ardupilot/ArduSub/system.cpp

303 lines
8.0 KiB
C++

#include "Sub.h"
#include "version.h"
/*****************************************************************************
* The init_ardupilot function processes everything we need for an in - air restart
* We will determine later if we are actually on the ground and process a
* ground start in that case.
*
*****************************************************************************/
static void mavlink_delay_cb_static()
{
sub.mavlink_delay_cb();
}
static void failsafe_check_static()
{
sub.mainloop_failsafe_check();
}
void Sub::init_ardupilot()
{
// initialise serial port
serial_manager.init_console();
hal.console->printf("\n\nInit " FIRMWARE_STRING
"\n\nFree RAM: %u\n",
(unsigned)hal.util->available_memory());
// load parameters from EEPROM
load_parameters();
BoardConfig.init();
// initialise serial port
serial_manager.init();
// init cargo gripper
#if GRIPPER_ENABLED == ENABLED
g2.gripper.init();
#endif
// initialise notify system
notify.init(true);
// initialise battery monitor
battery.init();
barometer.init();
celsius.init();
// Register the mavlink service callback. This will run
// anytime there are more than 5ms remaining in a call to
// hal.scheduler->delay.
hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5);
// setup telem slots with serial ports
for (uint8_t i = 0; i < MAVLINK_COMM_NUM_BUFFERS; i++) {
gcs_chan[i].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, i);
}
// identify ourselves correctly with the ground station
mavlink_system.sysid = g.sysid_this_mav;
#if LOGGING_ENABLED == ENABLED
log_init();
#endif
gcs().set_dataflash(&DataFlash);
init_rc_in(); // sets up rc channels from radio
init_rc_out(); // sets up motors and output to escs
init_joystick(); // joystick initialization
// initialise which outputs Servo and Relay events can use
ServoRelayEvents.set_channel_mask(~motors.get_motor_mask());
relay.init();
/*
* setup the 'main loop is dead' check. Note that this relies on
* the RC library being initialised.
*/
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);
// Do GPS init
gps.init(&DataFlash, serial_manager);
if (g.compass_enabled) {
init_compass();
}
#if OPTFLOW == ENABLED
// make optflow available to AHRS
ahrs.set_optflow(&optflow);
#endif
// init Location class
Location_Class::set_ahrs(&ahrs);
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
Location_Class::set_terrain(&terrain);
wp_nav.set_terrain(&terrain);
#endif
#if AVOIDANCE_ENABLED == ENABLED
wp_nav.set_avoidance(&avoid);
#endif
pos_control.set_dt(MAIN_LOOP_SECONDS);
// init the optical flow sensor
#if OPTFLOW == ENABLED
init_optflow();
#endif
#if MOUNT == ENABLED
// initialise camera mount
camera_mount.init(&DataFlash, serial_manager);
#endif
#ifdef USERHOOK_INIT
USERHOOK_INIT
#endif
// read Baro pressure at ground
//-----------------------------
init_barometer(false);
barometer.update();
for (uint8_t i = 0; i < barometer.num_instances(); i++) {
if (barometer.get_type(i) == AP_Baro::BARO_TYPE_WATER) {
barometer.set_primary_baro(i);
depth_sensor_idx = i;
sensor_health.depth = barometer.healthy(i);
break;
}
}
if (!sensor_health.depth) {
// We only have onboard baro
// No external underwater depth sensor detected
barometer.set_primary_baro(0);
EKF2.set_baro_alt_noise(10.0f); // Readings won't correspond with rest of INS
EKF3.set_baro_alt_noise(10.0f);
} else {
EKF2.set_baro_alt_noise(0.1f);
EKF3.set_baro_alt_noise(0.1f);
}
leak_detector.init();
last_pilot_heading = ahrs.yaw_sensor;
// initialise rangefinder
#if RANGEFINDER_ENABLED == ENABLED
init_rangefinder();
#endif
// initialise AP_RPM library
#if RPM_ENABLED == ENABLED
rpm_sensor.init();
#endif
// initialise mission library
mission.init();
// initialise DataFlash library
DataFlash.set_mission(&mission);
DataFlash.setVehicle_Startup_Log_Writer(FUNCTOR_BIND(&sub, &Sub::Log_Write_Vehicle_Startup_Messages, void));
startup_INS_ground();
// we don't want writes to the serial port to cause us to pause
// mid-flight, so set the serial ports non-blocking once we are
// ready to fly
serial_manager.set_blocking_writes_all(false);
// enable CPU failsafe
mainloop_failsafe_enable();
ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW));
ins.set_dataflash(&DataFlash);
// init vehicle capabilties
init_capabilities();
if (DataFlash.log_while_disarmed()) {
start_logging(); // create a new log if necessary
}
// disable safety if requested
BoardConfig.init_safety();
hal.console->print("\nInit complete");
// flag that initialisation has completed
ap.initialised = true;
}
//******************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//******************************************************************************
void Sub::startup_INS_ground()
{
// initialise ahrs (may push imu calibration into the mpu6000 if using that device).
ahrs.init();
ahrs.set_vehicle_class(AHRS_VEHICLE_SUBMARINE);
// Warm up and calibrate gyro offsets
ins.init(scheduler.get_loop_rate_hz());
// reset ahrs including gyro bias
ahrs.reset();
}
// calibrate gyros - returns true if succesfully calibrated
bool Sub::calibrate_gyros()
{
// gyro offset calibration
sub.ins.init_gyro();
// reset ahrs gyro bias
if (sub.ins.gyro_calibrated_ok_all()) {
sub.ahrs.reset_gyro_drift();
return true;
}
return false;
}
// position_ok - returns true if the horizontal absolute position is ok and home position is set
bool Sub::position_ok()
{
// return false if ekf failsafe has triggered
if (failsafe.ekf) {
return false;
}
// check ekf position estimate
return (ekf_position_ok() || optflow_position_ok());
}
// ekf_position_ok - returns true if the ekf claims it's horizontal absolute position estimate is ok and home position is set
bool Sub::ekf_position_ok()
{
if (!ahrs.have_inertial_nav()) {
// do not allow navigation with dcm position
return false;
}
// with EKF use filter status and ekf check
nav_filter_status filt_status = inertial_nav.get_filter_status();
// if disarmed we accept a predicted horizontal position
if (!motors.armed()) {
return ((filt_status.flags.horiz_pos_abs || filt_status.flags.pred_horiz_pos_abs));
} else {
// once armed we require a good absolute position and EKF must not be in const_pos_mode
return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode);
}
}
// optflow_position_ok - returns true if optical flow based position estimate is ok
bool Sub::optflow_position_ok()
{
#if OPTFLOW != ENABLED
return false;
#else
// return immediately if optflow is not enabled or EKF not used
if (!optflow.enabled() || !ahrs.have_inertial_nav()) {
return false;
}
// get filter status from EKF
nav_filter_status filt_status = inertial_nav.get_filter_status();
// if disarmed we accept a predicted horizontal relative position
if (!motors.armed()) {
return (filt_status.flags.pred_horiz_pos_rel);
} else {
return (filt_status.flags.horiz_pos_rel && !filt_status.flags.const_pos_mode);
}
#endif
}
/*
should we log a message type now?
*/
bool Sub::should_log(uint32_t mask)
{
#if LOGGING_ENABLED == ENABLED
if (!(mask & g.log_bitmask) || in_mavlink_delay) {
return false;
}
bool ret = DataFlash.logging_started() && (motors.armed() || DataFlash.log_while_disarmed());
return ret;
#else
return false;
#endif
}