mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-14 20:58:30 -04:00
4535bc4fd9
added a version that didn't have I term added to get a better indication of velocity estimation
351 lines
11 KiB
Plaintext
351 lines
11 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
//****************************************************************
|
|
// Function that will calculate the desired direction to fly and distance
|
|
//****************************************************************
|
|
static byte navigate()
|
|
{
|
|
// waypoint distance from plane
|
|
// ----------------------------
|
|
wp_distance = get_distance(¤t_loc, &next_WP);
|
|
home_distance = get_distance(¤t_loc, &home);
|
|
|
|
if (wp_distance < 0){
|
|
//gcs_send_text_P(SEVERITY_HIGH,PSTR("<navigate> WP error - distance < 0"));
|
|
//Serial.println(wp_distance,DEC);
|
|
//print_current_waypoints();
|
|
return 0;
|
|
}
|
|
|
|
// target_bearing is where we should be heading
|
|
// --------------------------------------------
|
|
target_bearing = get_bearing(¤t_loc, &next_WP);
|
|
home_to_copter_bearing = get_bearing(&home, ¤t_loc);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static bool check_missed_wp()
|
|
{
|
|
int32_t temp = target_bearing - original_target_bearing;
|
|
temp = wrap_180(temp);
|
|
return (abs(temp) > 10000); //we pased the waypoint by 10 °
|
|
}
|
|
|
|
// ------------------------------
|
|
|
|
static void calc_XY_velocity(){
|
|
// offset calculation of GPS speed:
|
|
// used for estimations below 1.5m/s
|
|
// our GPS is about 1m per
|
|
static int32_t last_longitude = 0;
|
|
static int32_t last_latutude = 0;
|
|
|
|
// y_GPS_speed positve = Up
|
|
// x_GPS_speed positve = Right
|
|
|
|
// this speed is ~ in cm because we are using 10^7 numbers from GPS
|
|
float tmp = 1.0/dTnav;
|
|
//int8_t tmp = 5;
|
|
|
|
int16_t x_diff = (g_gps->longitude - last_longitude) * tmp;
|
|
int16_t y_diff = (g_gps->latitude - last_latutude) * tmp;
|
|
|
|
// filter
|
|
x_GPS_speed = (x_GPS_speed * 3 + x_diff) / 4;
|
|
y_GPS_speed = (y_GPS_speed * 3 + y_diff) / 4;
|
|
|
|
if(g_gps->ground_speed > 120){
|
|
// Derive X/Y speed from GPS
|
|
// this is far more accurate when traveling about 1.5m/s
|
|
float temp = g_gps->ground_course * RADX100;
|
|
x_GPS_speed = sin(temp) * (float)g_gps->ground_speed;
|
|
y_GPS_speed = cos(temp) * (float)g_gps->ground_speed;
|
|
}
|
|
|
|
last_longitude = g_gps->longitude;
|
|
last_latutude = g_gps->latitude;
|
|
|
|
//Serial.printf("GS: %d \tx:%d \ty:%d\n", g_gps->ground_speed, x_GPS_speed, y_GPS_speed);
|
|
}
|
|
|
|
static void calc_location_error(struct Location *next_loc)
|
|
{
|
|
/*
|
|
Becuase we are using lat and lon to do our distance errors here's a quick chart:
|
|
100 = 1m
|
|
1000 = 11m = 36 feet
|
|
1800 = 19.80m = 60 feet
|
|
3000 = 33m
|
|
10000 = 111m
|
|
*/
|
|
|
|
// X Error
|
|
long_error = (float)(next_loc->lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 Go East
|
|
|
|
// Y Error
|
|
lat_error = next_loc->lat - current_loc.lat; // 500 - 0 = 500 Go North
|
|
}
|
|
|
|
#define NAV_ERR_MAX 800
|
|
static void calc_loiter(int x_error, int y_error)
|
|
{
|
|
// East/West
|
|
x_error = constrain(x_error, -NAV_ERR_MAX, NAV_ERR_MAX); //800
|
|
int16_t x_target_speed = g.pi_loiter_lon.get_p(x_error);
|
|
int16_t x_iterm = g.pi_loiter_lon.get_i(x_error, dTnav);
|
|
x_rate_error = x_target_speed - x_actual_speed;
|
|
x_rate_error = constrain(x_rate_error, -1000, 1000);
|
|
nav_lon_p = g.pi_nav_lon.get_p(x_rate_error);
|
|
nav_lon_p = constrain(nav_lon_p, -3500, 3500);
|
|
nav_lon = nav_lon_p + x_iterm;
|
|
|
|
// North/South
|
|
y_error = constrain(y_error, -NAV_ERR_MAX, NAV_ERR_MAX);
|
|
int16_t y_target_speed = g.pi_loiter_lat.get_p(y_error);
|
|
int16_t y_iterm = g.pi_loiter_lat.get_i(y_error, dTnav);
|
|
y_rate_error = y_target_speed - y_actual_speed; // 413
|
|
y_rate_error = constrain(y_rate_error, -1000, 1000); // added a rate error limit to keep pitching down to a minimum
|
|
nav_lat_p = g.pi_nav_lat.get_p(y_rate_error);
|
|
nav_lat_p = constrain(nav_lat_p, -3500, 3500);
|
|
nav_lat = nav_lat_p + y_iterm;
|
|
|
|
///*
|
|
int8_t ttt = 1.0/dTnav;
|
|
int16_t t2 = g.pi_nav_lat.get_integrator();
|
|
|
|
// 1 2 3 4 5 6 7 8 9 10
|
|
Serial.printf("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d\n",
|
|
wp_distance, //1
|
|
y_error, //2
|
|
y_GPS_speed, //3
|
|
y_actual_speed, //4 ;
|
|
y_target_speed, //5
|
|
y_rate_error, //6
|
|
nav_lat_p, //7
|
|
nav_lat, //8
|
|
y_iterm, //9
|
|
t2); //10
|
|
//*/
|
|
|
|
/*
|
|
int16_t t1 = g.pi_nav_lon.get_integrator(); // X
|
|
Serial.printf("%d, %1.4f, %d, %d, %d, %d, %d, %d, %d, %d\n",
|
|
wp_distance, //1
|
|
dTnav, //2
|
|
x_error, //3
|
|
x_GPS_speed, //4
|
|
x_actual_speed, //5
|
|
x_target_speed, //6
|
|
x_rate_error, //7
|
|
nav_lat, //8
|
|
x_iterm, //9
|
|
t1); //10
|
|
//*/
|
|
}
|
|
|
|
//wp_distance,ttt, y_error, y_GPS_speed, y_actual_speed, y_target_speed, y_rate_error, nav_lat, y_iterm, t2
|
|
|
|
|
|
#define ERR_GAIN .01
|
|
// called at 50hz
|
|
static void estimate_velocity()
|
|
{
|
|
// we need to extimate velocity when below GPS threshold of 1.5m/s
|
|
if(g_gps->ground_speed < 150){
|
|
// some smoothing to prevent bumpy rides
|
|
x_actual_speed = (x_actual_speed * 15 + x_GPS_speed) / 16;
|
|
y_actual_speed = (y_actual_speed * 15 + y_GPS_speed) / 16;
|
|
|
|
}else{
|
|
// less smoothing needed since the GPS already filters
|
|
x_actual_speed = (x_actual_speed * 3 + x_GPS_speed) / 4;
|
|
y_actual_speed = (y_actual_speed * 3 + y_GPS_speed) / 4;
|
|
}
|
|
}
|
|
|
|
// this calculation rotates our World frame of reference to the copter's frame of reference
|
|
// We use the DCM's matrix to precalculate these trig values at 50hz
|
|
static void calc_loiter_pitch_roll()
|
|
{
|
|
//Serial.printf("ys %ld, cx %1.4f, _cx %1.4f | sy %1.4f, _sy %1.4f\n", dcm.yaw_sensor, cos_yaw_x, _cos_yaw_x, sin_yaw_y, _sin_yaw_y);
|
|
// rotate the vector
|
|
nav_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * cos_yaw_x;
|
|
nav_pitch = (float)nav_lon * cos_yaw_x + (float)nav_lat * sin_yaw_y;
|
|
|
|
// flip pitch because forward is negative
|
|
nav_pitch = -nav_pitch;
|
|
}
|
|
|
|
static void calc_nav_rate(int max_speed)
|
|
{
|
|
/*
|
|
|< WP Radius
|
|
0 1 2 3 4 5 6 7 8m
|
|
...|...|...|...|...|...|...|...|
|
|
100 | 200 300 400cm/s
|
|
| +|+
|
|
|< we should slow to 1.5 m/s as we hit the target
|
|
*/
|
|
|
|
// max_speed is default 400 or 4m/s
|
|
// (wp_distance * 50) = 1/2 of the distance converted to speed
|
|
// wp_distance is always in m/s and not cm/s - I know it's stupid that way
|
|
// for example 4m from target = 200cm/s speed
|
|
// we choose the lowest speed based on disance
|
|
max_speed = min(max_speed, (wp_distance * 50));
|
|
|
|
// limit the ramp up of the speed
|
|
// waypoint_speed_gov is reset to 0 at each new WP command
|
|
if(waypoint_speed_gov < max_speed){
|
|
waypoint_speed_gov += (int)(100.0 * dTnav); // increase at 1.5/ms
|
|
|
|
// go at least 50cm/s
|
|
max_speed = max(50, waypoint_speed_gov);
|
|
// limit with governer
|
|
max_speed = min(max_speed, waypoint_speed_gov);
|
|
}
|
|
|
|
float temp = (target_bearing - g_gps->ground_course) * RADX100;
|
|
|
|
// push us towards the original track
|
|
update_crosstrack();
|
|
|
|
// heading laterally, we want a zero speed here
|
|
x_actual_speed = -sin(temp) * (float)g_gps->ground_speed;
|
|
x_rate_error = crosstrack_error -x_actual_speed;
|
|
x_rate_error = constrain(x_rate_error, -1400, 1400);
|
|
nav_lon = constrain(g.pi_nav_lon.get_pi(x_rate_error, dTnav), -3500, 3500);
|
|
/*Serial.printf("max_sp %d,\tx_actual_sp %d,\tx_rate_err: %d, Xtrack %d, \tnav_lon: %d,\ty_actual_sp %d,\ty_rate_err: %d,\tnav_lat: %d,\n",
|
|
max_speed,
|
|
x_actual_speed,
|
|
x_rate_error,
|
|
crosstrack_error,
|
|
nav_lon,
|
|
y_actual_speed,
|
|
y_rate_error,
|
|
nav_lat);
|
|
//*/
|
|
|
|
// heading towards target
|
|
y_actual_speed = cos(temp) * (float)g_gps->ground_speed;
|
|
y_rate_error = max_speed - y_actual_speed; // 413
|
|
y_rate_error = constrain(y_rate_error, -1400, 1400); // added a rate error limit to keep pitching down to a minimum
|
|
nav_lat = constrain(g.pi_nav_lat.get_pi(y_rate_error, dTnav), -3500, 3500);
|
|
|
|
|
|
// nav_lat and nav_lon will be rotated to the angle of the quad in calc_nav_pitch_roll()
|
|
|
|
/*Serial.printf("max_speed: %d, xspeed: %d, yspeed: %d, x_re: %d, y_re: %d, nav_lon: %ld, nav_lat: %ld ",
|
|
max_speed,
|
|
x_actual_speed,
|
|
y_actual_speed,
|
|
x_rate_error,
|
|
y_rate_error,
|
|
nav_lon,
|
|
nav_lat);*/
|
|
}
|
|
|
|
static void update_crosstrack(void)
|
|
{
|
|
// Crosstrack Error
|
|
// ----------------
|
|
if (cross_track_test() < 4000) { // If we are too far off or too close we don't do track following
|
|
float temp = (target_bearing - original_target_bearing) * RADX100;
|
|
crosstrack_error = sin(temp) * (wp_distance * g.crosstrack_gain); // Meters we are off track line
|
|
crosstrack_error = constrain(crosstrack_error, -1200, 1200);
|
|
}
|
|
}
|
|
|
|
// used to generate the offset angle for testing crosstrack viability
|
|
static int32_t cross_track_test()
|
|
{
|
|
int32_t temp;
|
|
temp = target_bearing - original_target_bearing;
|
|
temp = wrap_180(temp);
|
|
return abs(temp);
|
|
}
|
|
|
|
|
|
// this calculation is different than loiter above because we are in a different Frame of Reference.
|
|
// nav_lat is pointed towards the target, where as in Loiter, nav_lat is pointed north!
|
|
static void calc_nav_pitch_roll()
|
|
{
|
|
int32_t angle = wrap_360(dcm.yaw_sensor - target_bearing);
|
|
float temp = (9000l - angle) * RADX100;
|
|
//t: 1.5465, t1: -10.9451, t2: 1.5359, t3: 1.5465
|
|
float _cos_yaw_x = cos(temp);
|
|
float _sin_yaw_y = sin(temp);
|
|
|
|
// rotate the vector
|
|
nav_roll = (float)nav_lon * _sin_yaw_y - (float)nav_lat * _cos_yaw_x;
|
|
nav_pitch = (float)nav_lon * _cos_yaw_x + (float)nav_lat * _sin_yaw_y;
|
|
|
|
// flip pitch because forward is negative
|
|
nav_pitch = -nav_pitch;
|
|
|
|
/*Serial.printf("Yaw %d, Tbear:%d, \tangle: %d, \t_cos_yaw_x:%1.4f, _sin_yaw_y:%1.4f, nav_roll:%d, nav_pitch:%d\n",
|
|
dcm.yaw_sensor,
|
|
target_bearing,
|
|
angle,
|
|
_cos_yaw_x,
|
|
_sin_yaw_y,
|
|
nav_roll,
|
|
nav_pitch);*/
|
|
}
|
|
|
|
static int32_t get_altitude_error()
|
|
{
|
|
return next_WP.alt - current_loc.alt;
|
|
}
|
|
|
|
static int32_t wrap_360(int32_t error)
|
|
{
|
|
if (error > 36000) error -= 36000;
|
|
if (error < 0) error += 36000;
|
|
return error;
|
|
}
|
|
|
|
static int32_t wrap_180(int32_t error)
|
|
{
|
|
if (error > 18000) error -= 36000;
|
|
if (error < -18000) error += 36000;
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
//static int32_t get_altitude_above_home(void)
|
|
{
|
|
// This is the altitude above the home location
|
|
// The GPS gives us altitude at Sea Level
|
|
// if you slope soar, you should see a negative number sometimes
|
|
// -------------------------------------------------------------
|
|
return current_loc.alt - home.alt;
|
|
}
|
|
*/
|
|
// distance is returned in meters
|
|
static int32_t get_distance(struct Location *loc1, struct Location *loc2)
|
|
{
|
|
//if(loc1->lat == 0 || loc1->lng == 0)
|
|
// return -1;
|
|
//if(loc2->lat == 0 || loc2->lng == 0)
|
|
// return -1;
|
|
float dlat = (float)(loc2->lat - loc1->lat);
|
|
float dlong = ((float)(loc2->lng - loc1->lng)) * scaleLongDown;
|
|
return sqrt(sq(dlat) + sq(dlong)) * .01113195;
|
|
}
|
|
/*
|
|
//static int32_t get_alt_distance(struct Location *loc1, struct Location *loc2)
|
|
{
|
|
return abs(loc1->alt - loc2->alt);
|
|
}
|
|
*/
|
|
static int32_t get_bearing(struct Location *loc1, struct Location *loc2)
|
|
{
|
|
int32_t off_x = loc2->lng - loc1->lng;
|
|
int32_t off_y = (loc2->lat - loc1->lat) * scaleLongUp;
|
|
int32_t bearing = 9000 + atan2(-off_y, off_x) * 5729.57795;
|
|
if (bearing < 0) bearing += 36000;
|
|
return bearing;
|
|
}
|