ardupilot/libraries/AP_Notify/OreoLED_PX4.cpp
Gustavo Jose de Sousa 3ca7429594 AP_Notify: standardize inclusion of libaries headers
This commit changes the way libraries headers are included in source files:

 - If the header is in the same directory the source belongs to, so the
 notation '#include ""' is used with the path relative to the directory
 containing the source.

 - If the header is outside the directory containing the source, then we use
 the notation '#include <>' with the path relative to libraries folder.

Some of the advantages of such approach:

 - Only one search path for libraries headers.

 - OSs like Windows may have a better lookup time.
2015-08-19 20:42:59 +09:00

414 lines
13 KiB
C++

/*
OreoLED PX4 driver
*/
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
#include "OreoLED_PX4.h"
#include "AP_Notify.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <drivers/drv_oreoled.h>
#include <stdio.h>
#include <errno.h>
extern const AP_HAL::HAL& hal;
#define OREOLED_BACKLEFT 0 // back left led instance number
#define OREOLED_BACKRIGHT 1 // back right led instance number
#define OREOLED_FRONTRIGHT 2 // front right led instance number
#define OREOLED_FRONTLEFT 3 // front left led instance number
// constructor
OreoLED_PX4::OreoLED_PX4() : NotifyDevice(),
_overall_health(false),
_oreoled_fd(-1),
_send_required(false),
_state_desired_semaphore(false),
_pattern_override(0)
{
// initialise desired and sent state
memset(_state_desired,0,sizeof(_state_desired));
memset(_state_sent,0,sizeof(_state_sent));
}
// init - initialised the device
bool OreoLED_PX4::init()
{
// open the device
_oreoled_fd = open(OREOLED0_DEVICE_PATH, O_RDWR);
if (_oreoled_fd == -1) {
hal.console->printf("Unable to open " OREOLED0_DEVICE_PATH);
_overall_health = false;
} else {
// set overall health
_overall_health = true;
// register timer
hal.scheduler->register_io_process(FUNCTOR_BIND_MEMBER(&OreoLED_PX4::update_timer, void));
}
// return health
return _overall_health;
}
// update - updates device according to timed_updated. Should be
// called at 50Hz
void OreoLED_PX4::update()
{
static uint8_t counter = 0; // counter to reduce rate from 50hz to 10hz
static uint8_t step = 0; // step to control pattern
static uint8_t last_stage = 0; // unique id of the last messages sent to the LED, used to reduce resends which disrupt some patterns
static uint8_t initialization_done = 0; // Keep track if initialization has begun. There is a period when the driver
// is running but initialization has not yet begun -- this prevents post-initialization
// LED patterns from displaying before initialization has completed.
uint8_t brightness = OREOLED_BRIGHT;
// return immediately if not healthy
if (!_overall_health) {
return;
}
// handle firmware update event
if (AP_Notify::events.firmware_update) {
set_macro(OREOLED_INSTANCE_ALL, OREOLED_PARAM_MACRO_COLOUR_CYCLE);
return;
}
// return immediately if custom pattern has been sent
if (OreoLED_PX4::_pattern_override != 0) {
// reset stage so patterns will be resent once override clears
last_stage = 0;
return;
}
// slow rate from 50Hz to 10hz
counter++;
if (counter < 5) {
return;
}
counter = 0;
// use dim light when connected through USB
if (hal.gpio->usb_connected()) {
brightness = OREOLED_DIM;
}
// move forward one step
step++;
if (step >= 10) {
step = 0;
}
// Pre-initialization pattern is all solid green
if (!initialization_done) {
set_rgb(OREOLED_ALL_INSTANCES, 0, brightness, 0);
}
// initialising pattern
if (AP_Notify::flags.initialising) {
initialization_done = 1; // Record initialization has begun
last_stage = 1; // record stage
// exit so no other status modify this pattern
return;
}
// save trim and esc calibration pattern
if (AP_Notify::flags.save_trim || AP_Notify::flags.esc_calibration) {
switch(step) {
case 0:
case 3:
case 6:
// red
set_rgb(OREOLED_INSTANCE_ALL, brightness, 0, 0);
break;
case 1:
case 4:
case 7:
// blue
set_rgb(OREOLED_INSTANCE_ALL, 0, 0, brightness);
break;
case 2:
case 5:
case 8:
// green on
set_rgb(OREOLED_INSTANCE_ALL, 0, brightness, 0);
break;
case 9:
// all off
set_rgb(OREOLED_INSTANCE_ALL, 0, 0, 0);
break;
}
// record stage
last_stage = 2;
// exit so no other status modify this pattern
return;
}
// radio failsafe pattern: Alternate between front red/rear black and front black/rear red
if (AP_Notify::flags.failsafe_radio) {
switch(step) {
case 0:
case 1:
case 2:
case 3:
case 4:
// Front red/rear black
set_rgb(OREOLED_FRONTLEFT, brightness, 0, 0);
set_rgb(OREOLED_FRONTRIGHT, brightness, 0, 0);
set_rgb(OREOLED_BACKLEFT, 0, 0, 0);
set_rgb(OREOLED_BACKRIGHT, 0, 0, 0);
break;
case 5:
case 6:
case 7:
case 8:
case 9:
// Front black/rear red
set_rgb(OREOLED_FRONTLEFT, 0, 0, 0);
set_rgb(OREOLED_FRONTRIGHT, 0, 0, 0);
set_rgb(OREOLED_BACKLEFT, brightness, 0, 0);
set_rgb(OREOLED_BACKRIGHT, brightness, 0, 0);
break;
}
// record stage
last_stage = 3;
// exit so no other status modify this pattern
return;
}
// send colours (later we will set macro if required)
if (last_stage < 10) {
if (initialization_done) {
set_macro(OREOLED_FRONTLEFT, OREOLED_PARAM_MACRO_WHITE); // white
set_macro(OREOLED_FRONTRIGHT, OREOLED_PARAM_MACRO_WHITE); // white
set_macro(OREOLED_BACKLEFT, OREOLED_PARAM_MACRO_RED); // red
set_macro(OREOLED_BACKRIGHT, OREOLED_PARAM_MACRO_RED); // red
}
last_stage = 10;
} else if (last_stage >= 10) {
static uint8_t previous_autopilot_mode = -1;
if (previous_autopilot_mode != AP_Notify::flags.autopilot_mode) {
if (AP_Notify::flags.autopilot_mode) {
// autopilot flight modes start breathing macro
set_macro(OREOLED_INSTANCE_ALL, OREOLED_PARAM_MACRO_BREATH);
} else {
// manual flight modes stop breathing -- solid color
set_macro(OREOLED_INSTANCE_ALL, OREOLED_PARAM_MACRO_FADEIN);
uint8_t oreoled_pattern_solid = OREOLED_PATTERN_SOLID;
send_bytes(0, (uint8_t) 1, &oreoled_pattern_solid);
send_bytes(1, (uint8_t) 1, &oreoled_pattern_solid);
send_bytes(2, (uint8_t) 1, &oreoled_pattern_solid);
send_bytes(3, (uint8_t) 1, &oreoled_pattern_solid);
}
// record we have processed this change
previous_autopilot_mode = AP_Notify::flags.autopilot_mode;
}
last_stage = 11;
}
}
// set_rgb - set color as a combination of red, green and blue values for one or all LEDs
void OreoLED_PX4::set_rgb(uint8_t instance, uint8_t red, uint8_t green, uint8_t blue)
{
// return immediately if no healty leds
if (!_overall_health) {
return;
}
// get semaphore
_state_desired_semaphore = true;
// check for all instances
if (instance == OREOLED_INSTANCE_ALL) {
// store desired rgb for all LEDs
for (uint8_t i=0; i<OREOLED_NUM_LEDS; i++) {
if (_state_desired[i].mode != OREOLED_MODE_RGB || _state_desired[i].red != red || _state_desired[i].green != green || _state_desired[i].blue != blue) {
_state_desired[i].mode = OREOLED_MODE_RGB;
_state_desired[i].red = red;
_state_desired[i].green = green;
_state_desired[i].blue = blue;
_send_required = true;
}
}
} else if (instance < OREOLED_NUM_LEDS) {
// store desired rgb for one LED
if (_state_desired[instance].mode != OREOLED_MODE_RGB || _state_desired[instance].red != red || _state_desired[instance].green != green || _state_desired[instance].blue != blue) {
_state_desired[instance].mode = OREOLED_MODE_RGB;
_state_desired[instance].red = red;
_state_desired[instance].green = green;
_state_desired[instance].blue = blue;
_send_required = true;
}
}
// release semaphore
_state_desired_semaphore = false;
}
// set_macro - set macro for one or all LEDs
void OreoLED_PX4::set_macro(uint8_t instance, oreoled_macro macro)
{
// return immediately if no healthy leds
if (!_overall_health) {
return;
}
// set semaphore
_state_desired_semaphore = true;
// check for all instances
if (instance == OREOLED_INSTANCE_ALL) {
// store desired macro for all LEDs
for (uint8_t i=0; i<OREOLED_NUM_LEDS; i++) {
if (_state_desired[i].mode != OREOLED_MODE_MACRO || _state_desired[i].macro != macro) {
_state_desired[i].mode = OREOLED_MODE_MACRO;
_state_desired[i].macro = macro;
_send_required = true;
}
}
} else if (instance < OREOLED_NUM_LEDS) {
// store desired macro for one LED
if (_state_desired[instance].mode != OREOLED_MODE_MACRO || _state_desired[instance].macro != macro) {
_state_desired[instance].mode = OREOLED_MODE_MACRO;
_state_desired[instance].macro = macro;
_send_required = true;
}
}
// release semaphore
_state_desired_semaphore = false;
}
// send_bytes - send bytes to one or all LEDs
void OreoLED_PX4::send_bytes(uint8_t instance, uint8_t num_bytes, uint8_t bytes[OREOLED_CMD_LENGTH_MAX])
{
// return immediately if no healthy leds
if (!_overall_health) {
return;
}
// set semaphore
_state_desired_semaphore = true;
// send bytes to some or all leds
oreoled_cmd_t new_cmd;
new_cmd.led_num = instance;
new_cmd.num_bytes = num_bytes;
memcpy(new_cmd.buff, bytes, OREOLED_CMD_LENGTH_MAX);
ioctl(_oreoled_fd, OREOLED_SEND_BYTES, (unsigned long)&new_cmd);
// release semaphore
_state_desired_semaphore = false;
}
// update_timer - called by scheduler and updates PX4 driver with commands
void OreoLED_PX4::update_timer(void)
{
// exit immediately if unhealthy
if (!_overall_health) {
return;
}
// exit immediately if send not required, or state is being updated
if (!_send_required || _state_desired_semaphore) {
return;
}
// for each LED
for (uint8_t i=0; i<OREOLED_NUM_LEDS; i++) {
// check for state change
if (!(_state_desired[i] == _state_sent[i])) {
switch (_state_desired[i].mode) {
case OREOLED_MODE_PATTERN:
// not yet supported
break;
case OREOLED_MODE_MACRO:
{
oreoled_macrorun_t macro_run = {i, _state_desired[i].macro};
ioctl(_oreoled_fd, OREOLED_RUN_MACRO, (unsigned long)&macro_run);
}
break;
case OREOLED_MODE_RGB:
{
oreoled_rgbset_t rgb_set = {i, OREOLED_PATTERN_SOLID, _state_desired[i].red, _state_desired[i].green, _state_desired[i].blue};
ioctl(_oreoled_fd, OREOLED_SET_RGB, (unsigned long)&rgb_set);
}
break;
}
// save state change
_state_sent[i] = _state_desired[i];
}
}
// flag updates sent
_send_required = false;
}
// handle a LED_CONTROL message
void OreoLED_PX4::handle_led_control(mavlink_message_t *msg)
{
// exit immediately if unhealthy
if (!_overall_health) {
return;
}
// decode mavlink message
mavlink_led_control_t packet;
mavlink_msg_led_control_decode(msg, &packet);
// exit immediately if instance is invalid
if (packet.instance >= OREOLED_NUM_LEDS && packet.instance != OREOLED_INSTANCE_ALL) {
return;
}
// if pattern is OFF, we clear pattern override so normal lighting should resume
if (packet.pattern == LED_CONTROL_PATTERN_OFF) {
_pattern_override = 0;
return;
}
// custom pattern
if (packet.pattern == LED_CONTROL_PATTERN_CUSTOM) {
// sanity check length
if (packet.custom_len <= OREOLED_CMD_LENGTH_MAX) {
// send bytes
send_bytes(packet.instance, packet.custom_len, packet.custom_bytes);
_pattern_override = packet.pattern;
}
return;
}
// other patterns sent as macro
set_macro(packet.instance, (oreoled_macro)packet.pattern);
_pattern_override = packet.pattern;
}
#endif // CONFIG_HAL_BOARD == HAL_BOARD_PX4