_text_fmt(PSTR("Unknown parameter %.16s"), packet.param_id);
break;
}
}
float value = vp->cast_to_float(p_type);
mavlink_msg_param_value_send(
chan,
param_name,
value,
mav_var_type(p_type),
_count_parameters(),
packet.param_index);
break;
}
case MAVLINK_MSG_ID_MISSION_CLEAR_ALL:
{
// decode
mavlink_mission_clear_all_t packet;
mavlink_msg_mission_clear_all_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) break;
// clear all commands
g.command_total.set_and_save(0);
// note that we don't send multiple acks, as otherwise a
// GCS that is doing a clear followed by a set may see
// the additional ACKs as ACKs of the set operations
mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, MAV_MISSION_ACCEPTED);
break;
}
case MAVLINK_MSG_ID_MISSION_SET_CURRENT:
{
// decode
mavlink_mission_set_current_t packet;
mavlink_msg_mission_set_current_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// set current command
change_command(packet.seq);
mavlink_msg_mission_current_send(chan, g.command_index);
break;
}
case MAVLINK_MSG_ID_MISSION_COUNT:
{
// decode
mavlink_mission_count_t packet;
mavlink_msg_mission_count_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// start waypoint receiving
if (packet.count > MAX_WAYPOINTS) {
packet.count = MAX_WAYPOINTS;
}
g.command_total.set_and_save(packet.count - 1);
waypoint_timelast_receive = millis();
waypoint_timelast_request = 0;
waypoint_receiving = true;
waypoint_request_i = 0;
waypoint_request_last= g.command_total;
break;
}
case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST:
{
// decode
mavlink_mission_write_partial_list_t packet;
mavlink_msg_mission_write_partial_list_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// start waypoint receiving
if (packet.start_index > g.command_total ||
packet.end_index > g.command_total ||
packet.end_index < packet.start_index) {
send_text_P(SEVERITY_LOW,PSTR("flight plan update rejected"));
break;
}
waypoint_timelast_receive = millis();
waypoint_timelast_request = 0;
waypoint_receiving = true;
waypoint_request_i = packet.start_index;
waypoint_request_last= packet.end_index;
break;
}
#ifdef MAVLINK_MSG_ID_SET_MAG_OFFSETS
case MAVLINK_MSG_ID_SET_MAG_OFFSETS:
{
mavlink_set_mag_offsets_t packet;
mavlink_msg_set_mag_offsets_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
compass.set_offsets(Vector3f(packet.mag_ofs_x, packet.mag_ofs_y, packet.mag_ofs_z));
break;
}
#endif
// XXX receive a WP from GCS and store in EEPROM
case MAVLINK_MSG_ID_MISSION_ITEM:
{
// decode
mavlink_mission_item_t packet;
uint8_t result = MAV_MISSION_ACCEPTED;
mavlink_msg_mission_item_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// defaults
tell_command.id = packet.command;
switch (packet.frame)
{
case MAV_FRAME_MISSION:
case MAV_FRAME_GLOBAL:
{
tell_command.lat = 1.0e7f*packet.x; // in as DD converted to * t7
tell_command.lng = 1.0e7f*packet.y; // in as DD converted to * t7
tell_command.alt = packet.z*1.0e2f; // in as m converted to cm
tell_command.options = 0; // absolute altitude
break;
}
#ifdef MAV_FRAME_LOCAL_NED
case MAV_FRAME_LOCAL_NED: // local (relative to home position)
{
tell_command.lat = 1.0e7f*ToDeg(packet.x/
(RADIUS_OF_EARTH*cosf(ToRad(home.lat/1.0e7f)))) + home.lat;
tell_command.lng = 1.0e7f*ToDeg(packet.y/RADIUS_OF_EARTH) + home.lng;
tell_command.alt = -packet.z*1.0e2f;
tell_command.options = MASK_OPTIONS_RELATIVE_ALT;
break;
}
#endif
#ifdef MAV_FRAME_LOCAL
case MAV_FRAME_LOCAL: // local (relative to home position)
{
tell_command.lat = 1.0e7f*ToDeg(packet.x/
(RADIUS_OF_EARTH*cosf(ToRad(home.lat/1.0e7f)))) + home.lat;
tell_command.lng = 1.0e7f*ToDeg(packet.y/RADIUS_OF_EARTH) + home.lng;
tell_command.alt = packet.z*1.0e2f;
tell_command.options = MASK_OPTIONS_RELATIVE_ALT;
break;
}
#endif
case MAV_FRAME_GLOBAL_RELATIVE_ALT: // absolute lat/lng, relative altitude
{
tell_command.lat = 1.0e7f * packet.x; // in as DD converted to * t7
tell_command.lng = 1.0e7f * packet.y; // in as DD converted to * t7
tell_command.alt = packet.z * 1.0e2f;
tell_command.options = MASK_OPTIONS_RELATIVE_ALT; // store altitude relative!! Always!!
break;
}
default:
result = MAV_MISSION_UNSUPPORTED_FRAME;
break;
}
if (result != MAV_MISSION_ACCEPTED) goto mission_failed;
// Switch to map APM command fields into MAVLink command fields
switch (tell_command.id) {
case MAV_CMD_NAV_LOITER_UNLIM:
if (packet.param3 < 0) {
tell_command.options |= MASK_OPTIONS_LOITER_DIRECTION;
}
case MAV_CMD_NAV_WAYPOINT:
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
case MAV_CMD_NAV_LAND:
break;
case MAV_CMD_NAV_LOITER_TURNS:
case MAV_CMD_NAV_LOITER_TIME:
if (packet.param3 < 0) {
tell_command.options |= MASK_OPTIONS_LOITER_DIRECTION;
}
case MAV_CMD_NAV_TAKEOFF:
case MAV_CMD_DO_SET_HOME:
tell_command.p1 = packet.param1;
break;
case MAV_CMD_CONDITION_CHANGE_ALT:
tell_command.lat = packet.param1;
break;
case MAV_CMD_CONDITION_DELAY:
case MAV_CMD_CONDITION_DISTANCE:
tell_command.lat = packet.param1;
break;
case MAV_CMD_DO_JUMP:
tell_command.lat = packet.param2;
tell_command.p1 = packet.param1;
break;
case MAV_CMD_DO_REPEAT_SERVO:
tell_command.lng = packet.param4*1000; // time
tell_command.lat = packet.param3; // count
tell_command.alt = packet.param2; // PWM
tell_command.p1 = packet.param1; // channel
break;
case MAV_CMD_DO_REPEAT_RELAY:
tell_command.lat = packet.param3*1000; // time
tell_command.alt = packet.param2; // count
tell_command.p1 = packet.param1; // relay number
break;
case MAV_CMD_DO_CHANGE_SPEED:
tell_command.lat = packet.param3*1000; // convert to milliseconds
tell_command.alt = packet.param2;
tell_command.p1 = packet.param1;
break;
case MAV_CMD_DO_SET_PARAMETER:
case MAV_CMD_DO_SET_RELAY:
case MAV_CMD_DO_SET_SERVO:
tell_command.alt = packet.param2;
tell_command.p1 = packet.param1;
break;
case MAV_CMD_DO_DIGICAM_CONTROL:
break;
case MAV_CMD_DO_SET_CAM_TRIGG_DIST:
// use alt so we can support 32 bit values
tell_command.alt = packet.param1;
break;
default:
result = MAV_MISSION_UNSUPPORTED;
break;
}
if (result != MAV_MISSION_ACCEPTED) goto mission_failed;
if(packet.current == 2) { //current = 2 is a flag to tell us this is a "guided mode" waypoint and not for the mission
guided_WP = tell_command;
// add home alt if needed
if (guided_WP.options & MASK_OPTIONS_RELATIVE_ALT) {
guided_WP.alt += home.alt;
}
set_mode(GUIDED);
// make any new wp uploaded instant (in case we are already in Guided mode)
set_guided_WP();
// verify we recevied the command
mavlink_msg_mission_ack_send(
chan,
msg->sysid,
msg->compid,
0);
} else if(packet.current == 3) { //current = 3 is a flag to tell us this is a alt change only
// add home alt if needed
if (tell_command.options & MASK_OPTIONS_RELATIVE_ALT) {
tell_command.alt += home.alt;
}
next_WP.alt = tell_command.alt;
// verify we recevied the command
mavlink_msg_mission_ack_send(
chan,
msg->sysid,
msg->compid,
0);
} else {
// Check if receiving waypoints (mission upload expected)
if (!waypoint_receiving) {
result = MAV_MISSION_ERROR;
goto mission_failed;
}
// check if this is the requested waypoint
if (packet.seq != waypoint_request_i) {
result = MAV_MISSION_INVALID_SEQUENCE;
goto mission_failed;
}
set_cmd_with_index(tell_command, packet.seq);
// update waypoint receiving state machine
waypoint_timelast_receive = millis();
waypoint_timelast_request = 0;
waypoint_request_i++;
if (waypoint_request_i > waypoint_request_last) {
mavlink_msg_mission_ack_send(
chan,
msg->sysid,
msg->compid,
result);
send_text_P(SEVERITY_LOW,PSTR("flight plan received"));
waypoint_receiving = false;
// XXX ignores waypoint radius for individual waypoints, can
// only set WP_RADIUS parameter
}
}
break;
mission_failed:
// we are rejecting the mission/waypoint
mavlink_msg_mission_ack_send(
chan,
msg->sysid,
msg->compid,
result);
break;
}
#if GEOFENCE_ENABLED == ENABLED
// receive a fence point from GCS and store in EEPROM
case MAVLINK_MSG_ID_FENCE_POINT: {
mavlink_fence_point_t packet;
mavlink_msg_fence_point_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
if (g.fence_action != FENCE_ACTION_NONE) {
send_text_P(SEVERITY_LOW,PSTR("fencing must be disabled"));
} else if (packet.count != g.fence_total) {
send_text_P(SEVERITY_LOW,PSTR("bad fence point"));
} else {
Vector2l point;
point.x = packet.lat*1.0e7;
point.y = packet.lng*1.0e7;
set_fence_point_with_index(point, packet.idx);
}
break;
}
// send a fence point to GCS
case MAVLINK_MSG_ID_FENCE_FETCH_POINT: {
mavlink_fence_fetch_point_t packet;
mavlink_msg_fence_fetch_point_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
if (packet.idx >= g.fence_total) {
send_text_P(SEVERITY_LOW,PSTR("bad fence point"));
} else {
Vector2l point = get_fence_point_with_index(packet.idx);
mavlink_msg_fence_point_send(chan, msg->sysid, msg->compid, packet.idx, g.fence_total,
point.x*1.0e-7, point.y*1.0e-7);
}
break;
}
#endif // GEOFENCE_ENABLED
// receive a rally point from GCS and store in EEPROM
case MAVLINK_MSG_ID_RALLY_POINT: {
mavlink_rally_point_t packet;
mavlink_msg_rally_point_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
if (packet.idx >= g.rally_total ||
packet.idx >= MAX_RALLYPOINTS) {
send_text_P(SEVERITY_LOW,PSTR("bad rally point message ID"));
break;
}
if (packet.count != g.rally_total) {
send_text_P(SEVERITY_LOW,PSTR("bad rally point message count"));
break;
}
RallyLocation rally_point;
rally_point.lat = packet.lat;
rally_point.lng = packet.lng;
rally_point.alt = packet.alt;
rally_point.break_alt = packet.break_alt;
rally_point.land_dir = packet.land_dir;
rally_point.flags = packet.flags;
set_rally_point_with_index(packet.idx, rally_point);
break;
}
//send a rally point to the GCS
case MAVLINK_MSG_ID_RALLY_FETCH_POINT: {
mavlink_rally_fetch_point_t packet;
mavlink_msg_rally_fetch_point_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
if (packet.idx > g.rally_total) {
send_text_P(SEVERITY_LOW, PSTR("bad rally point index"));
break;
}
RallyLocation rally_point;
if (!get_rally_point_with_index(packet.idx, rally_point)) {
send_text_P(SEVERITY_LOW, PSTR("failed to set rally point"));
break;
}
mavlink_msg_rally_point_send(chan, msg->sysid, msg->compid, packet.idx,
g.rally_total, rally_point.lat, rally_point.lng,
rally_point.alt, rally_point.break_alt, rally_point.land_dir,
rally_point.flags);
break;
}
case MAVLINK_MSG_ID_PARAM_SET:
{
AP_Param *vp;
enum ap_var_type var_type;
// decode
mavlink_param_set_t packet;
mavlink_msg_param_set_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
// set parameter
char key[AP_MAX_NAME_SIZE+1];
strncpy(key, (char *)packet.param_id, AP_MAX_NAME_SIZE);
key[AP_MAX_NAME_SIZE] = 0;
// find the requested parameter
vp = AP_Param::find(key, &var_type);
if ((NULL != vp) && // exists
!isnan(packet.param_value) && // not nan
!isinf(packet.param_value)) { // not inf
// add a small amount before casting parameter values
// from float to integer to avoid truncating to the
// next lower integer value.
float rounding_addition = 0.01;
// handle variables with standard type IDs
if (var_type == AP_PARAM_FLOAT) {
((AP_Float *)vp)->set_and_save(packet.param_value);
} else if (var_type == AP_PARAM_INT32) {
if (packet.param_value < 0) rounding_addition = -rounding_addition;
float v = packet.param_value+rounding_addition;
v = constrain_float(v, -2147483648.0, 2147483647.0);
((AP_Int32 *)vp)->set_and_save(v);
} else if (var_type == AP_PARAM_INT16) {
if (packet.param_value < 0) rounding_addition = -rounding_addition;
float v = packet.param_value+rounding_addition;
v = constrain_float(v, -32768, 32767);
((AP_Int16 *)vp)->set_and_save(v);
} else if (var_type == AP_PARAM_INT8) {
if (packet.param_value < 0) rounding_addition = -rounding_addition;
float v = packet.param_value+rounding_addition;
v = constrain_float(v, -128, 127);
((AP_Int8 *)vp)->set_and_save(v);
} else {
// we don't support mavlink set on this parameter
break;
}
// Report back the new value if we accepted the change
// we send the value we actually set, which could be
// different from the value sent, in case someone sent
// a fractional value to an integer type
mavlink_msg_param_value_send(
chan,
key,
vp->cast_to_float(var_type),
mav_var_type(var_type),
_count_parameters(),
-1); // XXX we don't actually know what its index is...
#if LOGGING_ENABLED == ENABLED
DataFlash.Log_Write_Parameter(key, vp->cast_to_float(var_type));
#endif
}
break;
} // end case
case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE:
{
// allow override of RC channel values for HIL
// or for complete GCS control of switch position
// and RC PWM values.
if(msg->sysid != g.sysid_my_gcs) break; // Only accept control from our gcs
mavlink_rc_channels_override_t packet;
int16_t v[8];
mavlink_msg_rc_channels_override_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component))
break;
v[0] = packet.chan1_raw;
v[1] = packet.chan2_raw;
v[2] = packet.chan3_raw;
v[3] = packet.chan4_raw;
v[4] = packet.chan5_raw;
v[5] = packet.chan6_raw;
v[6] = packet.chan7_raw;
v[7] = packet.chan8_raw;
hal.rcin->set_overrides(v, 8);
// a RC override message is consiered to be a 'heartbeat' from
// the ground station for failsafe purposes
failsafe.last_heartbeat_ms = millis();
break;
}
case MAVLINK_MSG_ID_HEARTBEAT:
{
// We keep track of the last time we received a heartbeat from
// our GCS for failsafe purposes
if (msg->sysid != g.sysid_my_gcs) break;
failsafe.last_heartbeat_ms = millis();
break;
}
#if HIL_MODE != HIL_MODE_DISABLED
case MAVLINK_MSG_ID_HIL_STATE:
{
mavlink_hil_state_t packet;
mavlink_msg_hil_state_decode(msg, &packet);
last_hil_state = packet;
float vel = pythagorous2(packet.vx, packet.vy);
float cog = wrap_360_cd(ToDeg(atan2f(packet.vy, packet.vx)) * 100);
if (g_gps != NULL) {
// set gps hil sensor
g_gps->setHIL(packet.time_usec/1000,
packet.lat*1.0e-7, packet.lon*1.0e-7, packet.alt*1.0e-3,
vel*1.0e-2, cog*1.0e-2, 0, 10);
}
// rad/sec
Vector3f gyros;
gyros.x = packet.rollspeed;
gyros.y = packet.pitchspeed;
gyros.z = packet.yawspeed;
// m/s/s
Vector3f accels;
accels.x = packet.xacc * (GRAVITY_MSS/1000.0);
accels.y = packet.yacc * (GRAVITY_MSS/1000.0);
accels.z = packet.zacc * (GRAVITY_MSS/1000.0);
ins.set_gyro(gyros);
ins.set_accel(accels);
barometer.setHIL(packet.alt*0.001f);
compass.setHIL(packet.roll, packet.pitch, packet.yaw);
airspeed.disable();
// cope with DCM getting badly off due to HIL lag
if (g.hil_err_limit > 0 &&
(fabsf(packet.roll - ahrs.roll) > ToRad(g.hil_err_limit) ||
fabsf(packet.pitch - ahrs.pitch) > ToRad(g.hil_err_limit) ||
wrap_PI(fabsf(packet.yaw - ahrs.yaw)) > ToRad(g.hil_err_limit))) {
ahrs.reset_attitude(packet.roll, packet.pitch, packet.yaw);
}
break;
}
#endif // HIL_MODE
#if CAMERA == ENABLED
case MAVLINK_MSG_ID_DIGICAM_CONFIGURE:
{
camera.configure_msg(msg);
break;
}
case MAVLINK_MSG_ID_DIGICAM_CONTROL:
{
camera.control_msg(msg);
break;
}
#endif // CAMERA == ENABLED
#if MOUNT == ENABLED
case MAVLINK_MSG_ID_MOUNT_CONFIGURE:
{
camera_mount.configure_msg(msg);
break;
}
case MAVLINK_MSG_ID_MOUNT_CONTROL:
{
camera_mount.control_msg(msg);
break;
}
case MAVLINK_MSG_ID_MOUNT_STATUS:
{
camera_mount.status_msg(msg);
break;
}
#endif // MOUNT == ENABLED
case MAVLINK_MSG_ID_RADIO:
case MAVLINK_MSG_ID_RADIO_STATUS:
{
mavlink_radio_t packet;
mavlink_msg_radio_decode(msg, &packet);
// record if the GCS has been receiving radio messages from
// the aircraft
if (packet.remrssi != 0) {
failsafe.last_radio_status_remrssi_ms = hal.scheduler->millis();
}
// use the state of the transmit buffer in the radio to
// control the stream rate, giving us adaptive software
// flow control
if (packet.txbuf < 20 && stream_slowdown < 100) {
// we are very low on space - slow down a lot
stream_slowdown += 3;
} else if (packet.txbuf < 50 && stream_slowdown < 100) {
// we are a bit low on space, slow down slightly
stream_slowdown += 1;
} else if (packet.txbuf > 95 && stream_slowdown > 10) {
// the buffer has plenty of space, speed up a lot
stream_slowdown -= 2;
} else if (packet.txbuf > 90 && stream_slowdown != 0) {
// the buffer has enough space, speed up a bit
stream_slowdown--;
}
break;
}
case MAVLINK_MSG_ID_LOG_REQUEST_DATA:
case MAVLINK_MSG_ID_LOG_ERASE:
in_log_download = true;
// fallthru
case MAVLINK_MSG_ID_LOG_REQUEST_LIST:
if (!in_mavlink_delay) {
handle_log_message(msg, DataFlash);
}
break;
case MAVLINK_MSG_ID_LOG_REQUEST_END:
in_log_download = false;
if (!in_mavlink_delay) {
handle_log_message(msg, DataFlash);
}
break;
default:
// forward unknown messages to the other link if there is one
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised && i != (uint8_t)chan) {
mavlink_channel_t out_chan = (mavlink_channel_t)i;
// only forward if it would fit in the transmit buffer
if (comm_get_txspace(out_chan) > ((uint16_t)msg->len) + MAVLINK_NUM_NON_PAYLOAD_BYTES) {
_mavlink_resend_uart(out_chan, msg);
}
}
}
break;
} // end switch
} // end handle mavlink
/*
* a delay() callback that processes MAVLink packets. We set this as the
* callback in long running library initialisation routines to allow
* MAVLink to process packets while waiting for the initialisation to
* complete
*/
static void mavlink_delay_cb()
{
static uint32_t last_1hz, last_50hz, last_5s;
if (!gcs[0].initialised || in_mavlink_delay) return;
in_mavlink_delay = true;
uint32_t tnow = millis();
if (tnow - last_1hz > 1000) {
last_1hz = tnow;
gcs_send_message(MSG_HEARTBEAT);
gcs_send_message(MSG_EXTENDED_STATUS1);
}
if (tnow - last_50hz > 20) {
last_50hz = tnow;
gcs_update();
gcs_data_stream_send();
notify.update();
}
if (tnow - last_5s > 5000) {
last_5s = tnow;
gcs_send_text_P(SEVERITY_LOW, PSTR("Initialising APM..."));
}
check_usb_mux();
in_mavlink_delay = false;
}
/*
* send a message on both GCS links
*/
static void gcs_send_message(enum ap_message id)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].send_message(id);
}
}
}
/*
* send data streams in the given rate range on both links
*/
static void gcs_data_stream_send(void)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].data_stream_send();
}
}
}
/*
* look for incoming commands on the GCS links
*/
static void gcs_update(void)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].update();
}
}
}
static void gcs_send_text_P(gcs_severity severity, const prog_char_t *str)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].send_text_P(severity, str);
}
}
#if LOGGING_ENABLED == ENABLED
DataFlash.Log_Write_Message_P(str);
#endif
}
/*
* send a low priority formatted message to the GCS
* only one fits in the queue, so if you send more than one before the
* last one gets into the serial buffer then the old one will be lost
*/
void gcs_send_text_fmt(const prog_char_t *fmt, ...)
{
va_list arg_list;
gcs[0].pending_status.severity = (uint8_t)SEVERITY_LOW;
va_start(arg_list, fmt);
hal.util->vsnprintf_P((char *)gcs[0].pending_status.text,
sizeof(gcs[0].pending_status.text), fmt, arg_list);
va_end(arg_list);
#if LOGGING_ENABLED == ENABLED
DataFlash.Log_Write_Message(gcs[0].pending_status.text);
#endif
mavlink_send_message(MAVLINK_COMM_0, MSG_STATUSTEXT);
for (uint8_t i=1; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].pending_status = gcs[0].pending_status;
mavlink_send_message((mavlink_channel_t)i, MSG_STATUSTEXT);
}
}
}
/*
send airspeed calibration data
*/
static void gcs_send_airspeed_calibration(const Vector3f &vg)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (comm_get_txspace((mavlink_channel_t)i) - MAVLINK_NUM_NON_PAYLOAD_BYTES >=
MAVLINK_MSG_ID_AIRSPEED_AUTOCAL_LEN) {
airspeed.log_mavlink_send((mavlink_channel_t)i, vg);
}
}
}
/**
retry any deferred messages
*/
static void gcs_retry_deferred(void)
{
gcs_send_message(MSG_RETRY_DEFERRED);
}