ardupilot/libraries/AP_FETtecOneWire/AP_FETtecOneWire.cpp

762 lines
28 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* Initial protocol implementation was provided by FETtec */
#include <AP_SerialManager/AP_SerialManager.h>
#include <AP_Math/AP_Math.h>
#include "AP_FETtecOneWire.h"
#include <stdio.h>
// constructor
AP_FETtecOneWire::AP_FETtecOneWire()
{
FETtecOneWire_ResponseLength[OW_OK] = 1;
FETtecOneWire_ResponseLength[OW_BL_PAGE_CORRECT] = 1; // BL only
FETtecOneWire_ResponseLength[OW_NOT_OK] = 1;
FETtecOneWire_ResponseLength[OW_BL_START_FW] = 0; // BL only
FETtecOneWire_ResponseLength[OW_BL_PAGES_TO_FLASH] = 1; // BL only
FETtecOneWire_ResponseLength[OW_REQ_TYPE] = 1;
FETtecOneWire_ResponseLength[OW_REQ_SN] = 12;
FETtecOneWire_ResponseLength[OW_REQ_SW_VER] = 2;
FETtecOneWire_ResponseLength[OW_RESET_TO_BL] = 0;
FETtecOneWire_ResponseLength[OW_THROTTLE] = 1;
FETtecOneWire_ResponseLength[OW_REQ_TLM] = 2;
FETtecOneWire_ResponseLength[OW_BEEP] = 0;
FETtecOneWire_ResponseLength[OW_SET_FAST_COM_LENGTH] = 1;
FETtecOneWire_ResponseLength[OW_GET_ROTATION_DIRECTION] = 1;
FETtecOneWire_ResponseLength[OW_SET_ROTATION_DIRECTION] = 1;
FETtecOneWire_ResponseLength[OW_GET_USE_SIN_START] = 1;
FETtecOneWire_ResponseLength[OW_SET_USE_SIN_START] = 1;
FETtecOneWire_ResponseLength[OW_GET_3D_MODE] = 1;
FETtecOneWire_ResponseLength[OW_SET_3D_MODE] = 1;
FETtecOneWire_ResponseLength[OW_GET_ID] = 1;
FETtecOneWire_ResponseLength[OW_SET_ID] = 1;
/*
FETtecOneWire_ResponseLength[OW_GET_LINEAR_THRUST] = 1;
FETtecOneWire_ResponseLength[OW_SET_LINEAR_THRUST] = 1;
*/
FETtecOneWire_ResponseLength[OW_GET_EEVER] = 1;
FETtecOneWire_ResponseLength[OW_GET_PWM_MIN] = 2;
FETtecOneWire_ResponseLength[OW_SET_PWM_MIN] = 1;
FETtecOneWire_ResponseLength[OW_GET_PWM_MAX] = 2;
FETtecOneWire_ResponseLength[OW_SET_PWM_MAX] = 1;
FETtecOneWire_ResponseLength[OW_GET_ESC_BEEP] = 1;
FETtecOneWire_ResponseLength[OW_SET_ESC_BEEP] = 1;
FETtecOneWire_ResponseLength[OW_GET_CURRENT_CALIB] = 1;
FETtecOneWire_ResponseLength[OW_SET_CURRENT_CALIB] = 1;
FETtecOneWire_ResponseLength[OW_SET_LED_TMP_COLOR] = 0;
FETtecOneWire_ResponseLength[OW_GET_LED_COLOR] = 5;
FETtecOneWire_ResponseLength[OW_SET_LED_COLOR] = 1;
FETtecOneWire_RequestLength[OW_OK] = 1;
FETtecOneWire_RequestLength[OW_BL_PAGE_CORRECT] = 1; // BL only
FETtecOneWire_RequestLength[OW_NOT_OK] = 1;
FETtecOneWire_RequestLength[OW_BL_START_FW] = 1; // BL only
FETtecOneWire_RequestLength[OW_BL_PAGES_TO_FLASH] = 1; // BL only
FETtecOneWire_RequestLength[OW_REQ_TYPE] = 1;
FETtecOneWire_RequestLength[OW_REQ_SN] = 1;
FETtecOneWire_RequestLength[OW_REQ_SW_VER] = 1;
FETtecOneWire_RequestLength[OW_RESET_TO_BL] = 1;
FETtecOneWire_RequestLength[OW_THROTTLE] = 1;
FETtecOneWire_RequestLength[OW_REQ_TLM] = 1;
FETtecOneWire_RequestLength[OW_BEEP] = 2;
FETtecOneWire_RequestLength[OW_SET_FAST_COM_LENGTH] = 4;
FETtecOneWire_RequestLength[OW_GET_ROTATION_DIRECTION] = 1;
FETtecOneWire_RequestLength[OW_SET_ROTATION_DIRECTION] = 1;
FETtecOneWire_RequestLength[OW_GET_USE_SIN_START] = 1;
FETtecOneWire_RequestLength[OW_SET_USE_SIN_START] = 1;
FETtecOneWire_RequestLength[OW_GET_3D_MODE] = 1;
FETtecOneWire_RequestLength[OW_SET_3D_MODE] = 1;
FETtecOneWire_RequestLength[OW_GET_ID] = 1;
FETtecOneWire_RequestLength[OW_SET_ID] = 1;
/*
FETtecOneWire_RequestLength[OW_GET_LINEAR_THRUST] = 1;
FETtecOneWire_RequestLength[OW_SET_LINEAR_THRUST] = 1;
*/
FETtecOneWire_RequestLength[OW_GET_EEVER] = 1;
FETtecOneWire_RequestLength[OW_GET_PWM_MIN] = 1;
FETtecOneWire_RequestLength[OW_SET_PWM_MIN] = 2;
FETtecOneWire_RequestLength[OW_GET_PWM_MAX] = 1;
FETtecOneWire_RequestLength[OW_SET_PWM_MAX] = 2;
FETtecOneWire_RequestLength[OW_GET_ESC_BEEP] = 1;
FETtecOneWire_RequestLength[OW_SET_ESC_BEEP] = 1;
FETtecOneWire_RequestLength[OW_GET_CURRENT_CALIB] = 1;
FETtecOneWire_RequestLength[OW_SET_CURRENT_CALIB] = 1;
FETtecOneWire_RequestLength[OW_SET_LED_TMP_COLOR] = 4;
FETtecOneWire_RequestLength[OW_GET_LED_COLOR] = 1;
FETtecOneWire_RequestLength[OW_SET_LED_COLOR] = 5;
}
void AP_FETtecOneWire::init()
{
AP_SerialManager& serial_manager = AP::serialmanager();
_uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_FETtechOneWire, 0);
if (_uart) {
_uart->begin(2000000);
}
FETtecOneWire_Init();
}
void AP_FETtecOneWire::update()
{
if (!initialised) {
initialised = true;
init();
last_send_us = AP_HAL::micros();
return;
}
if (_uart == nullptr) {
return;
}
uint16_t requestedTelemetry[MOTOR_COUNT] = {0};
int8_t TelemetryAvailable = FETtecOneWire_ESCsSetValues(motorpwm, requestedTelemetry, MOTOR_COUNT, TLM_request);
if (TelemetryAvailable != -1) {
for (uint8_t i = 0; i < MOTOR_COUNT; i++) {
completeTelemetry[i][TelemetryAvailable] = requestedTelemetry[i];
}
}
if (++TLM_request == 5) {
TLM_request = 0;
}
if (TelemetryAvailable != -1) {
for (uint8_t i = 0; i < MOTOR_COUNT; i++) {
printf(" esc: %d", i + 1);
printf(" Temperature: %d", completeTelemetry[i][0]);
printf(", Voltage: %d", completeTelemetry[i][1]);
printf(", Current: %d", completeTelemetry[i][2]);
printf(", E-rpm: %d", completeTelemetry[i][3]);
printf(", consumption: %d", completeTelemetry[i][4]);
printf("\n");
}
}
}
/*
initialize FETtecOneWire protocol
*/
void AP_FETtecOneWire::FETtecOneWire_Init()
{
if (FETtecOneWire_firstInitDone == 0) {
FETtecOneWire_FoundESCs = 0;
FETtecOneWire_ScanActive = 0;
FETtecOneWire_SetupActive = 0;
FETtecOneWire_minID = 25;
FETtecOneWire_maxID = 0;
FETtecOneWire_IDcount = 0;
FETtecOneWire_FastThrottleByteCount = 0;
for (uint8_t i = 0; i < 25; i++) {
FETtecOneWire_activeESC_IDs[i] = 0;
}
}
FETtecOneWire_IgnoreOwnBytes = 0;
FETtecOneWire_PullSuccess = 0;
FETtecOneWire_PullBusy = 0;
FETtecOneWire_firstInitDone = 1;
}
/*
generates used 8 bit CRC
crc = byte to be added to CRC
crc_seed = CRC where it gets added too
returns 8 bit CRC
*/
uint8_t AP_FETtecOneWire::FETtecOneWire_UpdateCrc8(uint8_t crc, uint8_t crc_seed)
{
uint8_t crc_u, i;
crc_u = crc;
crc_u ^= crc_seed;
for (i = 0; i < 8; i++) {
crc_u = (crc_u & 0x80) ? 0x7 ^ (crc_u << 1) : (crc_u << 1);
}
return (crc_u);
}
/*
generates used 8 bit CRC for arrays
Buf = 8 bit byte array
BufLen = count of bytes that should be used for CRC calculation
returns 8 bit CRC
*/
uint8_t AP_FETtecOneWire::FETtecOneWire_GetCrc8(uint8_t* Buf, uint16_t BufLen)
{
uint8_t crc = 0;
for (uint16_t i = 0; i < BufLen; i++) {
crc = FETtecOneWire_UpdateCrc8(Buf[i], crc);
}
return (crc);
}
/*
transmitts a FETtecOneWire frame to a ESC
ESC_id = id of the ESC
Bytes = 8 bit array of bytes. Where byte 1 contains the command, and all following bytes can be the payload
Length = length of the Bytes array
returns nothing
*/
void AP_FETtecOneWire::FETtecOneWire_Transmit(uint8_t ESC_id, uint8_t* Bytes, uint8_t Length)
{
/*
a frame lookes like:
byte 1 = fremae header (master is always 0x01)
byte 2 = target ID (5bit)
byte 3 & 4 = frame type (always 0x00, 0x00 used for bootloader. here just for compatibility)
byte 5 = frame length over all bytes
byte 6 - X = request type, followed by the payload
byte X+1 = 8bit CRC
*/
uint8_t transmitArr[256] = {0x01, ESC_id, 0x00, 0x00};
transmitArr[4] = Length + 6;
for (uint8_t i = 0; i < Length; i++) {
transmitArr[i + 5] = Bytes[i];
}
transmitArr[Length + 5] = FETtecOneWire_GetCrc8(transmitArr, Length + 5); // crc
_uart->write(transmitArr, Length + 6);
FETtecOneWire_IgnoreOwnBytes += Length + 6;
}
/*
reads the answer frame of a ESC
Bytes = 8 bit byte array, where the received answer gets stored in
Length = the expected answer length
returnFullFrame can be OW_RETURN_RESPONSE or OW_RETURN_FULL_FRAME
returns 1 if the expected answer frame was there, 0 if dont
*/
uint8_t AP_FETtecOneWire::FETtecOneWire_Receive(uint8_t* Bytes, uint8_t Length, uint8_t returnFullFrame)
{
/*
a frame lookes like:
byte 1 = fremae header (0x02 = bootloader, 0x03 = ESC firmware)
byte 2 = sender ID (5bit)
byte 3 & 4 = frame type (always 0x00, 0x00 used for bootloader. here just for compatibility)
byte 5 = frame length over all bytes
byte 6 - X = answer type, followed by the payload
byte X+1 = 8bit CRC
*/
//ignore own bytes
while (FETtecOneWire_IgnoreOwnBytes > 0 && _uart->available()) {
FETtecOneWire_IgnoreOwnBytes--;
_uart->read();
}
// look for the real answer
if (_uart->available() >= Length + 6u) {
// sync to frame starte byte
uint8_t testFrameStart = 0;
do {
testFrameStart = _uart->read();
}
while (testFrameStart != 0x02 && testFrameStart != 0x03 && _uart->available());
// copy message
if (_uart->available() >= Length + 5u) {
uint8_t ReceiveBuf[20] = {0};
ReceiveBuf[0] = testFrameStart;
for (uint8_t i = 1; i < Length + 6; i++) {
ReceiveBuf[i] = _uart->read();
}
// check CRC
if (FETtecOneWire_GetCrc8(ReceiveBuf, Length + 5) == ReceiveBuf[Length + 5]) {
if (!returnFullFrame) {
for (uint8_t i = 0; i < Length; i++) {
Bytes[i] = ReceiveBuf[5 + i];
}
} else {
for (uint8_t i = 0; i < Length + 6; i++) {
Bytes[i] = ReceiveBuf[i];
}
}
return 1;
} else {
return 0;
} // crc missmatch
} else {
return 0;
} // no answer yet
} else {
return 0;
} // no answer yet
}
/*
makes all connected ESC's beep
beepFreqency = a 8 bit value from 0-255. higher make a higher beep
*/
void AP_FETtecOneWire::FETtecOneWire_Beep(uint8_t beepFreqency)
{
if (FETtecOneWire_IDcount > 0) {
uint8_t request[2] = {OW_BEEP, beepFreqency};
uint8_t spacer[2] = {0, 0};
for (uint8_t i = FETtecOneWire_minID; i < FETtecOneWire_maxID + 1; i++) {
FETtecOneWire_Transmit(i, request, FETtecOneWire_RequestLength[request[0]]);
// add two zeros to make sure all ESC's can catch their command as we dont wait for a response here
_uart->write(spacer, 2);
FETtecOneWire_IgnoreOwnBytes += 2;
}
}
}
/*
sets the racewire color for all ESC's
R, G, B = 8bit colors
*/
void AP_FETtecOneWire::FETtecOneWire_RW_LEDcolor(uint8_t R, uint8_t G, uint8_t B)
{
if (FETtecOneWire_IDcount > 0) {
uint8_t request[4] = {OW_SET_LED_TMP_COLOR, R, G, B};
uint8_t spacer[2] = {0, 0};
for (uint8_t i = FETtecOneWire_minID; i < FETtecOneWire_maxID + 1; i++) {
FETtecOneWire_Transmit(i, request, FETtecOneWire_RequestLength[request[0]]);
// add two zeros to make sure all ESC's can catch their command as we dont wait for a response here
_uart->write(spacer, 2);
FETtecOneWire_IgnoreOwnBytes += 2;
}
}
}
/*
Resets a pending pull request
returns nothing
*/
void AP_FETtecOneWire::FETtecOneWire_PullReset()
{
FETtecOneWire_PullSuccess = 0;
FETtecOneWire_PullBusy = 0;
}
/*
Pulls a complete request between for ESC
ESC_id = id of the ESC
command = 8bit array containing the command that thould be send including the possible payload
response = 8bit array where the response will be stored in
returnFullFrame can be OW_RETURN_RESPONSE or OW_RETURN_FULL_FRAME
returns 1 if the request is completed, 0 if dont
*/
uint8_t AP_FETtecOneWire::FETtecOneWire_PullCommand(uint8_t ESC_id, uint8_t* command, uint8_t* response,
uint8_t returnFullFrame)
{
if (!FETtecOneWire_PullBusy) {
FETtecOneWire_PullBusy = 1;
FETtecOneWire_PullSuccess = 0;
FETtecOneWire_Transmit(ESC_id, command, FETtecOneWire_RequestLength[command[0]]);
} else {
if (FETtecOneWire_Receive(response, FETtecOneWire_ResponseLength[command[0]], returnFullFrame)) {
FETtecOneWire_PullSuccess = 1;
FETtecOneWire_PullBusy = 0;
}
}
return FETtecOneWire_PullSuccess;
}
/*
scans for ESC's in bus. should be called intill FETtecOneWire_ScanActive >= 25
returns the currend scanned ID
*/
uint8_t AP_FETtecOneWire::FETtecOneWire_ScanESCs()
{
static uint16_t delayLoops = 500;
static uint8_t scanID = 0;
static uint8_t scanState = 0;
static uint8_t scanTimeOut = 0;
uint8_t response[18] = {0};
uint8_t request[1] = {0};
if (FETtecOneWire_ScanActive == 0) {
delayLoops = 500;
scanID = 0;
scanState = 0;
scanTimeOut = 0;
return FETtecOneWire_ScanActive + 1;
}
if (delayLoops > 0) {
delayLoops--;
return FETtecOneWire_ScanActive;
}
if (scanID < FETtecOneWire_ScanActive) {
scanID = FETtecOneWire_ScanActive;
scanState = 0;
scanTimeOut = 0;
}
if (scanTimeOut == 3 || scanTimeOut == 6 || scanTimeOut == 9 || scanTimeOut == 12) {
FETtecOneWire_PullReset();
}
if (scanTimeOut < 15) {
switch (scanState) {
case 0:request[0] = OW_OK;
if (FETtecOneWire_PullCommand(scanID, request, response, OW_RETURN_FULL_FRAME)) {
scanTimeOut = 0;
FETtecOneWire_activeESC_IDs[scanID] = 1;
FETtecOneWire_FoundESCs++;
if (response[0] == 0x02) {
FETtecOneWire_foundESCs[scanID].inBootLoader = 1;
} else {
FETtecOneWire_foundESCs[scanID].inBootLoader = 0;
}
delayLoops = 1;
scanState++;
} else {
scanTimeOut++;
}
break;
case 1:request[0] = OW_REQ_TYPE;
if (FETtecOneWire_PullCommand(scanID, request, response, OW_RETURN_RESPONSE)) {
scanTimeOut = 0;
FETtecOneWire_foundESCs[scanID].ESCtype = response[0];
delayLoops = 1;
scanState++;
} else {
scanTimeOut++;
}
break;
case 2:request[0] = OW_REQ_SW_VER;
if (FETtecOneWire_PullCommand(scanID, request, response, OW_RETURN_RESPONSE)) {
scanTimeOut = 0;
FETtecOneWire_foundESCs[scanID].firmWareVersion = response[0];
FETtecOneWire_foundESCs[scanID].firmWareSubVersion = response[1];
delayLoops = 1;
scanState++;
} else {
scanTimeOut++;
}
break;
case 3:request[0] = OW_REQ_SN;
if (FETtecOneWire_PullCommand(scanID, request, response, OW_RETURN_RESPONSE)) {
scanTimeOut = 0;
for (uint8_t i = 0; i < 12; i++) {
FETtecOneWire_foundESCs[scanID].serialNumber[i] = response[i];
}
delayLoops = 1;
return scanID + 1;
} else {
scanTimeOut++;
}
break;
}
} else {
FETtecOneWire_PullReset();
return scanID + 1;
}
return scanID;
}
/*
starts all ESC's in bus and prepares them for receiving teh fast throttle command should be called untill FETtecOneWire_SetupActive >= 25
returns the current used ID
*/
uint8_t AP_FETtecOneWire::FETtecOneWire_InitESCs()
{
static uint8_t delayLoops = 0;
static uint8_t activeID = 1;
static uint8_t State = 0;
static uint8_t TimeOut = 0;
static uint8_t wakeFromBL = 1;
static uint8_t setFastCommand[4] = {OW_SET_FAST_COM_LENGTH, 0, 0, 0};
uint8_t response[18] = {0};
uint8_t request[1] = {0};
if (FETtecOneWire_SetupActive == 0) {
delayLoops = 0;
activeID = 1;
State = 0;
TimeOut = 0;
wakeFromBL = 1;
return FETtecOneWire_SetupActive + 1;
}
while (FETtecOneWire_activeESC_IDs[FETtecOneWire_SetupActive] == 0 && FETtecOneWire_SetupActive < 25) {
FETtecOneWire_SetupActive++;
}
if (FETtecOneWire_SetupActive == 25 && wakeFromBL == 0) {
return FETtecOneWire_SetupActive;
} else if (FETtecOneWire_SetupActive == 25 && wakeFromBL) {
wakeFromBL = 0;
activeID = 1;
FETtecOneWire_SetupActive = 1;
State = 0;
TimeOut = 0;
FETtecOneWire_minID = 25;
FETtecOneWire_maxID = 0;
FETtecOneWire_IDcount = 0;
for (uint8_t i = 0; i < 25; i++) {
if (FETtecOneWire_activeESC_IDs[i] != 0) {
FETtecOneWire_IDcount++;
if (i < FETtecOneWire_minID) {
FETtecOneWire_minID = i;
}
if (i > FETtecOneWire_maxID) {
FETtecOneWire_maxID = i;
}
}
}
if (FETtecOneWire_IDcount == 0
|| FETtecOneWire_maxID - FETtecOneWire_minID > FETtecOneWire_IDcount - 1) { // loop forever
wakeFromBL = 1;
return activeID;
}
FETtecOneWire_FastThrottleByteCount = 1;
int8_t bitCount = 12 + (FETtecOneWire_IDcount * 11);
while (bitCount > 0) {
FETtecOneWire_FastThrottleByteCount++;
bitCount -= 8;
}
setFastCommand[1] = FETtecOneWire_FastThrottleByteCount; // just for older ESC FW versions since 1.0 001 this byte is ignored as the ESC calculates it itself
setFastCommand[2] = FETtecOneWire_minID; // min ESC id
setFastCommand[3] = FETtecOneWire_IDcount; // count of ESC's that will get signals
}
if (delayLoops > 0) {
delayLoops--;
return FETtecOneWire_SetupActive;
}
if (activeID < FETtecOneWire_SetupActive) {
activeID = FETtecOneWire_SetupActive;
State = 0;
TimeOut = 0;
}
if (TimeOut == 3 || TimeOut == 6 || TimeOut == 9 || TimeOut == 12) {
FETtecOneWire_PullReset();
}
if (TimeOut < 15) {
if (wakeFromBL) {
switch (State) {
case 0:request[0] = OW_BL_START_FW;
if (FETtecOneWire_foundESCs[activeID].inBootLoader == 1) {
FETtecOneWire_Transmit(activeID, request, FETtecOneWire_RequestLength[request[0]]);
delayLoops = 5;
} else {
return activeID + 1;
}
State = 1;
break;
case 1:request[0] = OW_OK;
if (FETtecOneWire_PullCommand(activeID, request, response, OW_RETURN_FULL_FRAME)) {
TimeOut = 0;
if (response[0] == 0x02) {
FETtecOneWire_foundESCs[activeID].inBootLoader = 1;
State = 0;
} else {
FETtecOneWire_foundESCs[activeID].inBootLoader = 0;
delayLoops = 1;
return activeID + 1;
}
} else {
TimeOut++;
}
break;
}
} else {
if (FETtecOneWire_PullCommand(activeID, setFastCommand, response, OW_RETURN_RESPONSE)) {
TimeOut = 0;
delayLoops = 1;
return activeID + 1;
} else {
TimeOut++;
}
}
} else {
FETtecOneWire_PullReset();
return activeID + 1;
}
return activeID;
}
/*
checks if the requested telemetry is available.
Telemetry = 16bit array where the read Telemetry will be stored in.
returns the telemetry request number or -1 if unavailable
*/
int8_t AP_FETtecOneWire::FETtecOneWire_CheckForTLM(uint16_t* Telemetry)
{
int8_t return_TLM_request = 0;
if (FETtecOneWire_IDcount > 0) {
// empty buffer
while (FETtecOneWire_IgnoreOwnBytes > 0 && _uart->available()) {
_uart->read();
FETtecOneWire_IgnoreOwnBytes--;
}
// first two byte are the ESC Telemetry of the first ESC. next two byte of the second....
if (_uart->available() == (FETtecOneWire_IDcount * 2) + 1u) {
// look if first byte in buffer is equal to last byte of throttle command (crc)
if (_uart->read() == FETtecOneWire_lastCRC) {
for (uint8_t i = 0; i < FETtecOneWire_IDcount; i++) {
Telemetry[i] = _uart->read() << 8;
Telemetry[i] |= _uart->read();
}
return_TLM_request = FETtecOneWire_TLM_request;
} else {
return_TLM_request = -1;
}
} else {
return_TLM_request = -1;
}
} else {
return_TLM_request = -1;
}
return return_TLM_request;
}
/*
does almost all of the job.
scans for ESC's if not already done.
initializes the ESC's if not already done.
sends fast throttle signals if init is complete.
motorValues = a 16bit array containing the throttle signals that should be sent to the motors. 0-2000 where 1001-2000 is positive rotation and 999-0 reversed rotation
Telemetry = 16bit array where the read telemetry will be stored in.
motorCount = the count of motors that should get values send
tlmRequest = the requested telemetry type (OW_TLM_XXXXX)
returns the telemetry request if telemetry was available, -1 if dont
*/
int8_t AP_FETtecOneWire::FETtecOneWire_ESCsSetValues(uint16_t* motorValues, uint16_t* Telemetry, uint8_t motorCount,
uint8_t tlmRequest)
{
int8_t return_TLM_request = -2;
// init should not be done too fast. as at last the bootloader has some timing requirements with messages. so loop delays must fit more or less
if (FETtecOneWire_ScanActive < 25 || FETtecOneWire_SetupActive < 25) {
const uint32_t now = AP_HAL::micros();
if (now - last_send_us < DELAY_TIME_US) {
return 0;
} else {
last_send_us = now;
}
if (FETtecOneWire_ScanActive < 25) {
// scan for all ESC's in onewire bus
FETtecOneWire_ScanActive = FETtecOneWire_ScanESCs();
} else if (FETtecOneWire_SetupActive < 25) {
if (FETtecOneWire_FoundESCs == 0) {
FETtecOneWire_ScanActive = 0;
} else {
// check if in bootloader, start ESC's FW if they are and prepare fast throttle command
FETtecOneWire_SetupActive = FETtecOneWire_InitESCs();
}
}
} else {
//send fast throttle signals
if (FETtecOneWire_IDcount > 0) {
// check for telemetry
return_TLM_request = FETtecOneWire_CheckForTLM(Telemetry);
FETtecOneWire_TLM_request = tlmRequest;
//prepare fast throttle signals
uint16_t useSignals[24] = {0};
uint8_t OneWireFastThrottleCommand[36] = {0};
if (motorCount > FETtecOneWire_IDcount) {
motorCount = FETtecOneWire_IDcount;
}
for (uint8_t i = 0; i < motorCount; i++) {
useSignals[i] = constrain_int16(motorValues[i], 0, 2000);
}
uint8_t actThrottleCommand = 0;
// byte 1:
// bit 0 = TLMrequest, bit 1,2,3 = TLM type, bit 4 = first bit of first ESC (11bit)signal, bit 5,6,7 = frame header
// so ABBBCDDD
// A = TLM request yes or no
// B = TLM request type (temp, volt, current, erpm, consumption, debug1, debug2, debug3)
// C = first bit from first throttle signal
// D = frame header
OneWireFastThrottleCommand[0] = 128 | (FETtecOneWire_TLM_request << 4);
OneWireFastThrottleCommand[0] |= ((useSignals[actThrottleCommand] >> 10) & 0x01) << 3;
OneWireFastThrottleCommand[0] |= 0x01;
// byte 2:
// AAABBBBB
// A = next 3 bits from (11bit)throttle signal
// B = 5bit target ID
OneWireFastThrottleCommand[1] = (((useSignals[actThrottleCommand] >> 7) & 0x07)) << 5;
OneWireFastThrottleCommand[1] |= ALL_ID;
// following bytes are the rest 7 bit of the first (11bit)throttle signal, and all bit from all other signals, followed by the CRC byte
uint8_t BitsLeftFromCommand = 7;
uint8_t actByte = 2;
uint8_t bitsFromByteLeft = 8;
uint8_t bitsToAddLeft = (12 + (((FETtecOneWire_maxID - FETtecOneWire_minID) + 1) * 11)) - 16;
while (bitsToAddLeft > 0) {
if (bitsFromByteLeft >= BitsLeftFromCommand) {
OneWireFastThrottleCommand[actByte] |=
(useSignals[actThrottleCommand] & ((1 << BitsLeftFromCommand) - 1))
<< (bitsFromByteLeft - BitsLeftFromCommand);
bitsToAddLeft -= BitsLeftFromCommand;
bitsFromByteLeft -= BitsLeftFromCommand;
actThrottleCommand++;
BitsLeftFromCommand = 11;
if (bitsToAddLeft == 0) {
actByte++;
bitsFromByteLeft = 8;
}
} else {
OneWireFastThrottleCommand[actByte] |=
(useSignals[actThrottleCommand] >> (BitsLeftFromCommand - bitsFromByteLeft))
& ((1 << bitsFromByteLeft) - 1);
bitsToAddLeft -= bitsFromByteLeft;
BitsLeftFromCommand -= bitsFromByteLeft;
actByte++;
bitsFromByteLeft = 8;
if (BitsLeftFromCommand == 0) {
actThrottleCommand++;
BitsLeftFromCommand = 11;
}
}
}
// empty buffer
while (_uart->available()) {
_uart->read();
}
// send throttle signal
OneWireFastThrottleCommand[FETtecOneWire_FastThrottleByteCount - 1] = FETtecOneWire_GetCrc8(
OneWireFastThrottleCommand, FETtecOneWire_FastThrottleByteCount - 1);
_uart->write(OneWireFastThrottleCommand, FETtecOneWire_FastThrottleByteCount);
// last byte of signal can be used to make sure the first TLM byte is correct, in case of spike corruption
FETtecOneWire_IgnoreOwnBytes = FETtecOneWire_FastThrottleByteCount - 1;
FETtecOneWire_lastCRC = OneWireFastThrottleCommand[FETtecOneWire_FastThrottleByteCount - 1];
// the ESC's will answer the TLM as 16bit each ESC, so 2byte each ESC.
}
}
return return_TLM_request; // returns the readed tlm as it is 1 loop delayed
}