ardupilot/Tools/ArdupilotMegaPlanner/HIL/QuadCopter.cs

311 lines
11 KiB
C#

using System;
using System.Collections.Generic;
using System.Linq;
using System.Reflection;
using System.Text;
using log4net;
using YLScsDrawing.Drawing3d;
using ArdupilotMega.HIL;
namespace ArdupilotMega.HIL
{
public class Motor : Utils
{
const bool True = true;
const bool False = false;
public Motor self;
public double angle;
public bool clockwise;
public double servo;
public Motor(double angle, bool clockwise, double servo)
{
self = this;
self.angle = angle;
self.clockwise = clockwise;
self.servo = servo;
}
public static Motor[] build_motors(string frame)
{
Motor[] motors = new HIL.Motor[8];
frame = frame.ToLower();
if (frame.Contains("quad") || frame.Contains("quadx"))
{
motors = new HIL.Motor[] {
new Motor(90, False, 1),
new Motor(270, False, 2),
new Motor(0, True, 3),
new Motor(180, True, 4),
};
if (frame.Contains("quadx"))
{
foreach (int i in range(4))
motors[i].angle -= 45.0;
}
}
else if (frame.Contains("y6"))
{
motors = new HIL.Motor[] {
new Motor(60, False, 1),
new Motor(60, True, 7),
new Motor(180, True, 4),
new Motor(180, False, 8),
new Motor(-60, True, 2),
new Motor(-60, False, 3),
};
}
else if (frame.Contains("hexa") || frame.Contains("hexax"))
{
motors = new HIL.Motor[] {
new Motor(0, True, 1),
new Motor(60, False, 4),
new Motor(120, True, 8),
new Motor(180, False, 2),
new Motor(240, True, 3),
new Motor(300, False, 7),
};
}
else if (frame.Contains("hexax"))
{
motors = new HIL.Motor[] {
new Motor(30, False, 7),
new Motor(90, True, 1),
new Motor(150, False, 4),
new Motor(210, True, 8),
new Motor(270, False, 2),
new Motor(330, True, 3),
};
}
else if (frame.Contains("octa") || frame.Contains("octax"))
{
motors = new HIL.Motor[] {
new Motor(0, True, 1),
new Motor(180, True, 2),
new Motor(45, False, 3),
new Motor(135, False, 4),
new Motor(-45, False, 7),
new Motor(-135, False, 8),
new Motor(270, True, 10),
new Motor(90, True, 11),
};
if (frame.Contains("octax"))
{
foreach (int i in range(8))
motors[i].angle += 22.5;
}
}
return motors;
}
}
public class QuadCopter : Aircraft
{
private static readonly ILog log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType);
QuadCopter self;
DateTime seconds = DateTime.Now;
double[] motor_speed = null;
double hover_throttle;
double terminal_velocity;
double terminal_rotation_rate;
Motor[] motors;
Vector3 old_position;
//# scaling from total motor power to Newtons. Allows the copter
//# to hover against gravity when each motor is at hover_throttle
double thrust_scale;
DateTime last_time;
public QuadCopter(string frame = "quad")
{
self = this;
motors = Motor.build_motors(frame);
motor_speed = new double[motors.Length];
mass = 1.0;// # Kg
frame_height = 0.1;
hover_throttle = 0.37;
terminal_velocity = 30.0;
terminal_rotation_rate = 4 * (360.0 * deg2rad);
thrust_scale = (mass * gravity) / (motors.Length * hover_throttle);
last_time = DateTime.Now;
}
double scale_rc(int sn, float servo, float min, float max)
{
return ((servo - 1000) / 1000.0);
}
public void update(ref double[] servos, ArdupilotMega.GCSViews.Simulation.FGNetFDM fdm)
{
for (int i = 0; i < servos.Length; i++)
{
var servo = servos[(int)self.motors[i].servo - 1];
if (servo <= 0.0)
{
motor_speed[i] = 0;
}
else
{
motor_speed[i] = scale_rc(i, (float)servo, 0.0f, 1.0f);
//servos[i] = motor_speed[i];
}
}
double[] m = motor_speed;
//# how much time has passed?
DateTime t = DateTime.Now;
TimeSpan delta_time = t - last_time; // 0.02
last_time = t;
if (delta_time.TotalMilliseconds > 100) // somethings wrong / debug
{
delta_time = new TimeSpan(0, 0, 0, 0, 20);
}
// rotational acceleration, in degrees/s/s, in body frame
Vector3 rot_accel = new Vector3(0, 0, 0);
double thrust = 0.0;
foreach (var i in range((self.motors.Length)))
{
rot_accel.x += -radians(5000.0) * sin(radians(self.motors[i].angle)) * m[i];
rot_accel.y += radians(5000.0) * cos(radians(self.motors[i].angle)) * m[i];
if (self.motors[i].clockwise)
{
rot_accel.z -= m[i] * radians(400.0);
}
else
{
rot_accel.z += m[i] * radians(400.0);
}
thrust += m[i] * self.thrust_scale; // newtons
}
// rotational air resistance
rot_accel.x -= self.gyro.x * radians(5000.0) / self.terminal_rotation_rate;
rot_accel.y -= self.gyro.y * radians(5000.0) / self.terminal_rotation_rate;
rot_accel.z -= self.gyro.z * radians(400.0) / self.terminal_rotation_rate;
// Console.WriteLine("rot_accel " + rot_accel.ToString());
// update rotational rates in body frame
self.gyro += rot_accel * delta_time.TotalSeconds;
// Console.WriteLine("gyro " + gyro.ToString());
// update attitude
self.dcm.rotate(self.gyro * delta_time.TotalSeconds);
self.dcm.normalize();
// air resistance
Vector3 air_resistance = -self.velocity * (self.gravity / self.terminal_velocity);
accel_body = new Vector3(0, 0, -thrust / self.mass);
Vector3 accel_earth = self.dcm * accel_body;
accel_earth += new Vector3(0, 0, self.gravity);
accel_earth += air_resistance;
// add in some wind (turn force into accel by dividing by mass).
accel_earth += self.wind.drag(self.velocity) / self.mass;
// if we're on the ground, then our vertical acceleration is limited
// to zero. This effectively adds the force of the ground on the aircraft
if (self.on_ground() && accel_earth.z > 0)
accel_earth.z = 0;
// work out acceleration as seen by the accelerometers. It sees the kinematic
// acceleration (ie. real movement), plus gravity
self.accel_body = self.dcm.transposed() * (accel_earth + new Vector3(0, 0, -self.gravity));
// new velocity vector
self.velocity += accel_earth * delta_time.TotalSeconds;
if (double.IsNaN(velocity.x) || double.IsNaN(velocity.y) || double.IsNaN(velocity.z))
velocity = new Vector3();
// new position vector
old_position = self.position.copy();
self.position += self.velocity * delta_time.TotalSeconds;
if (home_latitude == 0)
{
home_latitude = fdm.latitude * rad2deg;
home_longitude = fdm.longitude * rad2deg;
home_altitude = altitude;
}
// constrain height to the ground
if (self.on_ground())
{
if (!self.on_ground(old_position))
Console.WriteLine("Hit ground at {0} m/s", (self.velocity.z));
self.velocity = new Vector3(0, 0, 0);
// zero roll/pitch, but keep yaw
double r = 0;
double p = 0;
double y = 0;
self.dcm.to_euler(ref r, ref p, ref y);
self.dcm.from_euler(0, 0, y);
self.position = new Vector3(self.position.x, self.position.y,
-(self.ground_level + self.frame_height - self.home_altitude));
}
// update lat/lon/altitude
self.update_position(delta_time.TotalSeconds);
// send to apm
MAVLink.mavlink_hil_state_t hilstate = new MAVLink.mavlink_hil_state_t();
hilstate.time_usec = (UInt64)DateTime.Now.Ticks; // microsec
hilstate.lat = (int)(latitude * 1e7); // * 1E7
hilstate.lon = (int)(longitude * 1e7); // * 1E7
hilstate.alt = (int)(altitude * 1000); // mm
self.dcm.to_euler(ref roll, ref pitch, ref yaw);
if (double.IsNaN(roll))
{
self.dcm.identity();
}
hilstate.roll = (float)roll;
hilstate.pitch = (float)pitch;
hilstate.yaw = (float)yaw;
Vector3 earth_rates = Utils.BodyRatesToEarthRates(dcm, gyro);
hilstate.rollspeed = (float)earth_rates.x;
hilstate.pitchspeed = (float)earth_rates.y;
hilstate.yawspeed = (float)earth_rates.z;
hilstate.vx = (short)(velocity.y * 100); // m/s * 100
hilstate.vy = (short)(velocity.x * 100); // m/s * 100
hilstate.vz = 0; // m/s * 100
hilstate.xacc = (short)(accelerometer.x * 1000); // (mg)
hilstate.yacc = (short)(accelerometer.y * 1000); // (mg)
hilstate.zacc = (short)(accelerometer.z * 1000); // (mg)
MainV2.comPort.sendPacket(hilstate);
}
}
}