mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-22 00:28:30 -04:00
534aee17e9
this will be used to avoid races in driver initialisation
126 lines
3.2 KiB
C++
126 lines
3.2 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include "AP_TimerProcess.h"
|
|
|
|
extern "C" {
|
|
#include <inttypes.h>
|
|
#include <stdint.h>
|
|
#include <avr/interrupt.h>
|
|
}
|
|
#if defined(ARDUINO) && ARDUINO >= 100
|
|
#include "Arduino.h"
|
|
#else
|
|
#include "WConstants.h"
|
|
#endif
|
|
|
|
uint8_t AP_TimerProcess::_period;
|
|
ap_procedure AP_TimerProcess::_proc[AP_TIMERPROCESS_MAX_PROCS];
|
|
ap_procedure AP_TimerProcess::_failsafe;
|
|
bool AP_TimerProcess::_in_timer_call;
|
|
uint8_t AP_TimerProcess::_pidx = 0;
|
|
bool AP_TimerProcess::_suspended;
|
|
|
|
AP_TimerProcess::AP_TimerProcess(uint8_t period)
|
|
{
|
|
_period = period;
|
|
}
|
|
|
|
void AP_TimerProcess::init( Arduino_Mega_ISR_Registry * isr_reg )
|
|
{
|
|
// Enable Timer2 Overflow interrupt to trigger process.
|
|
TIMSK2 = 0; // Disable interrupts
|
|
TCCR2A = 0; // normal counting mode
|
|
TCCR2B = _BV(CS21) | _BV(CS22); // Set prescaler of clk/256
|
|
TCNT2 = 0; // Set count to zero, so it goes off right away.
|
|
TIFR2 = _BV(TOV2); // clear pending interrupts;
|
|
TIMSK2 = _BV(TOIE2); // enable the overflow interrupt
|
|
|
|
_failsafe = NULL;
|
|
_suspended = false;
|
|
_in_timer_call = false;
|
|
|
|
for (uint8_t i = 0; i < AP_TIMERPROCESS_MAX_PROCS; i++)
|
|
_proc[i] = NULL;
|
|
|
|
isr_reg->register_signal( ISR_REGISTRY_TIMER2_OVF, AP_TimerProcess::run);
|
|
}
|
|
|
|
/*
|
|
register a process to be called at the timer interrupt rate
|
|
*/
|
|
void AP_TimerProcess::register_process(ap_procedure proc)
|
|
{
|
|
// see if its already registered (due to double initialisation
|
|
// of a driver)
|
|
for (uint8_t i=0; i<_pidx; i++) {
|
|
if (_proc[i] == proc) return;
|
|
}
|
|
cli();
|
|
if (_pidx < AP_TIMERPROCESS_MAX_PROCS)
|
|
_proc[_pidx++] = proc;
|
|
sei();
|
|
}
|
|
|
|
void AP_TimerProcess::set_failsafe(ap_procedure proc)
|
|
{
|
|
_failsafe = proc;
|
|
}
|
|
|
|
void AP_TimerProcess::suspend_timer(void)
|
|
{
|
|
_suspended = true;
|
|
}
|
|
|
|
void AP_TimerProcess::resume_timer(void)
|
|
{
|
|
_suspended = false;
|
|
}
|
|
|
|
void AP_TimerProcess::run(void)
|
|
{
|
|
// we enable the interrupt again immediately and also enable
|
|
// interrupts. This allows other time critical interrupts to
|
|
// run (such as the serial receive interrupt). We catch the
|
|
// timer calls taking too long using _in_timer_call.
|
|
// This approach also gives us a nice uniform spacing between
|
|
// timer calls
|
|
TCNT2 = _period;
|
|
sei();
|
|
|
|
uint32_t tnow = micros();
|
|
|
|
if (_in_timer_call) {
|
|
// the timer calls took longer than the period of the
|
|
// timer. This is bad, and may indicate a serious
|
|
// driver failure. We can't just call the drivers
|
|
// again, as we could run out of stack. So we only
|
|
// call the _failsafe call. It's job is to detect if
|
|
// the drivers or the main loop are indeed dead and to
|
|
// activate whatever failsafe it thinks may help if
|
|
// need be. We assume the failsafe code can't
|
|
// block. If it does then we will recurse and die when
|
|
// we run out of stack
|
|
if (_failsafe != NULL) {
|
|
_failsafe(tnow);
|
|
}
|
|
return;
|
|
}
|
|
_in_timer_call = true;
|
|
|
|
if (!_suspended) {
|
|
// now call the timer based drivers
|
|
for (int i = 0; i < _pidx; i++) {
|
|
if (_proc[i] != NULL) {
|
|
_proc[i](tnow);
|
|
}
|
|
}
|
|
}
|
|
|
|
// and the failsafe, if one is setup
|
|
if (_failsafe != NULL) {
|
|
_failsafe(tnow);
|
|
}
|
|
|
|
_in_timer_call = false;
|
|
}
|