ardupilot/Tools/Replay/Replay.cpp

959 lines
28 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_Param/AP_Param.h>
#include <GCS_MAVLink/GCS_Dummy.h>
#include "Parameters.h"
#include "VehicleType.h"
#include "MsgHandler.h"
#ifndef INT16_MIN
#define INT16_MIN -32768
#define INT16_MAX 32767
#endif
#include "LogReader.h"
#include "DataFlashFileReader.h"
#include "Replay.h"
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include <SITL/SITL.h>
#endif
#define streq(x, y) (!strcmp(x, y))
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
ReplayVehicle replayvehicle;
struct globals globals;
#define GSCALAR(v, name, def) { replayvehicle.g.v.vtype, name, Parameters::k_param_ ## v, &replayvehicle.g.v, {def_value : def} }
#define GOBJECT(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &replayvehicle.v, {group_info : class::var_info} }
#define GOBJECTN(v, pname, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## pname, &replayvehicle.v, {group_info : class::var_info} }
const AP_Param::Info ReplayVehicle::var_info[] = {
GSCALAR(dummy, "_DUMMY", 0),
// barometer ground calibration. The GND_ prefix is chosen for
// compatibility with previous releases of ArduPlane
// @Group: GND_
// @Path: ../libraries/AP_Baro/AP_Baro.cpp
GOBJECT(barometer, "GND_", AP_Baro),
// @Group: INS_
// @Path: ../libraries/AP_InertialSensor/AP_InertialSensor.cpp
GOBJECT(ins, "INS_", AP_InertialSensor),
// @Group: AHRS_
// @Path: ../libraries/AP_AHRS/AP_AHRS.cpp
GOBJECT(ahrs, "AHRS_", AP_AHRS),
// @Group: ARSPD_
// @Path: ../libraries/AP_Airspeed/AP_Airspeed.cpp
GOBJECT(airspeed, "ARSP_", AP_Airspeed),
// @Group: EK2_
// @Path: ../libraries/AP_NavEKF2/AP_NavEKF2.cpp
GOBJECTN(EKF2, NavEKF2, "EK2_", NavEKF2),
// @Group: COMPASS_
// @Path: ../libraries/AP_Compass/AP_Compass.cpp
GOBJECT(compass, "COMPASS_", Compass),
// @Group: LOG
// @Path: ../libraries/DataFlash/DataFlash.cpp
GOBJECT(dataflash, "LOG", DataFlash_Class),
// @Group: EK3_
// @Path: ../libraries/AP_NavEKF3/AP_NavEKF3.cpp
GOBJECTN(EKF3, NavEKF3, "EK3_", NavEKF3),
AP_VAREND
};
void ReplayVehicle::load_parameters(void)
{
unlink("Replay.stg");
if (!AP_Param::check_var_info()) {
AP_HAL::panic("Bad parameter table");
}
AP_Param::set_default_by_name("EK2_ENABLE", 1);
AP_Param::set_default_by_name("EK2_IMU_MASK", 1);
AP_Param::set_default_by_name("EK3_ENABLE", 1);
AP_Param::set_default_by_name("EK3_IMU_MASK", 1);
AP_Param::set_default_by_name("LOG_REPLAY", 1);
AP_Param::set_default_by_name("AHRS_EKF_TYPE", 2);
AP_Param::set_default_by_name("LOG_FILE_BUFSIZE", 60);
}
static const struct LogStructure min_log_structure[] = {
{ LOG_FORMAT_MSG, sizeof(log_Format),
"FMT", "BBnNZ", "Type,Length,Name,Format,Columns", "-b---", "-----" },
{ LOG_PARAMETER_MSG, sizeof(log_Parameter),
"PARM", "QNf", "TimeUS,Name,Value", "s--", "F--" },
{ LOG_MESSAGE_MSG, sizeof(log_Message),
"MSG", "QZ", "TimeUS,Message", "s-", "F-" },
};
void ReplayVehicle::setup(void)
{
load_parameters();
// we pass a minimal log structure, as we will be outputting the
// log structures we need manually, to prevent FMT duplicates
dataflash.Init(min_log_structure, ARRAY_SIZE(min_log_structure));
ahrs.set_compass(&compass);
ahrs.set_fly_forward(true);
ahrs.set_wind_estimation(true);
ahrs.set_correct_centrifugal(true);
ahrs.set_ekf_use(true);
EKF2.set_enable(true);
EKF3.set_enable(true);
printf("Starting disarmed\n");
hal.util->set_soft_armed(false);
barometer.init();
barometer.setHIL(0);
barometer.update();
compass.init();
ins.set_hil_mode();
}
Replay replay(replayvehicle);
void Replay::usage(void)
{
::printf("Options:\n");
::printf("\t--parm NAME=VALUE set parameter NAME to VALUE\n");
::printf("\t--accel-mask MASK set accel mask (1=accel1 only, 2=accel2 only, 3=both)\n");
::printf("\t--gyro-mask MASK set gyro mask (1=gyro1 only, 2=gyro2 only, 3=both)\n");
::printf("\t--arm-time time arm at time (milliseconds)\n");
::printf("\t--no-imt don't use IMT data\n");
::printf("\t--check-generate generate CHEK messages in output\n");
::printf("\t--check check solution against CHEK messages\n");
::printf("\t--tolerance-euler tolerance for euler angles in degrees\n");
::printf("\t--tolerance-pos tolerance for position in meters\n");
::printf("\t--tolerance-vel tolerance for velocity in meters/second\n");
::printf("\t--nottypes list of msg types not to output, comma separated\n");
::printf("\t--downsample downsampling rate for output\n");
::printf("\t--logmatch match logging rate to source\n");
::printf("\t--no-params don't use parameters from the log\n");
::printf("\t--no-fpe do not generate floating point exceptions\n");
::printf("\t--packet-counts print packet counts at end of processing\n");
}
enum {
OPT_CHECK = 128,
OPT_CHECK_GENERATE,
OPT_TOLERANCE_EULER,
OPT_TOLERANCE_POS,
OPT_TOLERANCE_VEL,
OPT_NOTTYPES,
OPT_DOWNSAMPLE,
OPT_LOGMATCH,
OPT_NOPARAMS,
OPT_PARAM_FILE,
OPT_NO_FPE,
OPT_PACKET_COUNTS,
};
void Replay::flush_dataflash(void) {
_vehicle.dataflash.flush();
}
/*
create a list from a comma separated string
*/
const char **Replay::parse_list_from_string(const char *str_in)
{
uint16_t comma_count=0;
const char *p;
for (p=str_in; *p; p++) {
if (*p == ',') comma_count++;
}
char *str = strdup(str_in);
if (str == NULL) {
return NULL;
}
const char **ret = (const char **)calloc(comma_count+2, sizeof(char *));
if (ret == NULL) {
free(str);
return NULL;
}
char *saveptr = NULL;
uint16_t idx = 0;
for (p=strtok_r(str, ",", &saveptr); p; p=strtok_r(NULL, ",", &saveptr)) {
ret[idx++] = p;
}
return ret;
}
void Replay::_parse_command_line(uint8_t argc, char * const argv[])
{
const struct GetOptLong::option options[] = {
// name has_arg flag val
{"parm", true, 0, 'p'},
{"param", true, 0, 'p'},
{"param-file", true, 0, OPT_PARAM_FILE},
{"help", false, 0, 'h'},
{"accel-mask", true, 0, 'a'},
{"gyro-mask", true, 0, 'g'},
{"arm-time", true, 0, 'A'},
{"no-imt", false, 0, 'n'},
{"check-generate", false, 0, OPT_CHECK_GENERATE},
{"check", false, 0, OPT_CHECK},
{"tolerance-euler", true, 0, OPT_TOLERANCE_EULER},
{"tolerance-pos", true, 0, OPT_TOLERANCE_POS},
{"tolerance-vel", true, 0, OPT_TOLERANCE_VEL},
{"nottypes", true, 0, OPT_NOTTYPES},
{"downsample", true, 0, OPT_DOWNSAMPLE},
{"logmatch", false, 0, OPT_LOGMATCH},
{"no-params", false, 0, OPT_NOPARAMS},
{"no-fpe", false, 0, OPT_NO_FPE},
{"packet-counts", false, 0, OPT_PACKET_COUNTS},
{0, false, 0, 0}
};
GetOptLong gopt(argc, argv, "r:p:ha:g:A:", options);
int opt;
while ((opt = gopt.getoption()) != -1) {
switch (opt) {
case 'g':
logreader.set_gyro_mask(strtol(gopt.optarg, NULL, 0));
break;
case 'a':
logreader.set_accel_mask(strtol(gopt.optarg, NULL, 0));
break;
case 'A':
arm_time_ms = strtol(gopt.optarg, NULL, 0);
break;
case 'n':
use_imt = false;
logreader.set_use_imt(use_imt);
break;
case 'p': {
const char *eq = strchr(gopt.optarg, '=');
if (eq == NULL) {
::printf("Usage: -p NAME=VALUE\n");
exit(1);
}
struct user_parameter *u = new user_parameter;
strncpy(u->name, gopt.optarg, eq-gopt.optarg);
u->value = atof(eq+1);
u->next = user_parameters;
user_parameters = u;
break;
}
case OPT_CHECK_GENERATE:
check_generate = true;
break;
case OPT_CHECK:
check_solution = true;
break;
case OPT_TOLERANCE_EULER:
tolerance_euler = atof(gopt.optarg);
break;
case OPT_TOLERANCE_POS:
tolerance_pos = atof(gopt.optarg);
break;
case OPT_TOLERANCE_VEL:
tolerance_vel = atof(gopt.optarg);
break;
case OPT_NOTTYPES:
nottypes = parse_list_from_string(gopt.optarg);
break;
case OPT_DOWNSAMPLE:
downsample = atoi(gopt.optarg);
break;
case OPT_LOGMATCH:
logmatch = true;
break;
case OPT_NOPARAMS:
globals.no_params = true;
break;
case OPT_PARAM_FILE:
load_param_file(gopt.optarg);
break;
case OPT_NO_FPE:
generate_fpe = false;
break;
case OPT_PACKET_COUNTS:
packet_counts = true;
break;
case 'h':
default:
usage();
exit(0);
}
}
argv += gopt.optind;
argc -= gopt.optind;
if (argc > 0) {
filename = argv[0];
}
}
class IMUCounter : public DataFlashFileReader {
public:
IMUCounter() {}
bool handle_log_format_msg(const struct log_Format &f);
bool handle_msg(const struct log_Format &f, uint8_t *msg);
uint64_t last_clock_timestamp = 0;
float last_parm_value = 0;
char last_parm_name[17] {};
private:
MsgHandler *handler = nullptr;
MsgHandler *parm_handler = nullptr;
};
bool IMUCounter::handle_log_format_msg(const struct log_Format &f) {
if (!strncmp(f.name,"IMU",4) ||
!strncmp(f.name,"IMT",4)) {
// an IMU or IMT message message format
handler = new MsgHandler(f);
}
if (strncmp(f.name,"PARM",4) == 0) {
// PARM message message format
parm_handler = new MsgHandler(f);
}
return true;
};
bool IMUCounter::handle_msg(const struct log_Format &f, uint8_t *msg) {
if (strncmp(f.name,"PARM",4) == 0) {
// gather parameter values to check for SCHED_LOOP_RATE
parm_handler->field_value(msg, "Name", last_parm_name, sizeof(last_parm_name));
parm_handler->field_value(msg, "Value", last_parm_value);
return true;
}
if (strncmp(f.name,"IMU",4) &&
strncmp(f.name,"IMT",4)) {
// not an IMU message
return true;
}
if (handler->field_value(msg, "TimeUS", last_clock_timestamp)) {
} else if (handler->field_value(msg, "TimeMS", last_clock_timestamp)) {
last_clock_timestamp *= 1000;
} else {
::printf("Unable to find timestamp in message");
}
return true;
}
/*
find information about the log
*/
bool Replay::find_log_info(struct log_information &info)
{
IMUCounter reader;
if (!reader.open_log(filename)) {
perror(filename);
exit(1);
}
char clock_source[5] = { };
int samplecount = 0;
uint64_t prev = 0;
uint64_t smallest_delta = 0;
uint64_t total_delta = 0;
prev = 0;
const uint16_t samples_required = 1000;
while (samplecount < samples_required) {
char type[5];
if (!reader.update(type)) {
break;
}
if (streq(type, "PARM") && streq(reader.last_parm_name, "SCHED_LOOP_RATE")) {
// get rate directly from parameters
info.update_rate = reader.last_parm_value;
}
if (strlen(clock_source) == 0) {
// If you want to add a clock source, also add it to
// handle_msg and handle_log_format_msg, above. Note that
// ordering is important here. For example, when we log
// IMT we may reduce the logging speed of IMU, so then
// using IMU as your clock source will lead to incorrect
// behaviour.
if (streq(type, "IMT")) {
strcpy(clock_source, "IMT");
} else if (streq(type, "IMU")) {
strcpy(clock_source, "IMU");
} else {
continue;
}
hal.console->printf("Using clock source %s\n", clock_source);
}
// IMT if available always overrides
if (streq(type, "IMT") && strcmp(clock_source, "IMT") != 0) {
strcpy(clock_source, "IMT");
hal.console->printf("Changing clock source to %s\n", clock_source);
samplecount = 0;
prev = 0;
smallest_delta = 0;
total_delta = 0;
}
if (streq(type, clock_source)) {
if (prev == 0) {
prev = reader.last_clock_timestamp;
} else {
uint64_t delta = reader.last_clock_timestamp - prev;
if (delta < 40000 && delta > 1000) {
if (smallest_delta == 0 || delta < smallest_delta) {
smallest_delta = delta;
}
samplecount++;
total_delta += delta;
}
}
prev = reader.last_clock_timestamp;
}
if (streq(type, "IMU2")) {
info.have_imu2 = true;
}
if (streq(type, "IMT")) {
info.have_imt = true;
}
if (streq(type, "IMT2")) {
info.have_imt2 = true;
}
}
if (smallest_delta == 0) {
::printf("Unable to determine log rate - insufficient IMU/IMT messages? (need=%d got=%d)", samples_required, samplecount);
return false;
}
float average_delta = total_delta / samplecount;
float rate = 1.0e6f/average_delta;
printf("average_delta=%.2f smallest_delta=%lu samplecount=%lu\n",
average_delta, (unsigned long)smallest_delta, (unsigned long)samplecount);
if (rate < 100) {
info.update_rate = 50;
} else {
info.update_rate = 400;
}
return true;
}
// catch floating point exceptions
static void _replay_sig_fpe(int signum)
{
fprintf(stderr, "ERROR: Floating point exception - flushing dataflash...\n");
replay.flush_dataflash();
fprintf(stderr, "ERROR: ... and aborting.\n");
if (replay.check_solution) {
FILE *f = fopen("replay_results.txt","a");
fprintf(f, "%s\tFPE\tFPE\tFPE\tFPE\tFPE\n",
replay.log_filename);
fclose(f);
}
abort();
}
FILE *Replay::xfopen(const char *f, const char *mode)
{
FILE *ret = fopen(f, mode);
if (ret == nullptr) {
::fprintf(stderr, "Failed to open (%s): %m\n", f);
abort();
}
return ret;
}
void Replay::setup()
{
::printf("Starting\n");
uint8_t argc;
char * const *argv;
hal.util->commandline_arguments(argc, argv);
_parse_command_line(argc, argv);
if (!check_generate) {
logreader.set_save_chek_messages(true);
}
set_signal_handlers();
hal.console->printf("Processing log %s\n", filename);
// remember filename for reporting
log_filename = filename;
if (!find_log_info(log_info)) {
printf("Update to get log information\n");
exit(1);
}
hal.console->printf("Using an update rate of %u Hz\n", log_info.update_rate);
if (!logreader.open_log(filename)) {
perror(filename);
exit(1);
}
_vehicle.setup();
inhibit_gyro_cal();
if (log_info.update_rate == 400) {
// assume copter for 400Hz
_vehicle.ahrs.set_vehicle_class(AHRS_VEHICLE_COPTER);
_vehicle.ahrs.set_fly_forward(false);
} else if (log_info.update_rate == 50) {
// assume copter for 400Hz
_vehicle.ahrs.set_vehicle_class(AHRS_VEHICLE_FIXED_WING);
_vehicle.ahrs.set_fly_forward(true);
}
set_ins_update_rate(log_info.update_rate);
}
void Replay::set_ins_update_rate(uint16_t _update_rate) {
_vehicle.ins.init(_update_rate);
}
void Replay::inhibit_gyro_cal() {
if (!logreader.set_parameter("INS_GYR_CAL", AP_InertialSensor::GYRO_CAL_NEVER)) {
::fprintf(stderr, "Failed to set GYR_CAL parameter\n");
abort();
}
}
/*
setup user -p parameters
*/
void Replay::set_user_parameters(void)
{
for (struct user_parameter *u=user_parameters; u; u=u->next) {
if (!logreader.set_parameter(u->name, u->value)) {
::printf("Failed to set parameter %s to %f\n", u->name, u->value);
exit(1);
}
}
}
void Replay::set_signal_handlers(void)
{
struct sigaction sa;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
if (generate_fpe) {
// SITL_State::_parse_command_line sets up an FPE handler. We
// can do better:
feenableexcept(FE_INVALID | FE_OVERFLOW);
sa.sa_handler = _replay_sig_fpe;
} else {
// disable floating point exception generation:
int exceptions = FE_OVERFLOW | FE_DIVBYZERO;
#ifndef __i386__
// i386 with gcc doesn't work with FE_INVALID
exceptions |= FE_INVALID;
#endif
if (feclearexcept(exceptions)) {
::fprintf(stderr, "Failed to disable floating point exceptions: %s", strerror(errno));
}
sa.sa_handler = SIG_IGN;
}
if (sigaction(SIGFPE, &sa, nullptr) < 0) {
::fprintf(stderr, "Failed to set floating point exceptions' handler: %s", strerror(errno));
}
}
/*
write out EKF log messages
*/
void Replay::write_ekf_logs(void)
{
if (!LogReader::in_list("EKF", nottypes)) {
_vehicle.dataflash.Log_Write_EKF(_vehicle.ahrs);
}
if (!LogReader::in_list("AHRS2", nottypes)) {
_vehicle.dataflash.Log_Write_AHRS2(_vehicle.ahrs);
}
if (!LogReader::in_list("POS", nottypes)) {
_vehicle.dataflash.Log_Write_POS(_vehicle.ahrs);
}
}
void Replay::read_sensors(const char *type)
{
if (!done_parameters && !streq(type,"FMT") && !streq(type,"PARM")) {
done_parameters = true;
set_user_parameters();
}
if (done_parameters && streq(type, "PARM")) {
set_user_parameters();
}
if (!done_home_init) {
if (streq(type, "GPS") &&
(_vehicle.gps.status() >= AP_GPS::GPS_OK_FIX_3D) && done_baro_init) {
const Location &loc = _vehicle.gps.location();
::printf("GPS Lock at %.7f %.7f %.2fm time=%.1f seconds\n",
loc.lat * 1.0e-7f,
loc.lng * 1.0e-7f,
loc.alt * 0.01f,
AP_HAL::millis()*0.001f);
_vehicle.ahrs.set_home(loc);
_vehicle.compass.set_initial_location(loc.lat, loc.lng);
done_home_init = true;
}
}
if (streq(type,"GPS")) {
_vehicle.gps.update();
if (_vehicle.gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
_vehicle.ahrs.estimate_wind();
}
} else if (streq(type,"MAG")) {
_vehicle.compass.read();
} else if (streq(type,"ARSP")) {
_vehicle.ahrs.set_airspeed(&_vehicle.airspeed);
} else if (streq(type,"BARO")) {
_vehicle.barometer.update();
if (!done_baro_init) {
done_baro_init = true;
::printf("Barometer initialised\n");
_vehicle.barometer.update_calibration();
}
}
bool run_ahrs = false;
if (log_info.have_imt2) {
run_ahrs = streq(type, "IMT2");
_vehicle.ahrs.force_ekf_start();
} else if (log_info.have_imt) {
run_ahrs = streq(type, "IMT");
_vehicle.ahrs.force_ekf_start();
} else if (log_info.have_imu2) {
run_ahrs = streq(type, "IMU2");
} else {
run_ahrs = streq(type, "IMU");
}
/*
always run AHRS on CHECK messages when checking the solution
*/
if (check_solution) {
run_ahrs = streq(type, "CHEK");
}
if (run_ahrs) {
_vehicle.ahrs.update();
if ((downsample == 0 || ++output_counter % downsample == 0) && !logmatch) {
write_ekf_logs();
}
if (_vehicle.ahrs.healthy() != ahrs_healthy) {
ahrs_healthy = _vehicle.ahrs.healthy();
printf("AHRS health: %u at %lu\n",
(unsigned)ahrs_healthy,
(unsigned long)AP_HAL::millis());
}
if (check_generate) {
log_check_generate();
} else if (check_solution) {
log_check_solution();
}
}
if (logmatch && (streq(type, "NKF1") || streq(type, "XKF1"))) {
write_ekf_logs();
}
}
/*
copy current data to CHEK message
*/
void Replay::log_check_generate(void)
{
Vector3f euler;
Vector3f velocity;
Location loc {};
_vehicle.EKF2.getEulerAngles(-1,euler);
_vehicle.EKF2.getVelNED(-1,velocity);
_vehicle.EKF2.getLLH(loc);
struct log_Chek packet = {
LOG_PACKET_HEADER_INIT(LOG_CHEK_MSG),
time_us : AP_HAL::micros64(),
roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string)
pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string)
yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string)
lat : loc.lat,
lng : loc.lng,
alt : loc.alt*0.01f,
vnorth : velocity.x,
veast : velocity.y,
vdown : velocity.z
};
_vehicle.dataflash.WriteBlock(&packet, sizeof(packet));
}
/*
check current solution against CHEK message
*/
void Replay::log_check_solution(void)
{
const LR_MsgHandler::CheckState &check_state = logreader.get_check_state();
Vector3f euler;
Vector3f velocity;
Location loc {};
_vehicle.EKF2.getEulerAngles(-1,euler);
_vehicle.EKF2.getVelNED(-1,velocity);
_vehicle.EKF2.getLLH(loc);
float roll_error = degrees(fabsf(euler.x - check_state.euler.x));
float pitch_error = degrees(fabsf(euler.y - check_state.euler.y));
float yaw_error = wrap_180_cd(100*degrees(fabsf(euler.z - check_state.euler.z)))*0.01f;
float vel_error = (velocity - check_state.velocity).length();
float pos_error = get_distance(check_state.pos, loc);
check_result.max_roll_error = MAX(check_result.max_roll_error, roll_error);
check_result.max_pitch_error = MAX(check_result.max_pitch_error, pitch_error);
check_result.max_yaw_error = MAX(check_result.max_yaw_error, yaw_error);
check_result.max_vel_error = MAX(check_result.max_vel_error, vel_error);
check_result.max_pos_error = MAX(check_result.max_pos_error, pos_error);
}
void Replay::flush_and_exit()
{
flush_dataflash();
if (check_solution) {
report_checks();
}
if (packet_counts) {
show_packet_counts();
}
exit(0);
}
void Replay::show_packet_counts()
{
uint64_t counts[LOGREADER_MAX_FORMATS];
logreader.get_packet_counts(counts);
char format_type[5];
uint64_t total = 0;
for(uint16_t i=0;i<LOGREADER_MAX_FORMATS;i++) {
if (counts[i] != 0) {
logreader.format_type(i, format_type);
printf("%10ld %s\n", counts[i], format_type);
total += counts[i];
}
}
printf("%ld total\n", total);
}
void Replay::loop()
{
char type[5];
if (arm_time_ms >= 0 && AP_HAL::millis() > (uint32_t)arm_time_ms) {
if (!hal.util->get_soft_armed()) {
hal.util->set_soft_armed(true);
::printf("Arming at %u ms\n", (unsigned)AP_HAL::millis());
}
}
if (!logreader.update(type)) {
::printf("End of log at %.1f seconds\n", AP_HAL::millis()*0.001f);
flush_and_exit();
}
if (last_timestamp != 0) {
uint64_t gap = AP_HAL::micros64() - last_timestamp;
if (gap > 40000) {
::printf("Gap in log at timestamp=%lu of length %luus\n",
last_timestamp, gap);
}
}
last_timestamp = AP_HAL::micros64();
read_sensors(type);
if (!streq(type,"ATT")) {
return;
}
}
bool Replay::show_error(const char *text, float max_error, float tolerance)
{
bool failed = max_error > tolerance;
printf("%s:\t%.2f %c %.2f\n",
text,
max_error,
failed?'>':'<',
tolerance);
return failed;
}
/*
report results of --check
*/
void Replay::report_checks(void)
{
bool failed = false;
if (tolerance_euler < 0.01f) {
tolerance_euler = 0.01f;
}
FILE *f = fopen("replay_results.txt","a");
if (f != NULL) {
fprintf(f, "%s\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\n",
log_filename,
check_result.max_roll_error,
check_result.max_pitch_error,
check_result.max_yaw_error,
check_result.max_pos_error,
check_result.max_vel_error);
fclose(f);
}
failed |= show_error("Roll error", check_result.max_roll_error, tolerance_euler);
failed |= show_error("Pitch error", check_result.max_pitch_error, tolerance_euler);
failed |= show_error("Yaw error", check_result.max_yaw_error, tolerance_euler);
failed |= show_error("Position error", check_result.max_pos_error, tolerance_pos);
failed |= show_error("Velocity error", check_result.max_vel_error, tolerance_vel);
if (failed) {
printf("Checks failed\n");
exit(1);
} else {
printf("Checks passed\n");
}
}
/*
parse a parameter file line
*/
bool Replay::parse_param_line(char *line, char **vname, float &value)
{
if (line[0] == '#') {
return false;
}
char *saveptr = NULL;
char *pname = strtok_r(line, ", =\t", &saveptr);
if (pname == NULL) {
return false;
}
if (strlen(pname) > AP_MAX_NAME_SIZE) {
return false;
}
const char *value_s = strtok_r(NULL, ", =\t", &saveptr);
if (value_s == NULL) {
return false;
}
value = atof(value_s);
*vname = pname;
return true;
}
/*
load a default set of parameters from a file
*/
void Replay::load_param_file(const char *pfilename)
{
FILE *f = fopen(pfilename, "r");
if (f == NULL) {
printf("Failed to open parameter file: %s\n", pfilename);
exit(1);
}
char line[100];
while (fgets(line, sizeof(line)-1, f)) {
char *pname;
float value;
if (!parse_param_line(line, &pname, value)) {
continue;
}
struct user_parameter *u = new user_parameter;
strncpy(u->name, pname, sizeof(u->name));
u->value = value;
u->next = user_parameters;
user_parameters = u;
}
fclose(f);
}
/*
see if a user parameter is set
*/
bool Replay::check_user_param(const char *name)
{
for (struct user_parameter *u=user_parameters; u; u=u->next) {
if (strcmp(name, u->name) == 0) {
return true;
}
}
return false;
}
const struct AP_Param::GroupInfo GCS_MAVLINK::var_info[] = {
AP_GROUPEND
};
GCS_Dummy _gcs;
// dummy methods to avoid linking with these libraries
void AP_Camera::send_feedback(mavlink_channel_t) {}
void AP_Camera::control(float, float, float, float, float, float) {}
void AP_Camera::configure(float, float, float, float, float, float, float) {}
bool AP_AdvancedFailsafe::gcs_terminate(bool should_terminate, const char *reason) { return false; }
AP_HAL_MAIN_CALLBACKS(&replay);