ardupilot/ArduPlane/geofence.cpp
2020-02-05 10:51:28 +11:00

544 lines
16 KiB
C++

/*
* geo-fencing support
* Andrew Tridgell, December 2011
*/
#include "Plane.h"
#if GEOFENCE_ENABLED == ENABLED
#define MIN_GEOFENCE_POINTS 5 // index [0] for return point, must be inside polygon
// index [1 to n-1] to define a polygon, minimum 3 for a triangle
// index [n] (must be same as index 1 to close the polygon)
/*
* The state of geo-fencing. This structure is dynamically allocated
* the first time it is used. This means we only pay for the pointer
* and not the structure on systems where geo-fencing is not being
* used.
*
* We store a copy of the boundary in memory as we need to access it
* very quickly at runtime
*/
static struct GeofenceState {
Vector2l *boundary; // point 0 is the return point
uint32_t breach_time;
int32_t guided_lat;
int32_t guided_lng;
uint16_t breach_count;
uint8_t breach_type;
uint8_t old_switch_position;
uint8_t num_points;
bool boundary_uptodate;
bool fence_triggered;
bool is_pwm_enabled; //true if above FENCE_ENABLE_PWM threshold
bool is_enabled;
bool floor_enabled; //typically used for landing
} *geofence_state;
static const StorageAccess fence_storage(StorageManager::StorageFence);
/*
maximum number of fencepoints
*/
uint8_t Plane::max_fencepoints(void) const
{
return MIN(255U, fence_storage.size() / sizeof(Vector2l));
}
/*
* fence boundaries fetch/store
*/
Vector2l Plane::get_fence_point_with_index(uint8_t i) const
{
if (i > (uint8_t)g.fence_total || i >= max_fencepoints()) {
return Vector2l(0,0);
}
// read fence point
return Vector2l(fence_storage.read_uint32(i * sizeof(Vector2l)),
fence_storage.read_uint32(i * sizeof(Vector2l) + sizeof(int32_t)));
}
// save a fence point
void Plane::set_fence_point_with_index(const Vector2l &point, unsigned i)
{
if (i >= (unsigned)g.fence_total.get() || i >= max_fencepoints()) {
// not allowed
return;
}
fence_storage.write_uint32(i * sizeof(Vector2l), point.x);
fence_storage.write_uint32(i * sizeof(Vector2l) + sizeof(int32_t), point.y);
if (geofence_state != nullptr) {
geofence_state->boundary_uptodate = false;
}
}
/*
* allocate and fill the geofence state structure
*/
void Plane::geofence_load(void)
{
if (geofence_state == nullptr) {
uint16_t boundary_size = sizeof(Vector2l) * max_fencepoints();
if (hal.util->available_memory() < 100 + boundary_size + sizeof(struct GeofenceState)) {
// too risky to enable as we could run out of stack
geofence_disable_and_send_error_msg("low on memory");
return;
}
geofence_state = (struct GeofenceState *)calloc(1, sizeof(struct GeofenceState));
if (geofence_state == nullptr) {
// not much we can do here except disable it
geofence_disable_and_send_error_msg("failed to init state memory");
return;
}
geofence_state->boundary = (Vector2l *)calloc(1, boundary_size);
if (geofence_state->boundary == nullptr) {
free(geofence_state);
geofence_state = nullptr;
geofence_disable_and_send_error_msg("failed to init boundary memory");
return;
}
geofence_state->old_switch_position = 254;
}
if (g.fence_total <= 0) {
g.fence_total.set(0);
return;
}
for (uint8_t i = 0; i<g.fence_total; i++) {
geofence_state->boundary[i] = get_fence_point_with_index(i);
}
geofence_state->num_points = g.fence_total;
if (!Polygon_complete(&geofence_state->boundary[1], geofence_state->num_points-1)) {
geofence_disable_and_send_error_msg("pt[1] and pt[total-1] must match");
return;
}
if (Polygon_outside(geofence_state->boundary[0], &geofence_state->boundary[1], geofence_state->num_points-1)) {
geofence_disable_and_send_error_msg("pt[0] must be inside fence");
return;
}
geofence_state->boundary_uptodate = true;
geofence_state->fence_triggered = false;
gcs().send_text(MAV_SEVERITY_INFO,"Geofence loaded");
gcs().send_message(MSG_FENCE_STATUS);
}
/*
* Disable geofence and send an error message string
*/
void Plane::geofence_disable_and_send_error_msg(const char *errorMsg)
{
g.fence_action.set(FENCE_ACTION_NONE);
gcs().send_text(MAV_SEVERITY_WARNING,"Geofence error, %s", errorMsg);
}
/*
* return true if a geo-fence has been uploaded and
* FENCE_ACTION is 1 (not necessarily enabled)
*/
bool Plane::geofence_present(void)
{
//require at least a return point and a triangle
//to define a geofence area:
if (g.fence_action == FENCE_ACTION_NONE || g.fence_total < MIN_GEOFENCE_POINTS) {
return false;
}
return true;
}
/*
check FENCE_CHANNEL and update the is_pwm_enabled state
*/
void Plane::geofence_update_pwm_enabled_state()
{
if (rc_failsafe_active()) {
// do nothing based on the radio channel value as it may be at bind value
return;
}
bool is_pwm_enabled;
if (g.fence_channel == 0) {
is_pwm_enabled = false;
} else {
is_pwm_enabled = (RC_Channels::get_radio_in(g.fence_channel-1) > FENCE_ENABLE_PWM);
}
if (is_pwm_enabled && geofence_state == nullptr) {
// we need to load the fence
geofence_load();
return;
}
if (geofence_state == nullptr) {
// not loaded
return;
}
if (geofence_state->is_pwm_enabled != is_pwm_enabled) {
geofence_set_enabled(is_pwm_enabled);
geofence_state->is_pwm_enabled = is_pwm_enabled;
}
}
//return true on success, false on failure
bool Plane::geofence_set_enabled(bool enable)
{
if (geofence_state == nullptr && enable) {
geofence_load();
}
if (geofence_state == nullptr) {
return false;
}
geofence_state->is_enabled = enable;
if (enable == true) {
//turn the floor back on if it had been off
geofence_set_floor_enabled(true);
}
return true;
}
/*
* return true if geo-fencing is enabled
*/
bool Plane::geofence_enabled(void)
{
if (g.fence_action == FENCE_ACTION_NONE) {
if (geofence_state != nullptr) {
geofence_state->fence_triggered = false;
}
return false;
}
geofence_update_pwm_enabled_state();
if (geofence_state == nullptr) {
return false;
}
if (!geofence_present() ||
(g.fence_action != FENCE_ACTION_REPORT && !geofence_state->is_enabled)) {
// geo-fencing is disabled
// re-arm for when the channel trigger is switched on
geofence_state->fence_triggered = false;
return false;
}
return true;
}
/*
* Set floor state IF the fence is present.
* Return false on failure to set floor state.
*/
bool Plane::geofence_set_floor_enabled(bool floor_enable) {
if (geofence_state == nullptr) {
return false;
}
geofence_state->floor_enabled = floor_enable;
return true;
}
/*
* return true if we have breached the geo-fence minimum altiude
*/
bool Plane::geofence_check_minalt(void)
{
if (g.fence_maxalt <= g.fence_minalt) {
return false;
}
if (g.fence_minalt == 0) {
return false;
}
return (adjusted_altitude_cm() < (g.fence_minalt*100.0f) + home.alt);
}
/*
* return true if we have breached the geo-fence maximum altiude
*/
bool Plane::geofence_check_maxalt(void)
{
if (g.fence_maxalt <= g.fence_minalt) {
return false;
}
if (g.fence_maxalt == 0) {
return false;
}
return (adjusted_altitude_cm() > (g.fence_maxalt*100.0f) + home.alt);
}
/*
pre-arm check for being inside the fence
*/
bool Plane::geofence_prearm_check(void)
{
if (!geofence_enabled()) {
gcs().send_text(MAV_SEVERITY_WARNING, "PreArm: Fence not enabled");
return false;
}
/* allocate the geo-fence state if need be */
if (geofence_state == nullptr || !geofence_state->boundary_uptodate) {
geofence_load();
if (!geofence_enabled()) {
// may have been disabled by load
gcs().send_text(MAV_SEVERITY_WARNING, "PreArm: Fence load failed");
return false;
}
}
if (geofence_state->floor_enabled && g.fence_minalt != 0) {
// can't use minalt with prearm check
gcs().send_text(MAV_SEVERITY_WARNING, "PreArm: Fence floor enabled");
return false;
}
if (geofence_check_maxalt()) {
gcs().send_text(MAV_SEVERITY_WARNING, "PreArm: maxalt breached");
return false;
}
struct Location loc;
if (!ahrs.get_position(loc)) {
gcs().send_text(MAV_SEVERITY_WARNING, "PreArm: no position available");
// must have position
return false;
}
Vector2l location;
location.x = loc.lat;
location.y = loc.lng;
bool outside = Polygon_outside(location, &geofence_state->boundary[1], geofence_state->num_points-1);
if (outside) {
gcs().send_text(MAV_SEVERITY_WARNING, "PreArm: outside fence");
return false;
}
return true;
}
/*
* check if we have breached the geo-fence
*/
void Plane::geofence_check(bool altitude_check_only)
{
if (!geofence_enabled()) {
// switch back to the chosen control mode if still in
// GUIDED to the return point
if (geofence_state != nullptr &&
(g.fence_action == FENCE_ACTION_GUIDED || g.fence_action == FENCE_ACTION_GUIDED_THR_PASS || g.fence_action == FENCE_ACTION_RTL) &&
(control_mode == &mode_guided || control_mode == &mode_avoidADSB) &&
geofence_present() &&
geofence_state->boundary_uptodate &&
geofence_state->old_switch_position == oldSwitchPosition &&
guided_WP_loc.lat == geofence_state->guided_lat &&
guided_WP_loc.lng == geofence_state->guided_lng) {
geofence_state->old_switch_position = 254;
set_mode(*previous_mode, ModeReason::GCS_COMMAND);
}
return;
}
/* allocate the geo-fence state if need be */
if (geofence_state == nullptr || !geofence_state->boundary_uptodate) {
geofence_load();
if (!geofence_enabled()) {
// may have been disabled by load
return;
}
}
bool outside = false;
uint8_t breach_type = FENCE_BREACH_NONE;
struct Location loc;
// Never trigger a fence breach in the final stage of landing
if (landing.is_expecting_impact()) {
return;
}
if (geofence_state->floor_enabled && geofence_check_minalt()) {
outside = true;
breach_type = FENCE_BREACH_MINALT;
} else if (geofence_check_maxalt()) {
outside = true;
breach_type = FENCE_BREACH_MAXALT;
} else if (!altitude_check_only && ahrs.get_position(loc)) {
Vector2l location;
location.x = loc.lat;
location.y = loc.lng;
outside = Polygon_outside(location, &geofence_state->boundary[1], geofence_state->num_points-1);
if (outside) {
breach_type = FENCE_BREACH_BOUNDARY;
}
}
if (!outside) {
if (geofence_state->fence_triggered && !altitude_check_only) {
// we have moved back inside the fence
geofence_state->fence_triggered = false;
gcs().send_text(MAV_SEVERITY_INFO,"Geofence OK");
#if FENCE_TRIGGERED_PIN > 0
hal.gpio->pinMode(FENCE_TRIGGERED_PIN, HAL_GPIO_OUTPUT);
hal.gpio->write(FENCE_TRIGGERED_PIN, 0);
#endif
gcs().send_message(MSG_FENCE_STATUS);
}
// we're inside, all is good with the world
return;
}
// we are outside the fence
if (geofence_state->fence_triggered &&
(control_mode == &mode_guided || control_mode == &mode_avoidADSB || control_mode == &mode_rtl || g.fence_action == FENCE_ACTION_REPORT)) {
// we have already triggered, don't trigger again until the
// user disables/re-enables using the fence channel switch
return;
}
// we are outside, and have not previously triggered.
geofence_state->fence_triggered = true;
geofence_state->breach_count++;
geofence_state->breach_time = millis();
geofence_state->breach_type = breach_type;
#if FENCE_TRIGGERED_PIN > 0
hal.gpio->pinMode(FENCE_TRIGGERED_PIN, HAL_GPIO_OUTPUT);
hal.gpio->write(FENCE_TRIGGERED_PIN, 1);
#endif
gcs().send_text(MAV_SEVERITY_NOTICE,"Geofence triggered");
gcs().send_message(MSG_FENCE_STATUS);
// see what action the user wants
switch (g.fence_action) {
case FENCE_ACTION_REPORT:
break;
case FENCE_ACTION_GUIDED:
case FENCE_ACTION_GUIDED_THR_PASS:
case FENCE_ACTION_RTL:
// make sure we don't auto trim the surfaces on this mode change
int8_t saved_auto_trim = g.auto_trim;
g.auto_trim.set(0);
if (g.fence_action == FENCE_ACTION_RTL) {
set_mode(mode_rtl, ModeReason::FENCE_BREACHED);
} else {
set_mode(mode_guided, ModeReason::FENCE_BREACHED);
}
g.auto_trim.set(saved_auto_trim);
if (g.fence_ret_rally != 0 || g.fence_action == FENCE_ACTION_RTL) { //return to a rally point
guided_WP_loc = rally.calc_best_rally_or_home_location(current_loc, get_RTL_altitude());
} else { //return to fence return point, not a rally point
guided_WP_loc = {};
if (g.fence_retalt > 0) {
//fly to the return point using fence_retalt
guided_WP_loc.alt = home.alt + 100.0f*g.fence_retalt;
} else if (g.fence_minalt >= g.fence_maxalt) {
// invalid min/max, use RTL_altitude
guided_WP_loc.alt = home.alt + g.RTL_altitude_cm;
} else {
// fly to the return point, with an altitude half way between
// min and max
guided_WP_loc.alt = home.alt + 100.0f*(g.fence_minalt + g.fence_maxalt)/2;
}
guided_WP_loc.lat = geofence_state->boundary[0].x;
guided_WP_loc.lng = geofence_state->boundary[0].y;
}
geofence_state->guided_lat = guided_WP_loc.lat;
geofence_state->guided_lng = guided_WP_loc.lng;
geofence_state->old_switch_position = oldSwitchPosition;
if (g.fence_action != FENCE_ACTION_RTL) { //not needed for RTL mode
setup_terrain_target_alt(guided_WP_loc);
set_guided_WP();
}
if (g.fence_action == FENCE_ACTION_GUIDED_THR_PASS) {
guided_throttle_passthru = true;
}
break;
}
}
/*
* return true if geofencing allows stick mixing. When we have
* triggered failsafe and are in GUIDED mode then stick mixing is
* disabled. Otherwise the aircraft may not be able to recover from
* a breach of the geo-fence
*/
bool Plane::geofence_stickmixing(void) {
if (geofence_enabled() &&
geofence_state != nullptr &&
geofence_state->fence_triggered &&
(control_mode == &mode_guided || control_mode == &mode_avoidADSB)) {
// don't mix in user input
return false;
}
// normal mixing rules
return true;
}
/*
*
*/
void Plane::geofence_send_status(mavlink_channel_t chan)
{
if (geofence_enabled() && geofence_state != nullptr) {
mavlink_msg_fence_status_send(chan,
(int8_t)geofence_state->fence_triggered,
geofence_state->breach_count,
geofence_state->breach_type,
geofence_state->breach_time);
}
}
/*
return true if geofence has been breached
*/
bool Plane::geofence_breached(void)
{
return geofence_state ? geofence_state->fence_triggered : false;
}
#else // GEOFENCE_ENABLED
void Plane::geofence_check(bool altitude_check_only) {
}
bool Plane::geofence_stickmixing(void) {
return true;
}
bool Plane::geofence_enabled(void) {
return false;
}
bool Plane::geofence_present(void) {
return false;
}
bool Plane::geofence_set_enabled(bool enable) {
return false;
}
bool Plane::geofence_set_floor_enabled(bool floor_enable) {
return false;
}
bool Plane::geofence_breached(void)
{
return false;
}
#endif // GEOFENCE_ENABLED