mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-13 03:18:29 -04:00
622217357c
This is a fix for an interesting bug when a DCM matrix reset was added to the ground start. This bug only showed up if (A) a ground start were performed after an air start or due to use of the "Calibrate Gryo" action, (B) if the current orientation were sufficiently different from 0/0/0, and (C.) if the particular magnetometer had sufficiently large offsets. Why did resetting the DCM matrix to 0/0/0 pitch/roll/yaw at ground start cause a bug? The magnetometer offset nulling determines the proper offsets for the magnetometer by comparing the observed change in the magnetic field vector with the expected change due to rotation as calculated from the rotation in the DCM matrix. This comparison is made at 10Hz, and then filtered with a weight based on the amount of rotation to estimate the offsets. Normally it would take considerable time at normal in-flight rotation rates for the offset estimate to converge. If a DCM matrix reset occurs when the offset nulling algorithm is up and running, the algorithm sees the DCM reset as a instantaneous rotation, however the magnetic field vector did not change at all. Under certain conditions the algorithm would interpret this as indicating that the offset(s) should be very large. Since the "rotation" could also have been large the filter weighting would be large and it was possible for a large erroneous estimate of the offset(s) to be made based on this single (bad) data point. To fix this bug methods were added to the compass object to start and stop the offset nulling algorithm. Further, when the algorithm is started, it is set up to get fresh samples. The DCM matrix reset method now calls these new methods to stop the offset nulling before resetting the matrix, and resume after the matrix has been reset.
413 lines
13 KiB
C++
413 lines
13 KiB
C++
|
|
#define RADX100 0.000174532925
|
|
#define DEGX100 5729.57795
|
|
/*
|
|
APM_DCM_FW.cpp - DCM AHRS Library, fixed wing version, for Ardupilot Mega
|
|
Code by Doug Weibel, Jordi Muñoz and Jose Julio. DIYDrones.com
|
|
|
|
This library works with the ArduPilot Mega and "Oilpan"
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
Methods:
|
|
update_DCM() : Updates the AHRS by integrating the rotation matrix over time using the IMU object data
|
|
get_gyro() : Returns gyro vector corrected for bias
|
|
get_accel() : Returns accelerometer vector
|
|
get_dcm_matrix() : Returns dcm matrix
|
|
|
|
*/
|
|
#include <AP_DCM.h>
|
|
|
|
#define OUTPUTMODE 1 // This is just used for debugging, remove later
|
|
#define ToRad(x) (x*0.01745329252) // *pi/180
|
|
#define ToDeg(x) (x*57.2957795131) // *180/pi
|
|
|
|
//#define Kp_ROLLPITCH 0.05967 // .0014 * 418/9.81 Pitch&Roll Drift Correction Proportional Gain
|
|
//#define Ki_ROLLPITCH 0.00001278 // 0.0000003 * 418/9.81 Pitch&Roll Drift Correction Integrator Gain
|
|
//#define Ki_ROLLPITCH 0.0 // 0.0000003 * 418/9.81 Pitch&Roll Drift Correction Integrator Gain
|
|
|
|
//#define Kp_YAW 0.8 // Yaw Drift Correction Porportional Gain
|
|
//#define Ki_YAW 0.00004 // Yaw Drift CorrectionIntegrator Gain
|
|
|
|
#define SPEEDFILT 300 // centimeters/second
|
|
#define ADC_CONSTRAINT 900
|
|
|
|
|
|
void
|
|
AP_DCM::set_compass(Compass *compass)
|
|
{
|
|
_compass = compass;
|
|
}
|
|
|
|
/**************************************************/
|
|
void
|
|
AP_DCM::update_DCM_fast(void)
|
|
{
|
|
float delta_t;
|
|
|
|
_imu->update();
|
|
_gyro_vector = _imu->get_gyro(); // Get current values for IMU sensors
|
|
_accel_vector = _imu->get_accel(); // Get current values for IMU sensors
|
|
|
|
delta_t = _imu->get_delta_time();
|
|
|
|
matrix_update(delta_t); // Integrate the DCM matrix
|
|
|
|
switch(_toggle++){
|
|
case 0:
|
|
normalize(); // Normalize the DCM matrix
|
|
break;
|
|
|
|
case 1:
|
|
//drift_correction(); // Normalize the DCM matrix
|
|
euler_rp(); // Calculate pitch, roll, yaw for stabilization and navigation
|
|
break;
|
|
|
|
case 2:
|
|
drift_correction(); // Normalize the DCM matrix
|
|
break;
|
|
|
|
case 3:
|
|
//drift_correction(); // Normalize the DCM matrix
|
|
euler_rp(); // Calculate pitch, roll, yaw for stabilization and navigation
|
|
break;
|
|
|
|
case 4:
|
|
euler_yaw();
|
|
break;
|
|
|
|
default:
|
|
euler_rp(); // Calculate pitch, roll, yaw for stabilization and navigation
|
|
_toggle = 0;
|
|
//drift_correction(); // Normalize the DCM matrix
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**************************************************/
|
|
void
|
|
AP_DCM::update_DCM(void)
|
|
{
|
|
float delta_t;
|
|
|
|
_imu->update();
|
|
_gyro_vector = _imu->get_gyro(); // Get current values for IMU sensors
|
|
_accel_vector = _imu->get_accel(); // Get current values for IMU sensors
|
|
|
|
delta_t = _imu->get_delta_time();
|
|
|
|
matrix_update(delta_t); // Integrate the DCM matrix
|
|
normalize(); // Normalize the DCM matrix
|
|
drift_correction(); // Perform drift correction
|
|
euler_angles(); // Calculate pitch, roll, yaw for stabilization and navigation
|
|
}
|
|
|
|
/**************************************************/
|
|
|
|
//For Debugging
|
|
/*
|
|
void
|
|
printm(const char *l, Matrix3f &m)
|
|
{ Serial.println(" "); Serial.println(l);
|
|
Serial.print(m.a.x, 12); Serial.print(" "); Serial.print(m.a.y, 12); Serial.print(" "); Serial.println(m.a.z, 12);
|
|
Serial.print(m.b.x, 12); Serial.print(" "); Serial.print(m.b.y, 12); Serial.print(" "); Serial.println(m.b.z, 12);
|
|
Serial.print(m.c.x, 12); Serial.print(" "); Serial.print(m.c.y, 12); Serial.print(" "); Serial.println(m.c.z, 12);
|
|
Serial.print(*(uint32_t *)&(m.a.x), HEX); Serial.print(" "); Serial.print(*(uint32_t *)&(m.a.y), HEX); Serial.print(" "); Serial.println(*(uint32_t *)&(m.a.z), HEX);
|
|
Serial.print(*(uint32_t *)&(m.b.x), HEX); Serial.print(" "); Serial.print(*(uint32_t *)&(m.b.y), HEX); Serial.print(" "); Serial.println(*(uint32_t *)&(m.b.z), HEX);
|
|
Serial.print(*(uint32_t *)&(m.c.x), HEX); Serial.print(" "); Serial.print(*(uint32_t *)&(m.c.y), HEX); Serial.print(" "); Serial.println(*(uint32_t *)&(m.c.z), HEX);
|
|
}
|
|
*/
|
|
|
|
/**************************************************/
|
|
void
|
|
AP_DCM::matrix_update(float _G_Dt)
|
|
{
|
|
Matrix3f update_matrix;
|
|
Matrix3f temp_matrix;
|
|
|
|
_omega_integ_corr = _gyro_vector + _omega_I; // Used for _centripetal correction (theoretically better than _omega)
|
|
_omega = _omega_integ_corr + _omega_P; // Equation 16, adding proportional and integral correction terms
|
|
|
|
if(_centripetal){
|
|
accel_adjust(); // Remove _centripetal acceleration.
|
|
}
|
|
|
|
#if OUTPUTMODE == 1
|
|
float tmp = _G_Dt * _omega.x;
|
|
update_matrix.b.z = -tmp; // -delta Theta x
|
|
update_matrix.c.y = tmp; // delta Theta x
|
|
|
|
tmp = _G_Dt * _omega.y;
|
|
update_matrix.c.x = -tmp; // -delta Theta y
|
|
update_matrix.a.z = tmp; // delta Theta y
|
|
|
|
tmp = _G_Dt * _omega.z;
|
|
update_matrix.b.x = tmp; // delta Theta z
|
|
update_matrix.a.y = -tmp; // -delta Theta z
|
|
|
|
update_matrix.a.x = 0;
|
|
update_matrix.b.y = 0;
|
|
update_matrix.c.z = 0;
|
|
#else // Uncorrected data (no drift correction)
|
|
update_matrix.a.x = 0;
|
|
update_matrix.a.y = -_G_Dt * _gyro_vector.z;
|
|
update_matrix.a.z = _G_Dt * _gyro_vector.y;
|
|
update_matrix.b.x = _G_Dt * _gyro_vector.z;
|
|
update_matrix.b.y = 0;
|
|
update_matrix.b.z = -_G_Dt * _gyro_vector.x;
|
|
update_matrix.c.x = -_G_Dt * _gyro_vector.y;
|
|
update_matrix.c.y = _G_Dt * _gyro_vector.x;
|
|
update_matrix.c.z = 0;
|
|
#endif
|
|
|
|
temp_matrix = _dcm_matrix * update_matrix;
|
|
_dcm_matrix = _dcm_matrix + temp_matrix; // Equation 17
|
|
}
|
|
|
|
|
|
/**************************************************/
|
|
void
|
|
AP_DCM::accel_adjust(void)
|
|
{
|
|
Vector3f veloc, temp;
|
|
|
|
if (_gps) {
|
|
veloc.x = _gps->ground_speed / 100; // We are working with acceleration in m/s^2 units
|
|
}
|
|
|
|
// We are working with a modified version of equation 26 as our IMU object reports acceleration in the positive axis direction as positive
|
|
|
|
//_accel_vector -= _omega_integ_corr % _veloc; // Equation 26 This line is giving the compiler a problem so we break it up below
|
|
temp.x = 0;
|
|
temp.y = _omega_integ_corr.z * veloc.x; // only computing the non-zero terms
|
|
temp.z = -1.0f * _omega_integ_corr.y * veloc.x; // After looking at the compiler issue lets remove _veloc and simlify
|
|
|
|
_accel_vector -= temp;
|
|
}
|
|
|
|
/*
|
|
reset the DCM matrix and omega. Used on ground start, and on
|
|
extreme errors in the matrix
|
|
*/
|
|
void
|
|
AP_DCM::matrix_reset(void)
|
|
{
|
|
_compass->null_offsets_disable();
|
|
_dcm_matrix.a.x = 1.0f;
|
|
_dcm_matrix.a.y = 0.0f;
|
|
_dcm_matrix.a.z = 0.0f;
|
|
_dcm_matrix.b.x = 0.0f;
|
|
_dcm_matrix.b.y = 1.0f;
|
|
_dcm_matrix.b.z = 0.0f;
|
|
_dcm_matrix.c.x = 0.0f;
|
|
_dcm_matrix.c.y = 0.0f;
|
|
_dcm_matrix.c.z = 1.0f;
|
|
_omega_I.x = 0.0f;
|
|
_omega_I.y = 0.0f;
|
|
_omega_I.z = 0.0f;
|
|
_compass->null_offsets_enable(); // This call is needed to restart the nulling
|
|
// Otherwise the reset in the DCM matrix can mess up the nulling
|
|
}
|
|
|
|
/*************************************************
|
|
Direction Cosine Matrix IMU: Theory
|
|
William Premerlani and Paul Bizard
|
|
|
|
Numerical errors will gradually reduce the orthogonality conditions expressed by equation 5
|
|
to approximations rather than identities. In effect, the axes in the two frames of reference no
|
|
longer describe a rigid body. Fortunately, numerical error accumulates very slowly, so it is a
|
|
simple matter to stay ahead of it.
|
|
We call the process of enforcing the orthogonality conditions ÒrenormalizationÓ.
|
|
*/
|
|
void
|
|
AP_DCM::normalize(void)
|
|
{
|
|
float error = 0;
|
|
Vector3f temporary[3];
|
|
|
|
int problem = 0;
|
|
|
|
error = _dcm_matrix.a * _dcm_matrix.b; // eq.18
|
|
|
|
temporary[0] = _dcm_matrix.b;
|
|
temporary[1] = _dcm_matrix.a;
|
|
temporary[0] = _dcm_matrix.a - (temporary[0] * (0.5f * error)); // eq.19
|
|
temporary[1] = _dcm_matrix.b - (temporary[1] * (0.5f * error)); // eq.19
|
|
|
|
temporary[2] = temporary[0] % temporary[1]; // c= a x b // eq.20
|
|
|
|
_dcm_matrix.a = renorm(temporary[0], problem);
|
|
_dcm_matrix.b = renorm(temporary[1], problem);
|
|
_dcm_matrix.c = renorm(temporary[2], problem);
|
|
|
|
if (problem == 1) { // Our solution is blowing up and we will force back to initial condition. Hope we are not upside down!
|
|
matrix_reset();
|
|
}
|
|
}
|
|
|
|
/**************************************************/
|
|
Vector3f
|
|
AP_DCM::renorm(Vector3f const &a, int &problem)
|
|
{
|
|
float renorm_val;
|
|
|
|
renorm_val = a * a;
|
|
|
|
if (renorm_val < 1.5625f && renorm_val > 0.64f) { // Check if we are OK to use Taylor expansion
|
|
renorm_val = 0.5 * (3 - renorm_val); // eq.21
|
|
} else if (renorm_val < 100.0f && renorm_val > 0.01f) {
|
|
renorm_val = 1.0 / sqrt(renorm_val);
|
|
renorm_sqrt_count++;
|
|
} else {
|
|
problem = 1;
|
|
renorm_blowup_count++;
|
|
}
|
|
|
|
return(a * renorm_val);
|
|
}
|
|
|
|
/**************************************************/
|
|
void
|
|
AP_DCM::drift_correction(void)
|
|
{
|
|
//Compensation the Roll, Pitch and Yaw drift.
|
|
//float mag_heading_x;
|
|
//float mag_heading_y;
|
|
float error_course = 0;
|
|
float accel_magnitude;
|
|
float accel_weight;
|
|
float integrator_magnitude;
|
|
//static float scaled_omega_P[3];
|
|
//static float scaled_omega_I[3];
|
|
static bool in_motion = false;
|
|
Matrix3f rot_mat;
|
|
|
|
//*****Roll and Pitch***************
|
|
|
|
// Calculate the magnitude of the accelerometer vector
|
|
accel_magnitude = _accel_vector.length() / 9.80665f;
|
|
|
|
// Dynamic weighting of accelerometer info (reliability filter)
|
|
// Weight for accelerometer info (<0.5G = 0.0, 1G = 1.0 , >1.5G = 0.0)
|
|
accel_weight = constrain(1 - _clamp * fabs(1 - accel_magnitude), 0, 1); // upped to (<0.66G = 0.0, 1G = 1.0 , >1.33G = 0.0)
|
|
|
|
// We monitor the amount that the accelerometer based drift correction is deweighted for performance reporting
|
|
_health = constrain(_health+(0.02 * (accel_weight - .5)), 0, 1);
|
|
|
|
// adjust the ground of reference
|
|
_error_roll_pitch = _dcm_matrix.c % _accel_vector; // Equation 27 *** sign changed from prev implementation???
|
|
|
|
// error_roll_pitch are in Accel m/s^2 units
|
|
// Limit max error_roll_pitch to limit max omega_P and omega_I
|
|
_error_roll_pitch.x = constrain(_error_roll_pitch.x, -1.17f, 1.17f);
|
|
_error_roll_pitch.y = constrain(_error_roll_pitch.y, -1.17f, 1.17f);
|
|
_error_roll_pitch.z = constrain(_error_roll_pitch.z, -1.17f, 1.17f);
|
|
|
|
_omega_P = _error_roll_pitch * (_kp_roll_pitch * accel_weight);
|
|
_omega_I += _error_roll_pitch * (_ki_roll_pitch * accel_weight);
|
|
|
|
|
|
//*****YAW***************
|
|
|
|
if (_compass && _compass->healthy) {
|
|
// We make the gyro YAW drift correction based on compass magnetic heading
|
|
error_course = (_dcm_matrix.a.x * _compass->heading_y) - (_dcm_matrix.b.x * _compass->heading_x); // Equation 23, Calculating YAW error
|
|
|
|
} else if (_gps) {
|
|
|
|
// Use GPS Ground course to correct yaw gyro drift
|
|
if (_gps->ground_speed >= SPEEDFILT) {
|
|
|
|
_course_over_ground_x = cos(ToRad(_gps->ground_course/100.0));
|
|
_course_over_ground_y = sin(ToRad(_gps->ground_course/100.0));
|
|
if(in_motion) {
|
|
error_course = (_dcm_matrix.a.x * _course_over_ground_y) - (_dcm_matrix.b.x * _course_over_ground_x); // Equation 23, Calculating YAW error
|
|
} else {
|
|
float cos_psi_err, sin_psi_err;
|
|
// This is the case for when we first start moving and reset the DCM so that yaw matches the gps ground course
|
|
// This is just to get a reasonable estimate faster
|
|
yaw = atan2(_dcm_matrix.b.x, _dcm_matrix.a.x);
|
|
cos_psi_err = cos(ToRad(_gps->ground_course/100.0) - yaw);
|
|
sin_psi_err = sin(ToRad(_gps->ground_course/100.0) - yaw);
|
|
// Rxx = cos psi err, Rxy = - sin psi err, Rxz = 0
|
|
// Ryx = sin psi err, Ryy = cos psi err, Ryz = 0
|
|
// Rzx = Rzy = 0, Rzz = 1
|
|
rot_mat.a.x = cos_psi_err;
|
|
rot_mat.a.y = -sin_psi_err;
|
|
rot_mat.b.x = sin_psi_err;
|
|
rot_mat.b.y = cos_psi_err;
|
|
rot_mat.a.z = 0;
|
|
rot_mat.b.z = 0;
|
|
rot_mat.c.x = 0;
|
|
rot_mat.c.y = 0;
|
|
rot_mat.c.z = 1.0;
|
|
|
|
_dcm_matrix = rot_mat * _dcm_matrix;
|
|
in_motion = true;
|
|
error_course = 0;
|
|
}
|
|
|
|
} else {
|
|
error_course = 0;
|
|
in_motion = false;
|
|
}
|
|
}
|
|
|
|
_error_yaw = _dcm_matrix.c * error_course; // Equation 24, Applys the yaw correction to the XYZ rotation of the aircraft, depeding the position.
|
|
|
|
_omega_P += _error_yaw * _kp_yaw; // Adding yaw correction to proportional correction vector.
|
|
_omega_I += _error_yaw * _ki_yaw; // adding yaw correction to integrator correction vector.
|
|
|
|
// Here we will place a limit on the integrator so that the integrator cannot ever exceed ~30 degrees/second
|
|
integrator_magnitude = _omega_I.length();
|
|
if (integrator_magnitude > radians(30)) {
|
|
_omega_I *= (radians(30) / integrator_magnitude);
|
|
}
|
|
//Serial.print("*");
|
|
}
|
|
|
|
|
|
/**************************************************/
|
|
void
|
|
AP_DCM::euler_angles(void)
|
|
{
|
|
#if (OUTPUTMODE == 2) // Only accelerometer info (debugging purposes)
|
|
roll = atan2(_accel_vector.y, -_accel_vector.z); // atan2(acc_y, acc_z)
|
|
pitch = asin((_accel_vector.x) / (double)9.81); // asin(acc_x)
|
|
yaw = 0;
|
|
#else
|
|
pitch = -asin(_dcm_matrix.c.x);
|
|
roll = atan2(_dcm_matrix.c.y, _dcm_matrix.c.z);
|
|
yaw = atan2(_dcm_matrix.b.x, _dcm_matrix.a.x);
|
|
#endif
|
|
|
|
roll_sensor = degrees(roll) * 100;
|
|
pitch_sensor = degrees(pitch) * 100;
|
|
yaw_sensor = degrees(yaw) * 100;
|
|
|
|
if (yaw_sensor < 0)
|
|
yaw_sensor += 36000;
|
|
}
|
|
|
|
void
|
|
AP_DCM::euler_rp(void)
|
|
{
|
|
pitch = -asin(_dcm_matrix.c.x);
|
|
roll = atan2(_dcm_matrix.c.y, _dcm_matrix.c.z);
|
|
roll_sensor = roll * DEGX100; //degrees(roll) * 100;
|
|
pitch_sensor = pitch * DEGX100; //degrees(pitch) * 100;
|
|
}
|
|
|
|
void
|
|
AP_DCM::euler_yaw(void)
|
|
{
|
|
yaw = atan2(_dcm_matrix.b.x, _dcm_matrix.a.x);
|
|
yaw_sensor = yaw * DEGX100; //degrees(yaw) * 100;
|
|
|
|
if (yaw_sensor < 0)
|
|
yaw_sensor += 36000;
|
|
}
|