ardupilot/ArduPlane/Attitude.pde
Andrew Tridgell 6251d0510a Plane: obey pitch trim and throttle pitch feed forward in new controllers
Pair-Programmed-With: Paul Riseborough <p_riseborough@live.com.au>
2013-05-05 21:51:09 +10:00

779 lines
28 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
//****************************************************************
// Function that controls aileron/rudder, elevator, rudder (if 4 channel control) and throttle to produce desired attitude and airspeed.
//****************************************************************
/*
get a speed scaling number for control surfaces. This is applied to
PIDs to change the scaling of the PID with speed. At high speed we
move the surfaces less, and at low speeds we move them more.
*/
static float get_speed_scaler(void)
{
float aspeed, speed_scaler;
if (ahrs.airspeed_estimate(&aspeed)) {
if (aspeed > 0) {
speed_scaler = g.scaling_speed / aspeed;
} else {
speed_scaler = 2.0;
}
speed_scaler = constrain_float(speed_scaler, 0.5, 2.0);
} else {
if (g.channel_throttle.servo_out > 0) {
speed_scaler = 0.5 + ((float)THROTTLE_CRUISE / g.channel_throttle.servo_out / 2.0); // First order taylor expansion of square root
// Should maybe be to the 2/7 power, but we aren't goint to implement that...
}else{
speed_scaler = 1.67;
}
// This case is constrained tighter as we don't have real speed info
speed_scaler = constrain_float(speed_scaler, 0.6, 1.67);
}
return speed_scaler;
}
/*
return true if the current settings and mode should allow for stick mixing
*/
static bool stick_mixing_enabled(void)
{
if (control_mode == CIRCLE || control_mode > FLY_BY_WIRE_B) {
// we're in an auto mode. Check the stick mixing flag
if (g.stick_mixing != STICK_MIXING_DISABLED &&
geofence_stickmixing() &&
failsafe == FAILSAFE_NONE &&
(g.throttle_fs_enabled == 0 ||
g.channel_throttle.radio_in >= g.throttle_fs_value)) {
// we're in an auto mode, and haven't triggered failsafe
return true;
} else {
return false;
}
}
// non-auto mode. Always do stick mixing
return true;
}
/*
this is the main roll stabilization function. It takes the
previously set nav_roll calculates roll servo_out to try to
stabilize the plane at the given roll
*/
static void stabilize_roll(float speed_scaler)
{
if (crash_timer > 0) {
nav_roll_cd = 0;
}
if (inverted_flight) {
// we want to fly upside down. We need to cope with wrap of
// the roll_sensor interfering with wrap of nav_roll, which
// would really confuse the PID code. The easiest way to
// handle this is to ensure both go in the same direction from
// zero
nav_roll_cd += 18000;
if (ahrs.roll_sensor < 0) nav_roll_cd -= 36000;
}
switch (g.att_controller) {
case ATT_CONTROL_APMCONTROL:
// calculate roll and pitch control using new APM_Control library
g.channel_roll.servo_out = g.rollController.get_servo_out(nav_roll_cd, speed_scaler, control_mode == STABILIZE, g.flybywire_airspeed_min);
break;
default:
// Calculate dersired servo output for the roll
// ---------------------------------------------
g.channel_roll.servo_out = g.pidServoRoll.get_pid_4500((nav_roll_cd - ahrs.roll_sensor), speed_scaler);
break;
}
}
/*
this is the main pitch stabilization function. It takes the
previously set nav_pitch and calculates servo_out values to try to
stabilize the plane at the given attitude.
*/
static void stabilize_pitch(float speed_scaler)
{
int32_t demanded_pitch = nav_pitch_cd + g.pitch_trim_cd + g.channel_throttle.servo_out * g.kff_throttle_to_pitch;
switch (g.att_controller) {
case ATT_CONTROL_APMCONTROL: {
g.channel_pitch.servo_out = g.pitchController.get_servo_out(demanded_pitch,
speed_scaler,
control_mode == STABILIZE,
g.flybywire_airspeed_min, g.flybywire_airspeed_max);
break;
}
default: {
int32_t tempcalc = demanded_pitch - ahrs.pitch_sensor;
tempcalc += fabsf(ahrs.roll_sensor * g.kff_pitch_compensation);
if (abs(ahrs.roll_sensor) > 9000) {
// when flying upside down the elevator control is inverted
tempcalc = -tempcalc;
}
g.channel_pitch.servo_out = g.pidServoPitch.get_pid_4500(tempcalc, speed_scaler);
break;
}
}
}
/*
this gives the user control of the aircraft in stabilization modes
*/
static void stabilize_stick_mixing_direct()
{
if (!stick_mixing_enabled() ||
control_mode == FLY_BY_WIRE_A ||
control_mode == FLY_BY_WIRE_B ||
control_mode == TRAINING) {
return;
}
// do direct stick mixing on aileron/elevator
float ch1_inf;
float ch2_inf;
ch1_inf = (float)g.channel_roll.radio_in - (float)g.channel_roll.radio_trim;
ch1_inf = fabsf(ch1_inf);
ch1_inf = min(ch1_inf, 400.0);
ch1_inf = ((400.0 - ch1_inf) /400.0);
ch2_inf = (float)g.channel_pitch.radio_in - g.channel_pitch.radio_trim;
ch2_inf = fabsf(ch2_inf);
ch2_inf = min(ch2_inf, 400.0);
ch2_inf = ((400.0 - ch2_inf) /400.0);
// scale the sensor input based on the stick input
// -----------------------------------------------
g.channel_roll.servo_out *= ch1_inf;
g.channel_pitch.servo_out *= ch2_inf;
// Mix in stick inputs
// -------------------
g.channel_roll.servo_out += g.channel_roll.pwm_to_angle();
g.channel_pitch.servo_out += g.channel_pitch.pwm_to_angle();
}
/*
this gives the user control of the aircraft in stabilization modes
using FBW style controls
*/
static void stabilize_stick_mixing_fbw()
{
if (!stick_mixing_enabled() ||
control_mode == FLY_BY_WIRE_A ||
control_mode == FLY_BY_WIRE_B ||
control_mode == TRAINING) {
return;
}
// do FBW style stick mixing. We don't treat it linearly
// however. For inputs up to half the maximum, we use linear
// addition to the nav_roll and nav_pitch. Above that it goes
// non-linear and ends up as 2x the maximum, to ensure that
// the user can direct the plane in any direction with stick
// mixing.
float roll_input = g.channel_roll.norm_input();
if (fabsf(roll_input) > 0.5f) {
roll_input = (3*roll_input - 1);
}
nav_roll_cd += roll_input * g.roll_limit_cd;
nav_roll_cd = constrain_int32(nav_roll_cd, -g.roll_limit_cd.get(), g.roll_limit_cd.get());
float pitch_input = g.channel_pitch.norm_input();
if (fabsf(pitch_input) > 0.5f) {
pitch_input = (3*pitch_input - 1);
}
if (inverted_flight) {
pitch_input = -pitch_input;
}
if (pitch_input > 0) {
nav_pitch_cd += pitch_input * g.pitch_limit_max_cd;
} else {
nav_pitch_cd += -(pitch_input * g.pitch_limit_min_cd);
}
nav_pitch_cd = constrain_int32(nav_pitch_cd, g.pitch_limit_min_cd.get(), g.pitch_limit_max_cd.get());
}
/*
stabilize the yaw axis
*/
static void stabilize_yaw(float speed_scaler)
{
float ch4_inf = 1.0;
if (stick_mixing_enabled()) {
// stick mixing performed for rudder for all cases including FBW
// important for steering on the ground during landing
// -----------------------------------------------
ch4_inf = (float)g.channel_rudder.radio_in - (float)g.channel_rudder.radio_trim;
ch4_inf = fabsf(ch4_inf);
ch4_inf = min(ch4_inf, 400.0);
ch4_inf = ((400.0 - ch4_inf) /400.0);
}
// Apply output to Rudder
calc_nav_yaw(speed_scaler, ch4_inf);
g.channel_rudder.servo_out *= ch4_inf;
g.channel_rudder.servo_out += g.channel_rudder.pwm_to_angle();
}
/*
a special stabilization function for training mode
*/
static void stabilize_training(float speed_scaler)
{
if (training_manual_roll) {
g.channel_roll.servo_out = g.channel_roll.control_in;
} else {
// calculate what is needed to hold
stabilize_roll(speed_scaler);
if ((nav_roll_cd > 0 && g.channel_roll.control_in < g.channel_roll.servo_out) ||
(nav_roll_cd < 0 && g.channel_roll.control_in > g.channel_roll.servo_out)) {
// allow user to get out of the roll
g.channel_roll.servo_out = g.channel_roll.control_in;
}
}
if (training_manual_pitch) {
g.channel_pitch.servo_out = g.channel_pitch.control_in;
} else {
stabilize_pitch(speed_scaler);
if ((nav_pitch_cd > 0 && g.channel_pitch.control_in < g.channel_pitch.servo_out) ||
(nav_pitch_cd < 0 && g.channel_pitch.control_in > g.channel_pitch.servo_out)) {
// allow user to get back to level
g.channel_pitch.servo_out = g.channel_pitch.control_in;
}
}
stabilize_yaw(speed_scaler);
}
/*
main stabilization function for all 3 axes
*/
static void stabilize()
{
float speed_scaler = get_speed_scaler();
if (control_mode == TRAINING) {
stabilize_training(speed_scaler);
} else {
if (g.stick_mixing == STICK_MIXING_FBW && control_mode != STABILIZE) {
stabilize_stick_mixing_fbw();
}
stabilize_roll(speed_scaler);
stabilize_pitch(speed_scaler);
if (g.stick_mixing == STICK_MIXING_DIRECT || control_mode == STABILIZE) {
stabilize_stick_mixing_direct();
}
stabilize_yaw(speed_scaler);
}
}
static void crash_checker()
{
if(ahrs.pitch_sensor < -4500) {
crash_timer = 255;
}
if(crash_timer > 0)
crash_timer--;
}
static void calc_throttle()
{
if (g.throttle_cruise <= 1) {
// user has asked for zero throttle - this may be done by a
// mission which wants to turn off the engine for a parachute
// landing
g.channel_throttle.servo_out = 0;
return;
}
if (!alt_control_airspeed()) {
int16_t throttle_target = g.throttle_cruise + throttle_nudge;
// TODO: think up an elegant way to bump throttle when
// groundspeed_undershoot > 0 in the no airspeed sensor case; PID
// control?
// no airspeed sensor, we use nav pitch to determine the proper throttle output
// AUTO, RTL, etc
// ---------------------------------------------------------------------------
if (nav_pitch_cd >= 0) {
g.channel_throttle.servo_out = throttle_target + (g.throttle_max - throttle_target) * nav_pitch_cd / g.pitch_limit_max_cd;
} else {
g.channel_throttle.servo_out = throttle_target - (throttle_target - g.throttle_min) * nav_pitch_cd / g.pitch_limit_min_cd;
}
g.channel_throttle.servo_out = constrain_int16(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get());
} else {
// throttle control with airspeed compensation
// -------------------------------------------
energy_error = airspeed_energy_error + altitude_error_cm * 0.098f;
// positive energy errors make the throttle go higher
g.channel_throttle.servo_out = g.throttle_cruise + g.pidTeThrottle.get_pid(energy_error);
g.channel_throttle.servo_out += (g.channel_pitch.servo_out * g.kff_pitch_to_throttle);
g.channel_throttle.servo_out = constrain_int16(g.channel_throttle.servo_out,
g.throttle_min.get(), g.throttle_max.get());
}
}
/*****************************************
* Calculate desired roll/pitch/yaw angles (in medium freq loop)
*****************************************/
// Yaw is separated into a function for heading hold on rolling take-off
// ----------------------------------------------------------------------
static void calc_nav_yaw(float speed_scaler, float ch4_inf)
{
if (hold_course_cd != -1) {
// steering on or close to ground
int32_t bearing_error_cd = nav_controller->bearing_error_cd();
g.channel_rudder.servo_out = g.pidWheelSteer.get_pid_4500(bearing_error_cd, speed_scaler) +
g.kff_rudder_mix * g.channel_roll.servo_out;
g.channel_rudder.servo_out = constrain_int16(g.channel_rudder.servo_out, -4500, 4500);
return;
}
switch (g.att_controller) {
case ATT_CONTROL_APMCONTROL:
g.channel_rudder.servo_out = g.yawController.get_servo_out(speed_scaler,
control_mode == STABILIZE,
g.flybywire_airspeed_min, g.flybywire_airspeed_max);
break;
default:
// a PID to coordinate the turn (drive y axis accel to zero)
float temp_y = ins.get_accel().y;
int32_t error = -temp_y * 100.0f;
g.channel_rudder.servo_out = g.pidServoRudder.get_pid_4500(error, speed_scaler);
break;
}
// add in rudder mixing from roll
g.channel_rudder.servo_out += g.channel_roll.servo_out * g.kff_rudder_mix;
}
static void calc_nav_pitch()
{
// Calculate the Pitch of the plane
// --------------------------------
if (alt_control_airspeed()) {
nav_pitch_cd = -g.pidNavPitchAirspeed.get_pid(airspeed_error_cm);
} else {
nav_pitch_cd = g.pidNavPitchAltitude.get_pid(altitude_error_cm);
}
nav_pitch_cd = constrain_int32(nav_pitch_cd, g.pitch_limit_min_cd.get(), g.pitch_limit_max_cd.get());
}
static void calc_nav_roll()
{
nav_roll_cd = nav_controller->nav_roll_cd();
nav_roll_cd = constrain_int32(nav_roll_cd, -g.roll_limit_cd.get(), g.roll_limit_cd.get());
}
/*****************************************
* Roll servo slew limit
*****************************************/
/*
* float roll_slew_limit(float servo)
* {
* static float last;
* float temp = constrain_float(servo, last-ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f, last + ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f);
* last = servo;
* return temp;
* }*/
/*****************************************
* Throttle slew limit
*****************************************/
static void throttle_slew_limit(int16_t last_throttle)
{
// if slew limit rate is set to zero then do not slew limit
if (g.throttle_slewrate) {
// limit throttle change by the given percentage per second
float temp = g.throttle_slewrate * G_Dt * 0.01 * fabsf(g.channel_throttle.radio_max - g.channel_throttle.radio_min);
// allow a minimum change of 1 PWM per cycle
if (temp < 1) {
temp = 1;
}
g.channel_throttle.radio_out = constrain_int16(g.channel_throttle.radio_out, last_throttle - temp, last_throttle + temp);
}
}
/*
check for automatic takeoff conditions being met
*/
static bool auto_takeoff_check(void)
{
if (g_gps == NULL || g_gps->status() != GPS::GPS_OK_FIX_3D) {
// no auto takeoff without GPS lock
return false;
}
if (g_gps->ground_speed < g.takeoff_throttle_min_speed*100.0f) {
// we haven't reached the minimum ground speed
return false;
}
if (g.takeoff_throttle_min_accel > 0.0f) {
float xaccel = ins.get_accel().x;
if (ahrs.pitch_sensor > -3000 &&
ahrs.pitch_sensor < 4500 &&
abs(ahrs.roll_sensor) < 3000 &&
xaccel >= g.takeoff_throttle_min_accel) {
// trigger with minimum acceleration when flat
// Thanks to Chris Miser for this suggestion
gcs_send_text_fmt(PSTR("Triggered AUTO xaccel=%.1f"), xaccel);
return true;
}
return false;
}
// we're good for takeoff
return true;
}
/* We want to supress the throttle if we think we are on the ground and in an autopilot controlled throttle mode.
Disable throttle if following conditions are met:
* 1 - We are in Circle mode (which we use for short term failsafe), or in FBW-B or higher
* AND
* 2 - Our reported altitude is within 10 meters of the home altitude.
* 3 - Our reported speed is under 5 meters per second.
* 4 - We are not performing a takeoff in Auto mode or takeoff speed/accel not yet reached
* OR
* 5 - Home location is not set
*/
static bool suppress_throttle(void)
{
if (!throttle_suppressed) {
// we've previously met a condition for unsupressing the throttle
return false;
}
if (control_mode != CIRCLE && control_mode <= FLY_BY_WIRE_A) {
// the user controls the throttle
throttle_suppressed = false;
return false;
}
if (control_mode==AUTO && takeoff_complete == false && auto_takeoff_check()) {
// we're in auto takeoff
throttle_suppressed = false;
return false;
}
if (labs(home.alt - current_loc.alt) >= 1000) {
// we're more than 10m from the home altitude
throttle_suppressed = false;
return false;
}
if (g_gps != NULL &&
g_gps->status() >= GPS::GPS_OK_FIX_2D &&
g_gps->ground_speed >= 500) {
// if we have an airspeed sensor, then check it too, and
// require 5m/s. This prevents throttle up due to spiky GPS
// groundspeed with bad GPS reception
if (!airspeed.use() || airspeed.get_airspeed() >= 5) {
// we're moving at more than 5 m/s
throttle_suppressed = false;
return false;
}
}
// throttle remains suppressed
return true;
}
/*
implement a software VTail or elevon mixer. There are 4 different mixing modes
*/
static void channel_output_mixer(uint8_t mixing_type, int16_t &chan1_out, int16_t &chan2_out)
{
int16_t c1, c2;
int16_t v1, v2;
// first get desired elevator and rudder as -500..500 values
c1 = chan1_out - 1500;
c2 = chan2_out - 1500;
v1 = (c1 - c2)/2;
v2 = (c1 + c2)/2;
// now map to mixed output
switch (mixing_type) {
case MIXING_DISABLED:
return;
case MIXING_UPUP:
break;
case MIXING_UPDN:
v2 = -v2;
break;
case MIXING_DNUP:
v1 = -v1;
break;
case MIXING_DNDN:
v1 = -v1;
v2 = -v2;
break;
}
v1 = constrain_int16(v1, -500, 500);
v2 = constrain_int16(v2, -500, 500);
// scale for a 1500 center and 1000..2000 range, symmetric
chan1_out = 1500 + v1;
chan2_out = 1500 + v2;
}
/*****************************************
* Set the flight control servos based on the current calculated values
*****************************************/
static void set_servos(void)
{
int16_t last_throttle = g.channel_throttle.radio_out;
if (control_mode == MANUAL) {
// do a direct pass through of radio values
if (g.mix_mode == 0 || g.elevon_output != MIXING_DISABLED) {
g.channel_roll.radio_out = g.channel_roll.radio_in;
g.channel_pitch.radio_out = g.channel_pitch.radio_in;
} else {
g.channel_roll.radio_out = hal.rcin->read(CH_ROLL);
g.channel_pitch.radio_out = hal.rcin->read(CH_PITCH);
}
g.channel_throttle.radio_out = g.channel_throttle.radio_in;
g.channel_rudder.radio_out = g.channel_rudder.radio_in;
// setup extra aileron channel. We want this to come from the
// main aileron input channel, but using the 2nd channels dead
// zone, reverse and min/max settings. We need to use
// pwm_to_angle_dz() to ensure we don't trim the value for the
// deadzone of the main aileron channel, otherwise the 2nd
// aileron won't quite follow the first one
int16_t aileron_in = g.channel_roll.pwm_to_angle_dz(0);
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_aileron, aileron_in);
// setup extra elevator channel following the same logic
int16_t elevator_in = g.channel_pitch.pwm_to_angle_dz(0);
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_elevator, elevator_in);
// this aileron variant assumes you have the corresponding
// input channel setup in your transmitter for manual control
// of the 2nd aileron
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_aileron_with_input);
// do the same for the corresponding elevator variant
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_elevator_with_input);
// copy flap control from transmitter
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_flap_auto);
if (g.mix_mode == 0 && g.elevon_output == MIXING_DISABLED) {
// set any differential spoilers to follow the elevons in
// manual mode.
RC_Channel_aux::set_radio(RC_Channel_aux::k_dspoiler1, g.channel_roll.radio_out);
RC_Channel_aux::set_radio(RC_Channel_aux::k_dspoiler2, g.channel_pitch.radio_out);
}
} else {
if (g.mix_mode == 0) {
// both types of secondary aileron are slaved to the roll servo out
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_aileron, g.channel_roll.servo_out);
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_aileron_with_input, g.channel_roll.servo_out);
// both types of secondary elevator are slaved to the pitch servo out
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_elevator, g.channel_pitch.servo_out);
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_elevator_with_input, g.channel_pitch.servo_out);
}else{
/*Elevon mode*/
float ch1;
float ch2;
ch1 = g.channel_pitch.servo_out - (BOOL_TO_SIGN(g.reverse_elevons) * g.channel_roll.servo_out);
ch2 = g.channel_pitch.servo_out + (BOOL_TO_SIGN(g.reverse_elevons) * g.channel_roll.servo_out);
/* Differential Spoilers
If differential spoilers are setup, then we translate
rudder control into splitting of the two ailerons on
the side of the aircraft where we want to induce
additional drag.
*/
if (RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler1) && RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler2)) {
float ch3 = ch1;
float ch4 = ch2;
if ( BOOL_TO_SIGN(g.reverse_elevons) * g.channel_rudder.servo_out < 0) {
ch1 += abs(g.channel_rudder.servo_out);
ch3 -= abs(g.channel_rudder.servo_out);
} else {
ch2 += abs(g.channel_rudder.servo_out);
ch4 -= abs(g.channel_rudder.servo_out);
}
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_dspoiler1, ch3);
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_dspoiler2, ch4);
}
// directly set the radio_out values for elevon mode
g.channel_roll.radio_out = elevon.trim1 + (BOOL_TO_SIGN(g.reverse_ch1_elevon) * (ch1 * 500.0/ SERVO_MAX));
g.channel_pitch.radio_out = elevon.trim2 + (BOOL_TO_SIGN(g.reverse_ch2_elevon) * (ch2 * 500.0/ SERVO_MAX));
}
#if OBC_FAILSAFE == ENABLED
// this is to allow the failsafe module to deliberately crash
// the plane. Only used in extreme circumstances to meet the
// OBC rules
if (obc.crash_plane()) {
g.channel_roll.servo_out = -4500;
g.channel_pitch.servo_out = -4500;
g.channel_rudder.servo_out = -4500;
g.channel_throttle.servo_out = 0;
}
#endif
// push out the PWM values
if (g.mix_mode == 0) {
g.channel_roll.calc_pwm();
g.channel_pitch.calc_pwm();
}
g.channel_rudder.calc_pwm();
#if THROTTLE_OUT == 0
g.channel_throttle.servo_out = 0;
#else
// convert 0 to 100% into PWM
g.channel_throttle.servo_out = constrain_int16(g.channel_throttle.servo_out,
g.throttle_min.get(),
g.throttle_max.get());
if (suppress_throttle()) {
// throttle is suppressed in auto mode
g.channel_throttle.servo_out = 0;
if (g.throttle_suppress_manual) {
// manual pass through of throttle while throttle is suppressed
g.channel_throttle.radio_out = g.channel_throttle.radio_in;
} else {
g.channel_throttle.calc_pwm();
}
} else if (g.throttle_passthru_stabilize &&
(control_mode == STABILIZE ||
control_mode == TRAINING ||
control_mode == FLY_BY_WIRE_A)) {
// manual pass through of throttle while in FBWA or
// STABILIZE mode with THR_PASS_STAB set
g.channel_throttle.radio_out = g.channel_throttle.radio_in;
} else {
// normal throttle calculation based on servo_out
g.channel_throttle.calc_pwm();
}
#endif
}
// Auto flap deployment
if(control_mode < FLY_BY_WIRE_B) {
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_flap_auto);
} else if (control_mode >= FLY_BY_WIRE_B) {
int16_t flapSpeedSource = 0;
// FIXME: use target_airspeed in both FBW_B and g.airspeed_enabled cases - Doug?
if (control_mode == FLY_BY_WIRE_B) {
flapSpeedSource = target_airspeed_cm * 0.01;
} else if (airspeed.use()) {
flapSpeedSource = g.airspeed_cruise_cm * 0.01;
} else {
flapSpeedSource = g.throttle_cruise;
}
if ( g.flap_1_speed != 0 && flapSpeedSource > g.flap_1_speed) {
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_flap_auto, 0);
} else if (g.flap_2_speed != 0 && flapSpeedSource > g.flap_2_speed) {
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_flap_auto, g.flap_1_percent);
} else {
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_flap_auto, g.flap_2_percent);
}
}
if (control_mode >= FLY_BY_WIRE_B) {
/* only do throttle slew limiting in modes where throttle
* control is automatic */
throttle_slew_limit(last_throttle);
}
if (control_mode == TRAINING) {
// copy rudder in training mode
g.channel_rudder.radio_out = g.channel_rudder.radio_in;
}
#if HIL_MODE != HIL_MODE_DISABLED
if (!g.hil_servos) {
return;
}
#endif
if (g.vtail_output != MIXING_DISABLED) {
channel_output_mixer(g.vtail_output, g.channel_pitch.radio_out, g.channel_rudder.radio_out);
} else if (g.elevon_output != MIXING_DISABLED) {
channel_output_mixer(g.elevon_output, g.channel_pitch.radio_out, g.channel_roll.radio_out);
}
// send values to the PWM timers for output
// ----------------------------------------
hal.rcout->write(CH_1, g.channel_roll.radio_out); // send to Servos
hal.rcout->write(CH_2, g.channel_pitch.radio_out); // send to Servos
hal.rcout->write(CH_3, g.channel_throttle.radio_out); // send to Servos
hal.rcout->write(CH_4, g.channel_rudder.radio_out); // send to Servos
// Route configurable aux. functions to their respective servos
g.rc_5.output_ch(CH_5);
g.rc_6.output_ch(CH_6);
g.rc_7.output_ch(CH_7);
g.rc_8.output_ch(CH_8);
# if CONFIG_HAL_BOARD == HAL_BOARD_APM2 || CONFIG_HAL_BOARD == HAL_BOARD_PX4
g.rc_9.output_ch(CH_9);
g.rc_10.output_ch(CH_10);
g.rc_11.output_ch(CH_11);
# endif
# if CONFIG_HAL_BOARD == HAL_BOARD_PX4
g.rc_12.output_ch(CH_12);
# endif
}
static bool demoing_servos;
static void demo_servos(uint8_t i) {
while(i > 0) {
gcs_send_text_P(SEVERITY_LOW,PSTR("Demo Servos!"));
demoing_servos = true;
servo_write(1, 1400);
mavlink_delay(400);
servo_write(1, 1600);
mavlink_delay(200);
servo_write(1, 1500);
demoing_servos = false;
mavlink_delay(400);
i--;
}
}
// return true if we should use airspeed for altitude/throttle control
static bool alt_control_airspeed(void)
{
return airspeed.use() && g.alt_control_algorithm == ALT_CONTROL_DEFAULT;
}