ardupilot/libraries/GCS_MAVLink/GCS_Common.cpp

4571 lines
143 KiB
C++

/*
Common GCS MAVLink functions for all vehicle types
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_AHRS/AP_AHRS.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_Arming/AP_Arming.h>
#include <AP_InternalError/AP_InternalError.h>
#include <AP_Logger/AP_Logger.h>
#include <AP_OpticalFlow/AP_OpticalFlow.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include <AP_RangeFinder/RangeFinder_Backend.h>
#include <AP_Airspeed/AP_Airspeed.h>
#include <AP_Camera/AP_Camera.h>
#include <AP_Gripper/AP_Gripper.h>
#include <AP_BLHeli/AP_BLHeli.h>
#include <AP_RSSI/AP_RSSI.h>
#include <AP_RTC/AP_RTC.h>
#include <AP_Scheduler/AP_Scheduler.h>
#include <AP_SerialManager/AP_SerialManager.h>
#include <AP_Mount/AP_Mount.h>
#include <AP_Common/AP_FWVersion.h>
#include <AP_VisualOdom/AP_VisualOdom.h>
#include <AP_OpticalFlow/OpticalFlow.h>
#include <AP_Baro/AP_Baro.h>
#include "GCS.h"
#include <stdio.h>
#if HAL_RCINPUT_WITH_AP_RADIO
#include <AP_Radio/AP_Radio.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include <SITL/SITL.h>
#endif
#if HAL_WITH_UAVCAN
#include <AP_BoardConfig/AP_BoardConfig_CAN.h>
#include <AP_Common/AP_Common.h>
// To be replaced with macro saying if KDECAN library is included
#if APM_BUILD_TYPE(APM_BUILD_ArduCopter) || APM_BUILD_TYPE(APM_BUILD_ArduPlane) || APM_BUILD_TYPE(APM_BUILD_ArduSub)
#include <AP_KDECAN/AP_KDECAN.h>
#endif
#include <AP_ToshibaCAN/AP_ToshibaCAN.h>
#endif
#include <AP_BattMonitor/AP_BattMonitor.h>
#include <AP_GPS/AP_GPS.h>
extern const AP_HAL::HAL& hal;
uint32_t GCS_MAVLINK::last_radio_status_remrssi_ms;
uint8_t GCS_MAVLINK::mavlink_active = 0;
uint8_t GCS_MAVLINK::chan_is_streaming = 0;
uint32_t GCS_MAVLINK::reserve_param_space_start_ms;
// private channels are ones used for point-to-point protocols, and
// don't get broadcasts or fwded packets
uint8_t GCS_MAVLINK::mavlink_private = 0;
GCS *GCS::_singleton = nullptr;
GCS_MAVLINK::GCS_MAVLINK()
{
AP_Param::setup_object_defaults(this, var_info);
}
void
GCS_MAVLINK::init(AP_HAL::UARTDriver *port, mavlink_channel_t mav_chan)
{
if (!valid_channel(mav_chan)) {
return;
}
_port = port;
chan = mav_chan;
mavlink_comm_port[chan] = _port;
_queued_parameter = nullptr;
snprintf(_perf_packet_name, sizeof(_perf_packet_name), "GCS_Packet_%u", chan);
_perf_packet = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, _perf_packet_name);
snprintf(_perf_update_name, sizeof(_perf_update_name), "GCS_Update_%u", chan);
_perf_update = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, _perf_update_name);
initialised = true;
}
/*
setup a UART, handling begin() and init()
*/
void
GCS_MAVLINK::setup_uart(uint8_t instance)
{
// search for serial port
const AP_SerialManager& serial_manager = AP::serialmanager();
const AP_SerialManager::SerialProtocol protocol = AP_SerialManager::SerialProtocol_MAVLink;
AP_HAL::UARTDriver *uart = serial_manager.find_serial(protocol, instance);
if (uart == nullptr) {
// return immediately if not found
return;
}
// get associated mavlink channel
mavlink_channel_t mav_chan;
if (!serial_manager.get_mavlink_channel(protocol, instance, mav_chan)) {
// return immediately in unlikely case mavlink channel cannot be found
return;
}
/*
Now try to cope with SiK radios that may be stuck in bootloader
mode because CTS was held while powering on. This tells the
bootloader to wait for a firmware. It affects any SiK radio with
CTS connected that is externally powered. To cope we send 0x30
0x20 at 115200 on startup, which tells the bootloader to reset
and boot normally
*/
uart->begin(115200);
AP_HAL::UARTDriver::flow_control old_flow_control = uart->get_flow_control();
uart->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE);
for (uint8_t i=0; i<3; i++) {
hal.scheduler->delay(1);
uart->write(0x30);
uart->write(0x20);
}
// since tcdrain() and TCSADRAIN may not be implemented...
hal.scheduler->delay(1);
uart->set_flow_control(old_flow_control);
// now change back to desired baudrate
uart->begin(serial_manager.find_baudrate(protocol, instance));
// and init the gcs instance
init(uart, mav_chan);
AP_SerialManager::SerialProtocol mavlink_protocol = AP::serialmanager().get_mavlink_protocol(mav_chan);
mavlink_status_t *status = mavlink_get_channel_status(chan);
if (status == nullptr) {
return;
}
if (mavlink_protocol == AP_SerialManager::SerialProtocol_MAVLink2) {
// load signing key
load_signing_key();
if (status->signing == nullptr) {
// if signing is off start by sending MAVLink1.
status->flags |= MAVLINK_STATUS_FLAG_OUT_MAVLINK1;
}
} else if (status) {
// user has asked to only send MAVLink1
status->flags |= MAVLINK_STATUS_FLAG_OUT_MAVLINK1;
}
if (chan == MAVLINK_COMM_0) {
// Always start with MAVLink1 on first port for now, to allow for recovery
// after experiments with MAVLink2
status->flags |= MAVLINK_STATUS_FLAG_OUT_MAVLINK1;
}
}
void GCS_MAVLINK::send_meminfo(void)
{
unsigned __brkval = 0;
uint32_t memory = hal.util->available_memory();
mavlink_msg_meminfo_send(chan, __brkval, MIN(memory, 0xFFFFU), memory);
}
// report power supply status
void GCS_MAVLINK::send_power_status(void)
{
if (!gcs().vehicle_initialised()) {
// avoid unnecessary errors being reported to user
return;
}
mavlink_msg_power_status_send(chan,
hal.analogin->board_voltage() * 1000,
hal.analogin->servorail_voltage() * 1000,
hal.analogin->power_status_flags());
}
void GCS_MAVLINK::send_battery_status(const uint8_t instance) const
{
// catch the battery backend not supporting the required number of cells
static_assert(sizeof(AP_BattMonitor::cells) >= (sizeof(uint16_t) * MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_LEN),
"Not enough battery cells for the MAVLink message");
const AP_BattMonitor &battery = AP::battery();
float temp;
bool got_temperature = battery.get_temperature(temp, instance);
// ensure we always send a voltage estimate to the GCS, because not all battery monitors monitor individual cells
// as a work around for this we create a set of fake cells to be used if the backend doesn't provide direct monitoring
// the GCS can then recover the pack voltage by summing all non ignored cell values. Because this is looped we can
// report a pack up to 655.34 V with this method
AP_BattMonitor::cells fake_cells;
if (!battery.has_cell_voltages(instance)) {
float voltage = battery.voltage(instance) * 1e3f;
for (uint8_t i = 0; i < MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_LEN; i++) {
if (voltage < 0.001f) {
// too small to send to the GCS, set it to the no cell value
fake_cells.cells[i] = UINT16_MAX;
} else {
fake_cells.cells[i] = MIN(voltage, 65534.0f); // Can't send more then UINT16_MAX - 1 in a cell
voltage -= 65534.0f;
}
}
}
float current, consumed_mah, consumed_wh;
if (battery.current_amps(current, instance)) {
current *= 100;
} else {
current = -1;
}
if (!battery.consumed_mah(consumed_mah, instance)) {
consumed_mah = -1;
}
if (battery.consumed_wh(consumed_wh, instance)) {
consumed_wh *= 36;
} else {
consumed_wh = -1;
}
mavlink_msg_battery_status_send(chan,
instance, // id
MAV_BATTERY_FUNCTION_UNKNOWN, // function
MAV_BATTERY_TYPE_UNKNOWN, // type
got_temperature ? ((int16_t) (temp * 100)) : INT16_MAX, // temperature. INT16_MAX if unknown
battery.has_cell_voltages(instance) ? battery.get_cell_voltages(instance).cells : fake_cells.cells, // cell voltages
current, // current in centiampere
consumed_mah, // total consumed current in milliampere.hour
consumed_wh, // consumed energy in hJ (hecto-Joules)
battery.capacity_remaining_pct(instance),
0, // time remaining, seconds (not provided)
MAV_BATTERY_CHARGE_STATE_UNDEFINED);
}
// returns true if all battery instances were reported
bool GCS_MAVLINK::send_battery_status() const
{
const AP_BattMonitor &battery = AP::battery();
for(uint8_t i = 0; i < battery.num_instances(); i++) {
if (battery.get_type(i) != AP_BattMonitor_Params::BattMonitor_Type::BattMonitor_TYPE_NONE) {
CHECK_PAYLOAD_SIZE(BATTERY_STATUS);
send_battery_status(i);
}
}
return true;
}
void GCS_MAVLINK::send_distance_sensor(const AP_RangeFinder_Backend *sensor, const uint8_t instance) const
{
if (!sensor->has_data()) {
return;
}
mavlink_msg_distance_sensor_send(
chan,
AP_HAL::millis(), // time since system boot TODO: take time of measurement
sensor->min_distance_cm(), // minimum distance the sensor can measure in centimeters
sensor->max_distance_cm(), // maximum distance the sensor can measure in centimeters
sensor->distance_cm(), // current distance reading
sensor->get_mav_distance_sensor_type(), // type from MAV_DISTANCE_SENSOR enum
instance, // onboard ID of the sensor == instance
sensor->orientation(), // direction the sensor faces from MAV_SENSOR_ORIENTATION enum
0, // Measurement covariance in centimeters, 0 for unknown / invalid readings
0, // horizontal FOV
0, // vertical FOV
(const float *)nullptr); // quaternion of sensor orientation for MAV_SENSOR_ROTATION_CUSTOM
}
// send any and all distance_sensor messages. This starts by sending
// any distance sensors not used by a Proximity sensor, then sends the
// proximity sensor ones.
void GCS_MAVLINK::send_distance_sensor() const
{
RangeFinder *rangefinder = RangeFinder::get_singleton();
if (rangefinder == nullptr) {
return;
}
// if we have a proximity backend that utilizes rangefinders cull
// sending them here, and allow the later proximity code to manage
// them
bool filter_possible_proximity_sensors = false;
AP_Proximity *proximity = AP_Proximity::get_singleton();
if (proximity != nullptr) {
for (uint8_t i = 0; i < proximity->num_sensors(); i++) {
if (proximity->get_type(i) == AP_Proximity::Proximity_Type_RangeFinder) {
filter_possible_proximity_sensors = true;
}
}
}
for (uint8_t i = 0; i < RANGEFINDER_MAX_INSTANCES; i++) {
if (!HAVE_PAYLOAD_SPACE(chan, DISTANCE_SENSOR)) {
return;
}
AP_RangeFinder_Backend *sensor = rangefinder->get_backend(i);
if (sensor == nullptr) {
continue;
}
enum Rotation orient = sensor->orientation();
if (!filter_possible_proximity_sensors ||
(orient > ROTATION_YAW_315 && orient != ROTATION_PITCH_90)) {
send_distance_sensor(sensor, i);
}
}
send_proximity();
}
void GCS_MAVLINK::send_rangefinder() const
{
RangeFinder *rangefinder = RangeFinder::get_singleton();
if (rangefinder == nullptr) {
return;
}
AP_RangeFinder_Backend *s = rangefinder->find_instance(ROTATION_PITCH_270);
if (s == nullptr) {
return;
}
mavlink_msg_rangefinder_send(
chan,
s->distance_cm() * 0.01f,
s->voltage_mv() * 0.001f);
}
void GCS_MAVLINK::send_proximity() const
{
AP_Proximity *proximity = AP_Proximity::get_singleton();
if (proximity == nullptr || proximity->get_status() == AP_Proximity::Proximity_NotConnected) {
return; // this is wrong, but pretend we sent data and don't requeue
}
const uint16_t dist_min = (uint16_t)(proximity->distance_min() * 100.0f); // minimum distance the sensor can measure in centimeters
const uint16_t dist_max = (uint16_t)(proximity->distance_max() * 100.0f); // maximum distance the sensor can measure in centimeters
// send horizontal distances
AP_Proximity::Proximity_Distance_Array dist_array;
if (proximity->get_horizontal_distances(dist_array)) {
for (uint8_t i = 0; i < PROXIMITY_MAX_DIRECTION; i++) {
if (!HAVE_PAYLOAD_SPACE(chan, DISTANCE_SENSOR)) {
return;
}
mavlink_msg_distance_sensor_send(
chan,
AP_HAL::millis(), // time since system boot
dist_min, // minimum distance the sensor can measure in centimeters
dist_max, // maximum distance the sensor can measure in centimeters
(uint16_t)(dist_array.distance[i] * 100.0f), // current distance reading
MAV_DISTANCE_SENSOR_LASER, // type from MAV_DISTANCE_SENSOR enum
PROXIMITY_SENSOR_ID_START + i, // onboard ID of the sensor
dist_array.orientation[i], // direction the sensor faces from MAV_SENSOR_ORIENTATION enum
0, // Measurement covariance in centimeters, 0 for unknown / invalid readings
0, 0, nullptr);
}
}
// send upward distance
float dist_up;
if (proximity->get_upward_distance(dist_up)) {
if (!HAVE_PAYLOAD_SPACE(chan, DISTANCE_SENSOR)) {
return;
}
mavlink_msg_distance_sensor_send(
chan,
AP_HAL::millis(), // time since system boot
dist_min, // minimum distance the sensor can measure in centimeters
dist_max, // maximum distance the sensor can measure in centimeters
(uint16_t)(dist_up * 100.0f), // current distance reading
MAV_DISTANCE_SENSOR_LASER, // type from MAV_DISTANCE_SENSOR enum
PROXIMITY_SENSOR_ID_START + PROXIMITY_MAX_DIRECTION + 1, // onboard ID of the sensor
MAV_SENSOR_ROTATION_PITCH_90, // direction upwards
0, // Measurement covariance in centimeters, 0 for unknown / invalid readings
0, 0, nullptr);
}
}
// report AHRS2 state
void GCS_MAVLINK::send_ahrs2()
{
#if AP_AHRS_NAVEKF_AVAILABLE
const AP_AHRS &ahrs = AP::ahrs();
Vector3f euler;
struct Location loc {};
if (ahrs.get_secondary_attitude(euler) ||
ahrs.get_secondary_position(loc)) {
mavlink_msg_ahrs2_send(chan,
euler.x,
euler.y,
euler.z,
loc.alt*1.0e-2f,
loc.lat,
loc.lng);
}
#endif
}
void GCS_MAVLINK::send_ahrs3()
{
#if AP_AHRS_NAVEKF_AVAILABLE
const NavEKF2 &ekf2 = AP::ahrs_navekf().get_NavEKF2_const();
if (ekf2.activeCores() > 0 &&
HAVE_PAYLOAD_SPACE(chan, AHRS3)) {
struct Location loc {};
ekf2.getLLH(loc);
Vector3f euler;
ekf2.getEulerAngles(-1,euler);
mavlink_msg_ahrs3_send(chan,
euler.x,
euler.y,
euler.z,
loc.alt*1.0e-2f,
loc.lat,
loc.lng,
0, 0, 0, 0);
}
#endif
}
MissionItemProtocol *GCS::get_prot_for_mission_type(const MAV_MISSION_TYPE mission_type) const
{
switch (mission_type) {
case MAV_MISSION_TYPE_MISSION:
return _missionitemprotocol_waypoints;
case MAV_MISSION_TYPE_RALLY:
return _missionitemprotocol_rally;
default:
return nullptr;
}
}
// handle a request for the number of items we have stored for a mission type:
void GCS_MAVLINK::handle_mission_request_list(const mavlink_message_t &msg)
{
// decode
mavlink_mission_request_list_t packet;
mavlink_msg_mission_request_list_decode(&msg, &packet);
MissionItemProtocol *prot = gcs().get_prot_for_mission_type((MAV_MISSION_TYPE)packet.mission_type);
if (prot == nullptr) {
mavlink_msg_mission_ack_send(chan,
msg.sysid,
msg.compid,
MAV_MISSION_UNSUPPORTED,
packet.mission_type);
return;
}
prot->handle_mission_request_list(*this, packet, msg);
}
/*
handle a MISSION_REQUEST mavlink packet
*/
void GCS_MAVLINK::handle_mission_request_int(const mavlink_message_t &msg)
{
// decode
mavlink_mission_request_int_t packet;
mavlink_msg_mission_request_int_decode(&msg, &packet);
MissionItemProtocol *prot = gcs().get_prot_for_mission_type((MAV_MISSION_TYPE)packet.mission_type);
if (prot == nullptr) {
return;
}
prot->handle_mission_request_int(*this, packet, msg);
}
void GCS_MAVLINK::handle_mission_request(const mavlink_message_t &msg)
{
// decode
mavlink_mission_request_t packet;
mavlink_msg_mission_request_decode(&msg, &packet);
MissionItemProtocol *prot = gcs().get_prot_for_mission_type((MAV_MISSION_TYPE)packet.mission_type);
if (prot == nullptr) {
return;
}
prot->handle_mission_request(*this, packet, msg);
}
/*
handle a MISSION_SET_CURRENT mavlink packet
*/
void GCS_MAVLINK::handle_mission_set_current(AP_Mission &mission, const mavlink_message_t &msg)
{
// decode
mavlink_mission_set_current_t packet;
mavlink_msg_mission_set_current_decode(&msg, &packet);
// set current command
if (mission.set_current_cmd(packet.seq)) {
mavlink_msg_mission_current_send(chan, packet.seq);
}
}
/*
handle a MISSION_COUNT mavlink packet
*/
void GCS_MAVLINK::handle_mission_count(const mavlink_message_t &msg)
{
// decode
mavlink_mission_count_t packet;
mavlink_msg_mission_count_decode(&msg, &packet);
MissionItemProtocol *prot = gcs().get_prot_for_mission_type((MAV_MISSION_TYPE)packet.mission_type);
if (prot == nullptr) {
mavlink_msg_mission_ack_send(chan,
msg.sysid,
msg.compid,
MAV_MISSION_UNSUPPORTED,
packet.mission_type);
return;
}
prot->handle_mission_count(*this, packet, msg);
}
/*
handle a MISSION_CLEAR_ALL mavlink packet
*/
void GCS_MAVLINK::handle_mission_clear_all(const mavlink_message_t &msg)
{
// decode
mavlink_mission_clear_all_t packet;
mavlink_msg_mission_clear_all_decode(&msg, &packet);
const MAV_MISSION_TYPE mission_type = (MAV_MISSION_TYPE)packet.mission_type;
MissionItemProtocol *prot = gcs().get_prot_for_mission_type(mission_type);
if (prot == nullptr) {
send_mission_ack(msg, mission_type, MAV_MISSION_UNSUPPORTED);
return;
}
prot->handle_mission_clear_all(*this, msg);
}
bool GCS_MAVLINK::requesting_mission_items() const
{
for (uint8_t i=0; i<ARRAY_SIZE(supported_mission_types); i++) {
MissionItemProtocol *prot = gcs().get_prot_for_mission_type(supported_mission_types[i]);
if (prot && prot->receiving && prot->active_link_is(this)) {
return true;
}
}
return false;
}
void GCS_MAVLINK::handle_mission_write_partial_list(const mavlink_message_t &msg)
{
// decode
mavlink_mission_write_partial_list_t packet;
mavlink_msg_mission_write_partial_list_decode(&msg, &packet);
MissionItemProtocol *use_prot = gcs().get_prot_for_mission_type((MAV_MISSION_TYPE)packet.mission_type);
if (use_prot == nullptr) {
send_mission_ack(msg, (MAV_MISSION_TYPE)packet.mission_type, MAV_MISSION_UNSUPPORTED);
return;
}
use_prot->handle_mission_write_partial_list(*this, msg, packet);
}
/*
pass mavlink messages to the AP_Mount singleton
*/
void GCS_MAVLINK::handle_mount_message(const mavlink_message_t &msg)
{
AP_Mount *mount = AP::mount();
if (mount == nullptr) {
return;
}
mount->handle_message(chan, msg);
}
/*
pass parameter value messages through to mount library
*/
void GCS_MAVLINK::handle_param_value(const mavlink_message_t &msg)
{
AP_Mount *mount = AP::mount();
if (mount == nullptr) {
return;
}
mount->handle_param_value(msg);
}
void GCS_MAVLINK::send_textv(MAV_SEVERITY severity, const char *fmt, va_list arg_list) const
{
char text[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1];
hal.util->vsnprintf(text, sizeof(text), fmt, arg_list);
gcs().send_statustext(severity, (1<<chan), text);
}
void GCS_MAVLINK::send_text(MAV_SEVERITY severity, const char *fmt, ...) const
{
va_list arg_list;
va_start(arg_list, fmt);
send_textv(severity, fmt, arg_list);
va_end(arg_list);
}
void GCS_MAVLINK::handle_radio_status(const mavlink_message_t &msg, bool log_radio)
{
mavlink_radio_t packet;
mavlink_msg_radio_decode(&msg, &packet);
// record if the GCS has been receiving radio messages from
// the aircraft
if (packet.remrssi != 0) {
last_radio_status_remrssi_ms = AP_HAL::millis();
}
// use the state of the transmit buffer in the radio to
// control the stream rate, giving us adaptive software
// flow control
if (packet.txbuf < 20 && stream_slowdown_ms < 2000) {
// we are very low on space - slow down a lot
stream_slowdown_ms += 60;
} else if (packet.txbuf < 50 && stream_slowdown_ms < 2000) {
// we are a bit low on space, slow down slightly
stream_slowdown_ms += 20;
} else if (packet.txbuf > 95 && stream_slowdown_ms > 200) {
// the buffer has plenty of space, speed up a lot
stream_slowdown_ms -= 40;
} else if (packet.txbuf > 90 && stream_slowdown_ms != 0) {
// the buffer has enough space, speed up a bit
stream_slowdown_ms -= 20;
}
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
if (stream_slowdown_ms > max_slowdown_ms) {
max_slowdown_ms = stream_slowdown_ms;
}
#endif
//log rssi, noise, etc if logging Performance monitoring data
if (log_radio) {
AP::logger().Write_Radio(packet);
}
}
/*
handle an incoming mission item
return true if this is the last mission item, otherwise false
*/
void GCS_MAVLINK::handle_mission_item(const mavlink_message_t &msg)
{
// TODO: rename packet to mission_item_int
mavlink_mission_item_int_t packet;
if (msg.msgid == MAVLINK_MSG_ID_MISSION_ITEM) {
mavlink_mission_item_t mission_item;
mavlink_msg_mission_item_decode(&msg, &mission_item);
MAV_MISSION_RESULT ret = AP_Mission::convert_MISSION_ITEM_to_MISSION_ITEM_INT(mission_item, packet);
if (ret != MAV_MISSION_ACCEPTED) {
const MAV_MISSION_TYPE type = (MAV_MISSION_TYPE)packet.mission_type;
send_mission_ack(msg, type, ret);
return;
}
} else {
mavlink_msg_mission_item_int_decode(&msg, &packet);
}
const uint8_t current = packet.current;
const MAV_MISSION_TYPE type = (MAV_MISSION_TYPE)packet.mission_type;
if (type == MAV_MISSION_TYPE_MISSION && (current == 2 || current == 3)) {
struct AP_Mission::Mission_Command cmd = {};
MAV_MISSION_RESULT result = AP_Mission::mavlink_int_to_mission_cmd(packet, cmd);
if (result != MAV_MISSION_ACCEPTED) {
//decode failed
send_mission_ack(msg, MAV_MISSION_TYPE_MISSION, result);
return;
}
// guided or change-alt
if (current == 2) {
// current = 2 is a flag to tell us this is a "guided mode"
// waypoint and not for the mission
result = (handle_guided_request(cmd) ? MAV_MISSION_ACCEPTED
: MAV_MISSION_ERROR) ;
} else if (current == 3) {
//current = 3 is a flag to tell us this is a alt change only
// add home alt if needed
handle_change_alt_request(cmd);
// verify we recevied the command
result = MAV_MISSION_ACCEPTED;
}
send_mission_ack(msg, MAV_MISSION_TYPE_MISSION, result);
return;
}
// not a guided-mode reqest
MissionItemProtocol *prot = gcs().get_prot_for_mission_type(type);
if (prot == nullptr) {
send_mission_ack(msg, type, MAV_MISSION_UNSUPPORTED);
return;
}
if (!prot->receiving) {
send_mission_ack(msg, type, MAV_MISSION_ERROR);
return;
}
prot->handle_mission_item(msg, packet);
}
ap_message GCS_MAVLINK::mavlink_id_to_ap_message_id(const uint32_t mavlink_id) const
{
// MSG_NEXT_MISSION_REQUEST doesn't correspond to a mavlink message directly.
// It is used to request the next waypoint after receiving one.
// MSG_NEXT_PARAM doesn't correspond to a mavlink message directly.
// It is used to send the next parameter in a stream after sending one
// MSG_NAMED_FLOAT messages can't really be "streamed"...
static const struct {
uint32_t mavlink_id;
ap_message msg_id;
} map[] {
{ MAVLINK_MSG_ID_HEARTBEAT, MSG_HEARTBEAT},
{ MAVLINK_MSG_ID_ATTITUDE, MSG_ATTITUDE},
{ MAVLINK_MSG_ID_GLOBAL_POSITION_INT, MSG_LOCATION},
{ MAVLINK_MSG_ID_HOME_POSITION, MSG_HOME},
{ MAVLINK_MSG_ID_GPS_GLOBAL_ORIGIN, MSG_ORIGIN},
{ MAVLINK_MSG_ID_SYS_STATUS, MSG_SYS_STATUS},
{ MAVLINK_MSG_ID_POWER_STATUS, MSG_POWER_STATUS},
{ MAVLINK_MSG_ID_MEMINFO, MSG_MEMINFO},
{ MAVLINK_MSG_ID_NAV_CONTROLLER_OUTPUT, MSG_NAV_CONTROLLER_OUTPUT},
{ MAVLINK_MSG_ID_MISSION_CURRENT, MSG_CURRENT_WAYPOINT},
{ MAVLINK_MSG_ID_VFR_HUD, MSG_VFR_HUD},
{ MAVLINK_MSG_ID_SERVO_OUTPUT_RAW, MSG_SERVO_OUTPUT_RAW},
{ MAVLINK_MSG_ID_RC_CHANNELS, MSG_RC_CHANNELS},
{ MAVLINK_MSG_ID_RC_CHANNELS_RAW, MSG_RC_CHANNELS_RAW},
{ MAVLINK_MSG_ID_RAW_IMU, MSG_RAW_IMU},
{ MAVLINK_MSG_ID_SCALED_IMU, MSG_SCALED_IMU},
{ MAVLINK_MSG_ID_SCALED_IMU2, MSG_SCALED_IMU2},
{ MAVLINK_MSG_ID_SCALED_IMU3, MSG_SCALED_IMU3},
{ MAVLINK_MSG_ID_SCALED_PRESSURE, MSG_SCALED_PRESSURE},
{ MAVLINK_MSG_ID_SCALED_PRESSURE2, MSG_SCALED_PRESSURE2},
{ MAVLINK_MSG_ID_SCALED_PRESSURE3, MSG_SCALED_PRESSURE3},
{ MAVLINK_MSG_ID_SENSOR_OFFSETS, MSG_SENSOR_OFFSETS},
{ MAVLINK_MSG_ID_GPS_RAW_INT, MSG_GPS_RAW},
{ MAVLINK_MSG_ID_GPS_RTK, MSG_GPS_RTK},
{ MAVLINK_MSG_ID_GPS2_RAW, MSG_GPS2_RAW},
{ MAVLINK_MSG_ID_GPS2_RTK, MSG_GPS2_RTK},
{ MAVLINK_MSG_ID_SYSTEM_TIME, MSG_SYSTEM_TIME},
{ MAVLINK_MSG_ID_RC_CHANNELS_SCALED, MSG_SERVO_OUT},
{ MAVLINK_MSG_ID_PARAM_VALUE, MSG_NEXT_PARAM},
{ MAVLINK_MSG_ID_FENCE_STATUS, MSG_FENCE_STATUS},
{ MAVLINK_MSG_ID_AHRS, MSG_AHRS},
{ MAVLINK_MSG_ID_SIMSTATE, MSG_SIMSTATE},
{ MAVLINK_MSG_ID_AHRS2, MSG_AHRS2},
{ MAVLINK_MSG_ID_AHRS3, MSG_AHRS3},
{ MAVLINK_MSG_ID_HWSTATUS, MSG_HWSTATUS},
{ MAVLINK_MSG_ID_WIND, MSG_WIND},
{ MAVLINK_MSG_ID_RANGEFINDER, MSG_RANGEFINDER},
{ MAVLINK_MSG_ID_DISTANCE_SENSOR, MSG_DISTANCE_SENSOR},
// request also does report:
{ MAVLINK_MSG_ID_TERRAIN_REQUEST, MSG_TERRAIN},
{ MAVLINK_MSG_ID_BATTERY2, MSG_BATTERY2},
{ MAVLINK_MSG_ID_CAMERA_FEEDBACK, MSG_CAMERA_FEEDBACK},
{ MAVLINK_MSG_ID_MOUNT_STATUS, MSG_MOUNT_STATUS},
{ MAVLINK_MSG_ID_OPTICAL_FLOW, MSG_OPTICAL_FLOW},
{ MAVLINK_MSG_ID_GIMBAL_REPORT, MSG_GIMBAL_REPORT},
{ MAVLINK_MSG_ID_MAG_CAL_PROGRESS, MSG_MAG_CAL_PROGRESS},
{ MAVLINK_MSG_ID_MAG_CAL_REPORT, MSG_MAG_CAL_REPORT},
{ MAVLINK_MSG_ID_EKF_STATUS_REPORT, MSG_EKF_STATUS_REPORT},
{ MAVLINK_MSG_ID_LOCAL_POSITION_NED, MSG_LOCAL_POSITION},
{ MAVLINK_MSG_ID_PID_TUNING, MSG_PID_TUNING},
{ MAVLINK_MSG_ID_VIBRATION, MSG_VIBRATION},
{ MAVLINK_MSG_ID_RPM, MSG_RPM},
{ MAVLINK_MSG_ID_MISSION_ITEM_REACHED, MSG_MISSION_ITEM_REACHED},
{ MAVLINK_MSG_ID_POSITION_TARGET_GLOBAL_INT, MSG_POSITION_TARGET_GLOBAL_INT},
{ MAVLINK_MSG_ID_POSITION_TARGET_LOCAL_NED, MSG_POSITION_TARGET_LOCAL_NED},
{ MAVLINK_MSG_ID_ADSB_VEHICLE, MSG_ADSB_VEHICLE},
{ MAVLINK_MSG_ID_BATTERY_STATUS, MSG_BATTERY_STATUS},
{ MAVLINK_MSG_ID_AOA_SSA, MSG_AOA_SSA},
{ MAVLINK_MSG_ID_DEEPSTALL, MSG_LANDING},
{ MAVLINK_MSG_ID_EXTENDED_SYS_STATE, MSG_EXTENDED_SYS_STATE},
};
for (uint8_t i=0; i<ARRAY_SIZE(map); i++) {
if (map[i].mavlink_id == mavlink_id) {
return map[i].msg_id;
}
}
return MSG_LAST;
}
bool GCS_MAVLINK::set_mavlink_message_id_interval(const uint32_t mavlink_id,
const uint16_t interval_ms)
{
const ap_message id = mavlink_id_to_ap_message_id(mavlink_id);
if (id == MSG_LAST) {
gcs().send_text(MAV_SEVERITY_INFO, "No ap_message for mavlink id (%u)", (unsigned int)mavlink_id);
return false;
}
return set_ap_message_interval(id, interval_ms);
}
bool GCS_MAVLINK::should_send_message_in_delay_callback(const ap_message id) const
{
// No ID we return true for may take more than a few hundred
// microseconds to return!
if (id == MSG_HEARTBEAT || id == MSG_NEXT_PARAM) {
return true;
}
if (in_hil_mode()) {
// in HIL we need to keep sending servo values to ensure
// the simulator doesn't pause, otherwise our sensor
// calibration could stall
if (id == MSG_SERVO_OUT ||
id == MSG_SERVO_OUTPUT_RAW) {
return true;
}
}
return false;
}
uint16_t GCS_MAVLINK::get_reschedule_interval_ms(const deferred_message_bucket_t &deferred) const
{
uint32_t interval_ms = deferred.interval_ms;
interval_ms += stream_slowdown_ms;
// slow most messages down if we're transfering parameters or
// waypoints:
if (_queued_parameter) {
// we are sending parameters, penalize streams:
interval_ms *= 4;
}
if (requesting_mission_items()) {
// we are sending requests for waypoints, penalize streams:
interval_ms *= 4;
}
if (interval_ms > 60000) {
return 60000;
}
return interval_ms;
}
// typical runtime on fmuv3: 5 microseconds for 3 buckets
void GCS_MAVLINK::find_next_bucket_to_send()
{
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
void *data = hal.scheduler->disable_interrupts_save();
uint32_t start_us = AP_HAL::micros();
#endif
const uint16_t now16_ms{AP_HAL::millis16()};
// all done sending this bucket... find another bucket...
sending_bucket_id = no_bucket_to_send;
uint16_t ms_before_send_next_bucket_to_send = UINT16_MAX;
for (uint8_t i=0; i<ARRAY_SIZE(deferred_message_bucket); i++) {
if (deferred_message_bucket[i].ap_message_ids.count() == 0) {
// no entries
continue;
}
const uint16_t interval = get_reschedule_interval_ms(deferred_message_bucket[i]);
const uint16_t ms_since_last_sent = now16_ms - deferred_message_bucket[i].last_sent_ms;
uint16_t ms_before_send_this_bucket;
if (ms_since_last_sent > interval) {
// should already have sent this bucket!
ms_before_send_this_bucket = 0;
} else {
ms_before_send_this_bucket = interval - ms_since_last_sent;
}
if (ms_before_send_this_bucket < ms_before_send_next_bucket_to_send) {
sending_bucket_id = i;
ms_before_send_next_bucket_to_send = ms_before_send_this_bucket;
}
}
if (sending_bucket_id != no_bucket_to_send) {
bucket_message_ids_to_send = deferred_message_bucket[sending_bucket_id].ap_message_ids;
} else {
bucket_message_ids_to_send.clearall();
}
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
uint32_t delta_us = AP_HAL::micros() - start_us;
hal.scheduler->restore_interrupts(data);
if (delta_us > try_send_message_stats.fnbts_maxtime) {
try_send_message_stats.fnbts_maxtime = delta_us;
}
#endif
}
ap_message GCS_MAVLINK::next_deferred_bucket_message_to_send()
{
if (sending_bucket_id == no_bucket_to_send) {
// could happen if all streamrates are zero?
return no_message_to_send;
}
const uint16_t now16_ms = AP_HAL::millis16();
const uint16_t ms_since_last_sent = now16_ms - deferred_message_bucket[sending_bucket_id].last_sent_ms;
if (ms_since_last_sent < get_reschedule_interval_ms(deferred_message_bucket[sending_bucket_id])) {
// not time to send this bucket
return no_message_to_send;
}
const int16_t next = bucket_message_ids_to_send.first_set();
if (next == -1) {
// should not happen
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
AP_HAL::panic("next_deferred_bucket_message_to_send called on empty bucket");
#endif
find_next_bucket_to_send();
return no_message_to_send;
}
return (ap_message)next;
}
// call try_send_message if appropriate. Incorporates debug code to
// record how long it takes to send a message. try_send_message is
// expected to be overridden, not this function.
bool GCS_MAVLINK::do_try_send_message(const ap_message id)
{
const bool in_delay_callback = hal.scheduler->in_delay_callback();
if (in_delay_callback && !should_send_message_in_delay_callback(id)) {
return true;
}
if (telemetry_delayed()) {
return false;
}
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
void *data = hal.scheduler->disable_interrupts_save();
uint32_t start_send_message_us = AP_HAL::micros();
#endif
if (!try_send_message(id)) {
// didn't fit in buffer...
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
try_send_message_stats.no_space_for_message++;
hal.scheduler->restore_interrupts(data);
#endif
return false;
}
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
const uint32_t delta_us = AP_HAL::micros() - start_send_message_us;
hal.scheduler->restore_interrupts(data);
if (delta_us > try_send_message_stats.longest_time_us) {
try_send_message_stats.longest_time_us = delta_us;
try_send_message_stats.longest_id = id;
}
#endif
return true;
}
int8_t GCS_MAVLINK::get_deferred_message_index(const ap_message id) const
{
for (uint8_t i=0; i<ARRAY_SIZE(deferred_message); i++) {
if (deferred_message[i].id == id) {
return i;
}
}
return -1;
}
int8_t GCS_MAVLINK::deferred_message_to_send_index()
{
const uint16_t now16_ms = AP_HAL::millis16();
if (next_deferred_message_to_send_cache == -1) {
uint16_t ms_before_next_message_to_send = UINT16_MAX;
for (uint8_t i=0; i<ARRAY_SIZE(deferred_message); i++) {
const uint16_t interval_ms = deferred_message[i].interval_ms;
if (interval_ms == 0) {
continue;
}
const uint16_t ms_since_last_sent = now16_ms - deferred_message[i].last_sent_ms;
uint16_t ms_before_send_this_message;
if (ms_since_last_sent > interval_ms) {
// should already have sent this one!
ms_before_send_this_message = 0;
} else {
ms_before_send_this_message = interval_ms - ms_since_last_sent;
}
if (ms_before_send_this_message < ms_before_next_message_to_send) {
next_deferred_message_to_send_cache = i;
ms_before_next_message_to_send = ms_before_send_this_message;
}
}
}
if (next_deferred_message_to_send_cache == -1) {
// this really shouldn't happen; we force parameter rates, for example.
return -1;
}
const uint16_t ms_since_last_sent = now16_ms - deferred_message[next_deferred_message_to_send_cache].last_sent_ms;
if (ms_since_last_sent < deferred_message[next_deferred_message_to_send_cache].interval_ms) {
return -1;
}
return next_deferred_message_to_send_cache;
}
void GCS_MAVLINK::update_send()
{
if (!hal.scheduler->in_delay_callback()) {
// AP_Logger will not send log data if we are armed.
AP::logger().handle_log_send();
}
if (!deferred_messages_initialised) {
initialise_message_intervals_from_streamrates();
deferred_messages_initialised = true;
}
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
uint32_t retry_deferred_body_start = AP_HAL::micros();
#endif
const uint32_t start = AP_HAL::millis();
while (AP_HAL::millis() - start < 5) { // spend a max of 5ms sending messages. This should never trigger - out_of_time() should become true
if (gcs().out_of_time()) {
break;
}
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
retry_deferred_body_start = AP_HAL::micros();
#endif
// check if any "specially handled" messages should be sent out
{
const int8_t next = deferred_message_to_send_index();
if (next != -1) {
if (!do_try_send_message(deferred_message[next].id)) {
break;
}
deferred_message[next].last_sent_ms += deferred_message[next].interval_ms;
next_deferred_message_to_send_cache = -1; // deferred_message_to_send will recalculate
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
const uint32_t stop = AP_HAL::micros();
const uint32_t delta = stop - retry_deferred_body_start;
if (delta > try_send_message_stats.max_retry_deferred_body_us) {
try_send_message_stats.max_retry_deferred_body_us = delta;
try_send_message_stats.max_retry_deferred_body_type = 1;
}
#endif
continue;
}
}
// check for any messages that the code has explicitly sent
const int16_t fs = pushed_ap_message_ids.first_set();
if (fs != -1) {
ap_message next = (ap_message)fs;
if (!do_try_send_message(next)) {
break;
}
pushed_ap_message_ids.clear(next);
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
const uint32_t stop = AP_HAL::micros();
const uint32_t delta = stop - retry_deferred_body_start;
if (delta > try_send_message_stats.max_retry_deferred_body_us) {
try_send_message_stats.max_retry_deferred_body_us = delta;
try_send_message_stats.max_retry_deferred_body_type = 2;
}
#endif
continue;
}
ap_message next = next_deferred_bucket_message_to_send();
if (next != no_message_to_send) {
if (!do_try_send_message(next)) {
break;
}
bucket_message_ids_to_send.clear(next);
if (bucket_message_ids_to_send.count() == 0) {
// we sent everything in the bucket. Reschedule it.
deferred_message_bucket[sending_bucket_id].last_sent_ms +=
get_reschedule_interval_ms(deferred_message_bucket[sending_bucket_id]);
find_next_bucket_to_send();
}
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
const uint32_t stop = AP_HAL::micros();
const uint32_t delta = stop - retry_deferred_body_start;
if (delta > try_send_message_stats.max_retry_deferred_body_us) {
try_send_message_stats.max_retry_deferred_body_us = delta;
try_send_message_stats.max_retry_deferred_body_type = 3;
}
#endif
continue;
}
break;
}
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
const uint32_t stop = AP_HAL::micros();
const uint32_t delta = stop - retry_deferred_body_start;
if (delta > try_send_message_stats.max_retry_deferred_body_us) {
try_send_message_stats.max_retry_deferred_body_us = delta;
try_send_message_stats.max_retry_deferred_body_type = 4;
}
#endif
// update the number of packets transmitted base on seqno, making
// the assumption that we don't send more than 256 messages
// between the last pass through here
mavlink_status_t *status = mavlink_get_channel_status(chan);
if (status != nullptr) {
send_packet_count += uint8_t(status->current_tx_seq - last_tx_seq);
last_tx_seq = status->current_tx_seq;
}
}
void GCS_MAVLINK::remove_message_from_bucket(int8_t bucket, ap_message id)
{
deferred_message_bucket[bucket].ap_message_ids.clear(id);
if (bucket == sending_bucket_id) {
bucket_message_ids_to_send.clear(id);
}
if (deferred_message_bucket[bucket].ap_message_ids.count() == 0) {
// bucket empty. Free it:
deferred_message_bucket[bucket].interval_ms = 0;
deferred_message_bucket[bucket].last_sent_ms = 0;
if (sending_bucket_id == bucket) {
find_next_bucket_to_send();
}
}
}
bool GCS_MAVLINK::set_ap_message_interval(enum ap_message id, uint16_t interval_ms)
{
if (id == MSG_NEXT_PARAM) {
// force parameters to *always* get streamed so a vehicle is
// recoverable from bad configuration:
if (interval_ms == 0) {
interval_ms = 100;
} else if (interval_ms > 1000) {
interval_ms = 1000;
}
}
// send messages out at most 80% of main loop rate
if (interval_ms != 0 &&
interval_ms*800 < AP::scheduler().get_loop_period_us()) {
interval_ms = AP::scheduler().get_loop_period_us()/800.0f;
}
// check if it's a specially-handled message:
const int8_t deferred_offset = get_deferred_message_index(id);
if (deferred_offset != -1) {
deferred_message[deferred_offset].interval_ms = interval_ms;
deferred_message[deferred_offset].last_sent_ms = AP_HAL::millis16();
return true;
}
// see which bucket has the closest interval:
int8_t closest_bucket = -1;
uint16_t closest_bucket_interval_delta = UINT16_MAX;
int8_t in_bucket = -1;
int8_t empty_bucket_id = -1;
for (uint8_t i=0; i<ARRAY_SIZE(deferred_message_bucket); i++) {
const deferred_message_bucket_t &bucket = deferred_message_bucket[i];
if (bucket.interval_ms == 0) {
// unused bucket
if (empty_bucket_id == -1) {
empty_bucket_id = i;
}
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (bucket.ap_message_ids.count() != 0) {
AP_HAL::panic("Bucket %u has zero interval but with ids set", i);
}
#endif
continue;
}
if (bucket.ap_message_ids.get(id)) {
in_bucket = i;
}
const uint16_t interval_delta = abs(bucket.interval_ms - interval_ms);
if (interval_delta < closest_bucket_interval_delta) {
closest_bucket = i;
closest_bucket_interval_delta = interval_delta;
}
}
if (in_bucket == -1 && interval_ms == 0) {
// not in a bucket and told to remove from scheduling
return true;
}
if (in_bucket != -1) {
if (interval_ms == 0) {
// remove it
remove_message_from_bucket(in_bucket, id);
return true;
}
if (closest_bucket_interval_delta == 0 &&
in_bucket == closest_bucket) {
// don't need to move it
return true;
}
// remove from existing bucket
remove_message_from_bucket(in_bucket, id);
if (empty_bucket_id == -1 &&
deferred_message_bucket[in_bucket].ap_message_ids.count() == 0) {
empty_bucket_id = in_bucket;
}
}
if (closest_bucket == -1 && empty_bucket_id == -1) {
// gah?!
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
::fprintf(stderr, "no buckets?!\n");
abort();
#endif
return false;
}
if (closest_bucket_interval_delta != 0 &&
empty_bucket_id != -1) {
// allocate a bucket for this interval
deferred_message_bucket[empty_bucket_id].interval_ms = interval_ms;
deferred_message_bucket[empty_bucket_id].last_sent_ms = AP_HAL::millis16();
closest_bucket = empty_bucket_id;
closest_bucket_interval_delta = 0;
}
deferred_message_bucket[closest_bucket].ap_message_ids.set(id);
if (sending_bucket_id == no_bucket_to_send) {
sending_bucket_id = closest_bucket;
bucket_message_ids_to_send = deferred_message_bucket[closest_bucket].ap_message_ids;
}
return true;
}
// queue a message to be sent (try_send_message does the *actual*
// mavlink work!)
void GCS_MAVLINK::send_message(enum ap_message id)
{
if (id == MSG_HEARTBEAT) {
save_signing_timestamp(false);
// update the mask of all streaming channels
if (is_streaming()) {
GCS_MAVLINK::chan_is_streaming |= (1U<<(chan-MAVLINK_COMM_0));
} else {
GCS_MAVLINK::chan_is_streaming &= ~(1U<<(chan-MAVLINK_COMM_0));
}
}
pushed_ap_message_ids.set(id);
}
void GCS_MAVLINK::packetReceived(const mavlink_status_t &status,
const mavlink_message_t &msg)
{
// we exclude radio packets because we historically used this to
// make it possible to use the CLI over the radio
if (msg.msgid != MAVLINK_MSG_ID_RADIO && msg.msgid != MAVLINK_MSG_ID_RADIO_STATUS) {
const uint8_t mask = (1U<<(chan-MAVLINK_COMM_0));
if (!(mask & mavlink_private)) {
mavlink_active |= mask;
}
}
if (!(status.flags & MAVLINK_STATUS_FLAG_IN_MAVLINK1) &&
(status.flags & MAVLINK_STATUS_FLAG_OUT_MAVLINK1) &&
AP::serialmanager().get_mavlink_protocol(chan) == AP_SerialManager::SerialProtocol_MAVLink2) {
// if we receive any MAVLink2 packets on a connection
// currently sending MAVLink1 then switch to sending
// MAVLink2
mavlink_status_t *cstatus = mavlink_get_channel_status(chan);
if (cstatus != nullptr) {
cstatus->flags &= ~MAVLINK_STATUS_FLAG_OUT_MAVLINK1;
}
}
if (!routing.check_and_forward(chan, msg)) {
// the routing code has indicated we should not handle this packet locally
return;
}
if (!accept_packet(status, msg)) {
// e.g. enforce-sysid says we shouldn't look at this packet
return;
}
handleMessage(msg);
}
void
GCS_MAVLINK::update_receive(uint32_t max_time_us)
{
// receive new packets
mavlink_message_t msg;
mavlink_status_t status;
uint32_t tstart_us = AP_HAL::micros();
uint32_t now_ms = AP_HAL::millis();
hal.util->perf_begin(_perf_update);
status.packet_rx_drop_count = 0;
// process received bytes
uint16_t nbytes = comm_get_available(chan);
for (uint16_t i=0; i<nbytes; i++)
{
const uint8_t c = (uint8_t)_port->read();
const uint32_t protocol_timeout = 4000;
if (alternative.handler &&
now_ms - alternative.last_mavlink_ms > protocol_timeout) {
/*
we have an alternative protocol handler installed and we
haven't parsed a MAVLink packet for 4 seconds. Try
parsing using alternative handler
*/
if (alternative.handler(c, mavlink_comm_port[chan])) {
alternative.last_alternate_ms = now_ms;
gcs_alternative_active[chan] = true;
}
/*
we may also try parsing as MAVLink if we haven't had a
successful parse on the alternative protocol for 4s
*/
if (now_ms - alternative.last_alternate_ms <= protocol_timeout) {
continue;
}
}
bool parsed_packet = false;
// Try to get a new message
if (mavlink_parse_char(chan, c, &msg, &status)) {
hal.util->persistent_data.last_mavlink_msgid = msg.msgid;
hal.util->perf_begin(_perf_packet);
packetReceived(status, msg);
hal.util->perf_end(_perf_packet);
parsed_packet = true;
gcs_alternative_active[chan] = false;
alternative.last_mavlink_ms = now_ms;
hal.util->persistent_data.last_mavlink_msgid = 0;
}
if (parsed_packet || i % 100 == 0) {
// make sure we don't spend too much time parsing mavlink messages
if (AP_HAL::micros() - tstart_us > max_time_us) {
break;
}
}
}
const uint32_t tnow = AP_HAL::millis();
// send a timesync message every 10 seconds; this is for data
// collection purposes
if (tnow - _timesync_request.last_sent_ms > _timesync_request.interval_ms && !is_private()) {
if (HAVE_PAYLOAD_SPACE(chan, TIMESYNC)) {
send_timesync();
_timesync_request.last_sent_ms = tnow;
}
}
// consider logging mavlink stats:
if (is_active() || is_streaming()) {
if (tnow - last_mavlink_stats_logged > 1000) {
log_mavlink_stats();
last_mavlink_stats_logged = tnow;
}
}
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
const uint16_t now16_ms{AP_HAL::millis16()};
if (uint16_t(now16_ms - try_send_message_stats.statustext_last_sent_ms) > 10000U) {
if (try_send_message_stats.longest_time_us) {
gcs().send_text(MAV_SEVERITY_INFO,
"GCS.chan(%u): ap_msg=%u took %uus to send",
chan,
try_send_message_stats.longest_id,
try_send_message_stats.longest_time_us);
try_send_message_stats.longest_time_us = 0;
}
if (try_send_message_stats.no_space_for_message &&
(is_active() || is_streaming())) {
gcs().send_text(MAV_SEVERITY_INFO,
"GCS.chan(%u): out-of-space: %u",
chan,
try_send_message_stats.no_space_for_message);
try_send_message_stats.no_space_for_message = 0;
}
if (max_slowdown_ms) {
gcs().send_text(MAV_SEVERITY_INFO,
"GCS.chan(%u): max slowdown=%u",
chan,
max_slowdown_ms);
max_slowdown_ms = 0;
}
if (try_send_message_stats.behind) {
gcs().send_text(MAV_SEVERITY_INFO,
"GCS.chan(%u): behind=%u",
chan,
try_send_message_stats.behind);
try_send_message_stats.behind = 0;
}
if (try_send_message_stats.fnbts_maxtime) {
gcs().send_text(MAV_SEVERITY_INFO,
"GCS.chan(%u): fnbts_maxtime=%uus",
chan,
try_send_message_stats.fnbts_maxtime);
try_send_message_stats.fnbts_maxtime = 0;
}
if (try_send_message_stats.max_retry_deferred_body_us) {
gcs().send_text(MAV_SEVERITY_INFO,
"GCS.chan(%u): retry_body_maxtime=%uus (%u)",
chan,
try_send_message_stats.max_retry_deferred_body_us,
try_send_message_stats.max_retry_deferred_body_type
);
try_send_message_stats.max_retry_deferred_body_us = 0;
}
for (uint8_t i=0; i<ARRAY_SIZE(deferred_message_bucket); i++) {
gcs().send_text(MAV_SEVERITY_INFO,
"B. intvl. (%u): %u %u %u %u %u",
chan,
deferred_message_bucket[0].interval_ms,
deferred_message_bucket[1].interval_ms,
deferred_message_bucket[2].interval_ms,
deferred_message_bucket[3].interval_ms,
deferred_message_bucket[4].interval_ms);
}
try_send_message_stats.statustext_last_sent_ms = now16_ms;
}
#endif
hal.util->perf_end(_perf_update);
}
/*
record stats about this link to logger
*/
void GCS_MAVLINK::log_mavlink_stats()
{
mavlink_status_t *status = mavlink_get_channel_status(chan);
if (status == nullptr) {
return;
}
const struct log_MAV pkt = {
LOG_PACKET_HEADER_INIT(LOG_MAV_MSG),
time_us : AP_HAL::micros64(),
chan : (uint8_t)chan,
packet_tx_count : send_packet_count,
packet_rx_success_count: status->packet_rx_success_count,
packet_rx_drop_count : status->packet_rx_drop_count
};
AP::logger().WriteBlock(&pkt, sizeof(pkt));
}
/*
send the SYSTEM_TIME message
*/
void GCS_MAVLINK::send_system_time()
{
uint64_t time_unix = 0;
AP::rtc().get_utc_usec(time_unix); // may fail, leaving time_unix at 0
mavlink_msg_system_time_send(
chan,
time_unix,
AP_HAL::millis());
}
/*
send RC_CHANNELS messages
*/
void GCS_MAVLINK::send_rc_channels() const
{
AP_RSSI *rssi = AP::rssi();
uint8_t receiver_rssi = 0;
if (rssi != nullptr) {
receiver_rssi = rssi->read_receiver_rssi_uint8();
}
uint16_t values[18] = {};
rc().get_radio_in(values, ARRAY_SIZE(values));
mavlink_msg_rc_channels_send(
chan,
AP_HAL::millis(),
RC_Channels::get_valid_channel_count(),
values[0],
values[1],
values[2],
values[3],
values[4],
values[5],
values[6],
values[7],
values[8],
values[9],
values[10],
values[11],
values[12],
values[13],
values[14],
values[15],
values[16],
values[17],
receiver_rssi);
}
void GCS_MAVLINK::send_rc_channels_raw() const
{
mavlink_status_t *status = mavlink_get_channel_status(chan);
if (status == nullptr) {
// should not happen
return;
}
// for mavlink1 send RC_CHANNELS_RAW, for compatibility with OSD
// implementations
if (!(status->flags & MAVLINK_STATUS_FLAG_OUT_MAVLINK1)) {
return;
}
AP_RSSI *rssi = AP::rssi();
uint8_t receiver_rssi = 0;
if (rssi != nullptr) {
receiver_rssi = rssi->read_receiver_rssi_uint8();
}
uint16_t values[8] = {};
rc().get_radio_in(values, ARRAY_SIZE(values));
mavlink_msg_rc_channels_raw_send(
chan,
AP_HAL::millis(),
0,
values[0],
values[1],
values[2],
values[3],
values[4],
values[5],
values[6],
values[7],
receiver_rssi);
}
void GCS_MAVLINK::send_raw_imu()
{
const AP_InertialSensor &ins = AP::ins();
const Compass &compass = AP::compass();
const Vector3f &accel = ins.get_accel(0);
const Vector3f &gyro = ins.get_gyro(0);
Vector3f mag;
if (compass.get_count() >= 1) {
mag = compass.get_field(0);
} else {
mag.zero();
}
mavlink_msg_raw_imu_send(
chan,
AP_HAL::micros(),
accel.x * 1000.0f / GRAVITY_MSS,
accel.y * 1000.0f / GRAVITY_MSS,
accel.z * 1000.0f / GRAVITY_MSS,
gyro.x * 1000.0f,
gyro.y * 1000.0f,
gyro.z * 1000.0f,
mag.x,
mag.y,
mag.z);
}
void GCS_MAVLINK::send_scaled_imu(uint8_t instance, void (*send_fn)(mavlink_channel_t chan, uint32_t time_ms, int16_t xacc, int16_t yacc, int16_t zacc, int16_t xgyro, int16_t ygyro, int16_t zgyro, int16_t xmag, int16_t ymag, int16_t zmag))
{
const AP_InertialSensor &ins = AP::ins();
const Compass &compass = AP::compass();
bool have_data = false;
Vector3f accel{};
if (ins.get_accel_count() > instance) {
accel = ins.get_accel(instance);
have_data = true;
}
Vector3f gyro{};
if (ins.get_accel_count() > instance) {
gyro = ins.get_gyro(instance);
have_data = true;
}
Vector3f mag{};
if (compass.get_count() > instance) {
mag = compass.get_field(instance);
have_data = true;
}
if (!have_data) {
return;
}
send_fn(
chan,
AP_HAL::millis(),
accel.x * 1000.0f / GRAVITY_MSS,
accel.y * 1000.0f / GRAVITY_MSS,
accel.z * 1000.0f / GRAVITY_MSS,
gyro.x * 1000.0f,
gyro.y * 1000.0f,
gyro.z * 1000.0f,
mag.x,
mag.y,
mag.z);
}
// send data for barometer and airspeed sensors instances. In the
// case that we run out of instances of one before the other we send
// the relevant fields as 0.
void GCS_MAVLINK::send_scaled_pressure_instance(uint8_t instance, void (*send_fn)(mavlink_channel_t chan, uint32_t time_boot_ms, float press_abs, float press_diff, int16_t temperature))
{
const AP_Baro &barometer = AP::baro();
bool have_data = false;
float press_abs = 0.0f;
float temperature = 0.0f;
if (instance < barometer.num_instances()) {
press_abs = barometer.get_pressure(instance) * 0.01f;
temperature = barometer.get_temperature(instance)*100;
have_data = true;
}
float press_diff = 0; // pascal
AP_Airspeed *airspeed = AP_Airspeed::get_singleton();
if (airspeed != nullptr &&
airspeed->enabled(instance)) {
press_diff = airspeed->get_differential_pressure(instance) * 0.01f;
have_data = true;
}
if (!have_data) {
return;
}
send_fn(
chan,
AP_HAL::millis(),
press_abs, // hectopascal
press_diff, // hectopascal
temperature); // 0.01 degrees C
}
void GCS_MAVLINK::send_scaled_pressure()
{
send_scaled_pressure_instance(0, mavlink_msg_scaled_pressure_send);
}
void GCS_MAVLINK::send_scaled_pressure2()
{
send_scaled_pressure_instance(1, mavlink_msg_scaled_pressure2_send);
}
void GCS_MAVLINK::send_scaled_pressure3()
{
send_scaled_pressure_instance(2, mavlink_msg_scaled_pressure3_send);
}
void GCS_MAVLINK::send_sensor_offsets()
{
const AP_InertialSensor &ins = AP::ins();
const Compass &compass = AP::compass();
// run this message at a much lower rate - otherwise it
// pointlessly wastes quite a lot of bandwidth
static uint8_t counter;
if (counter++ < 10) {
return;
}
counter = 0;
const Vector3f &mag_offsets = compass.get_offsets(0);
const Vector3f &accel_offsets = ins.get_accel_offsets(0);
const Vector3f &gyro_offsets = ins.get_gyro_offsets(0);
const AP_Baro &barometer = AP::baro();
mavlink_msg_sensor_offsets_send(chan,
mag_offsets.x,
mag_offsets.y,
mag_offsets.z,
compass.get_declination(),
barometer.get_pressure(),
barometer.get_temperature()*100,
gyro_offsets.x,
gyro_offsets.y,
gyro_offsets.z,
accel_offsets.x,
accel_offsets.y,
accel_offsets.z);
}
void GCS_MAVLINK::send_ahrs()
{
const AP_AHRS &ahrs = AP::ahrs();
const Vector3f &omega_I = ahrs.get_gyro_drift();
mavlink_msg_ahrs_send(
chan,
omega_I.x,
omega_I.y,
omega_I.z,
0,
0,
ahrs.get_error_rp(),
ahrs.get_error_yaw());
}
/*
send a statustext text string to specific MAVLink bitmask
*/
void GCS::send_statustext(MAV_SEVERITY severity, uint8_t dest_bitmask, const char *text)
{
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (strlen(text) > MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN) {
AP_HAL::panic("Statustext (%s) too long", text);
}
#endif
AP_Logger *logger = AP_Logger::get_singleton();
if (logger != nullptr) {
logger->Write_Message(text);
}
if (frsky != nullptr) {
frsky->queue_message(severity, text);
}
AP_Notify *notify = AP_Notify::get_singleton();
if (notify) {
notify->send_text(text);
}
// filter destination ports to only allow active ports.
statustext_t statustext{};
statustext.bitmask = (GCS_MAVLINK::active_channel_mask() | GCS_MAVLINK::streaming_channel_mask() ) & dest_bitmask;
if (!statustext.bitmask) {
// nowhere to send
return;
}
statustext.msg.severity = severity;
strncpy(statustext.msg.text, text, sizeof(statustext.msg.text));
WITH_SEMAPHORE(_statustext_sem);
// The force push will ensure comm links do not block other comm links forever if they fail.
// If we push to a full buffer then we overwrite the oldest entry, effectively removing the
// block but not until the buffer fills up.
_statustext_queue.push_force(statustext);
// try and send immediately if possible
service_statustext();
}
/*
send a statustext message to specific MAVLink connections in a bitmask
*/
void GCS::service_statustext(void)
{
// create bitmask of what mavlink ports we should send this text to.
// note, if sending to all ports, we only need to store the bitmask for each and the string only once.
// once we send over a link, clear the port but other busy ports bit may stay allowing for faster links
// to clear the bit and send quickly but slower links to still store the string. Regardless of mixed
// bitrates of ports, a maximum of _status_capacity strings can be buffered. Downside
// is if you have a super slow link mixed with a faster port, if there are _status_capacity
// strings in the slow queue then the next item can not be queued for the faster link
if (_statustext_queue.empty()) {
// nothing to do
return;
}
for (uint8_t idx=0; idx<_status_capacity; ) {
statustext_t *statustext = _statustext_queue[idx];
if (statustext == nullptr) {
break;
}
// try and send to all active mavlink ports listed in the statustext.bitmask
for (uint8_t i=0; i<MAVLINK_COMM_NUM_BUFFERS; i++) {
uint8_t chan_bit = (1U<<i);
// logical AND (&) to mask them together
if (statustext->bitmask & chan_bit) {
// something is queued on a port and that's the port index we're looped at
mavlink_channel_t chan_index = (mavlink_channel_t)(MAVLINK_COMM_0+i);
if (HAVE_PAYLOAD_SPACE(chan_index, STATUSTEXT)) {
// we have space so send then clear that channel bit on the mask
mavlink_msg_statustext_send(chan_index, statustext->msg.severity, statustext->msg.text);
statustext->bitmask &= ~chan_bit;
}
}
}
if (statustext->bitmask == 0) {
_statustext_queue.remove(idx);
} else {
// move to next index
idx++;
}
}
}
void GCS::send_message(enum ap_message id)
{
for (uint8_t i=0; i<num_gcs(); i++) {
if (chan(i).initialised) {
chan(i).send_message(id);
}
}
}
void GCS::update_send()
{
if (!initialised_missionitemprotocol_objects) {
initialised_missionitemprotocol_objects = true;
// once-only initialisation of MissionItemProtocol objects:
AP_Mission *mission = AP::mission();
if (mission != nullptr) {
_missionitemprotocol_waypoints = new MissionItemProtocol_Waypoints(*mission);
}
AP_Rally *rally = AP::rally();
if (rally != nullptr) {
_missionitemprotocol_rally = new MissionItemProtocol_Rally(*rally);
}
}
if (_missionitemprotocol_waypoints != nullptr) {
_missionitemprotocol_waypoints->update();
}
if (_missionitemprotocol_rally != nullptr) {
_missionitemprotocol_rally->update();
}
for (uint8_t i=0; i<num_gcs(); i++) {
if (chan(i).initialised) {
chan(i).update_send();
}
}
WITH_SEMAPHORE(_statustext_sem);
service_statustext();
}
void GCS::update_receive(void)
{
for (uint8_t i=0; i<num_gcs(); i++) {
if (chan(i).initialised) {
chan(i).update_receive();
}
}
// also update UART pass-thru, if enabled
update_passthru();
}
void GCS::send_mission_item_reached_message(uint16_t mission_index)
{
for (uint8_t i=0; i<num_gcs(); i++) {
if (chan(i).initialised) {
chan(i).mission_item_reached_index = mission_index;
chan(i).send_message(MSG_MISSION_ITEM_REACHED);
}
}
}
void GCS::setup_uarts()
{
for (uint8_t i = 1; i < MAVLINK_COMM_NUM_BUFFERS; i++) {
chan(i).setup_uart(i);
}
if (frsky == nullptr) {
frsky = new AP_Frsky_Telem();
if (frsky == nullptr || !frsky->init()) {
delete frsky;
frsky = nullptr;
}
}
devo_telemetry.init();
}
// report battery2 state
void GCS_MAVLINK::send_battery2()
{
const AP_BattMonitor &battery = AP::battery();
if (battery.num_instances() > 1) {
float current;
if (battery.current_amps(current, 1)) {
current *= 100; // 10*mA
} else {
current = -1;
}
mavlink_msg_battery2_send(chan, battery.voltage(1)*1000, current);
}
}
/*
handle a SET_MODE MAVLink message
*/
void GCS_MAVLINK::handle_set_mode(const mavlink_message_t &msg)
{
mavlink_set_mode_t packet;
mavlink_msg_set_mode_decode(&msg, &packet);
const MAV_MODE _base_mode = (MAV_MODE)packet.base_mode;
const uint32_t _custom_mode = packet.custom_mode;
const MAV_RESULT result = _set_mode_common(_base_mode, _custom_mode);
// send ACK or NAK
mavlink_msg_command_ack_send(chan, MAVLINK_MSG_ID_SET_MODE, result);
}
/*
code common to both SET_MODE mavlink message and command long set_mode msg
*/
MAV_RESULT GCS_MAVLINK::_set_mode_common(const MAV_MODE _base_mode, const uint32_t _custom_mode)
{
MAV_RESULT result = MAV_RESULT_UNSUPPORTED;
// only accept custom modes because there is no easy mapping from Mavlink flight modes to AC flight modes
if (_base_mode & MAV_MODE_FLAG_CUSTOM_MODE_ENABLED) {
if (set_mode(_custom_mode)) {
result = MAV_RESULT_ACCEPTED;
}
} else if (_base_mode == (MAV_MODE)MAV_MODE_FLAG_DECODE_POSITION_SAFETY) {
// set the safety switch position. Must be in a command by itself
if (_custom_mode == 0) {
// turn safety off (pwm outputs flow to the motors)
hal.rcout->force_safety_off();
result = MAV_RESULT_ACCEPTED;
} else if (_custom_mode == 1) {
// turn safety on (no pwm outputs to the motors)
if (hal.rcout->force_safety_on()) {
result = MAV_RESULT_ACCEPTED;
}
}
}
return result;
}
/*
send OPTICAL_FLOW message
*/
void GCS_MAVLINK::send_opticalflow()
{
#if AP_AHRS_NAVEKF_AVAILABLE
const OpticalFlow *optflow = AP::opticalflow();
// exit immediately if no optical flow sensor or not healthy
if (optflow == nullptr ||
!optflow->healthy()) {
return;
}
// get rates from sensor
const Vector2f &flowRate = optflow->flowRate();
const Vector2f &bodyRate = optflow->bodyRate();
const AP_AHRS &ahrs = AP::ahrs();
float hagl = 0;
if (ahrs.have_inertial_nav()) {
if (!ahrs.get_hagl(hagl)) {
return;
}
}
// populate and send message
mavlink_msg_optical_flow_send(
chan,
AP_HAL::millis(),
0, // sensor id is zero
flowRate.x,
flowRate.y,
flowRate.x - bodyRate.x,
flowRate.y - bodyRate.y,
optflow->quality(),
hagl, // ground distance (in meters) set to zero
flowRate.x,
flowRate.y);
#endif
}
/*
send AUTOPILOT_VERSION packet
*/
void GCS_MAVLINK::send_autopilot_version() const
{
uint32_t flight_sw_version;
uint32_t middleware_sw_version = 0;
uint32_t board_version = 0;
char flight_custom_version[MAVLINK_MSG_AUTOPILOT_VERSION_FIELD_FLIGHT_CUSTOM_VERSION_LEN]{};
char middleware_custom_version[MAVLINK_MSG_AUTOPILOT_VERSION_FIELD_MIDDLEWARE_CUSTOM_VERSION_LEN]{};
char os_custom_version[MAVLINK_MSG_AUTOPILOT_VERSION_FIELD_OS_CUSTOM_VERSION_LEN]{};
uint16_t vendor_id = 0;
uint16_t product_id = 0;
uint64_t uid = 0;
uint8_t uid2[MAVLINK_MSG_AUTOPILOT_VERSION_FIELD_UID2_LEN] = {0};
const AP_FWVersion &version = AP::fwversion();
flight_sw_version = version.major << (8 * 3) | \
version.minor << (8 * 2) | \
version.patch << (8 * 1) | \
(uint32_t)(version.fw_type) << (8 * 0);
if (version.fw_hash_str) {
strncpy(flight_custom_version, version.fw_hash_str, sizeof(flight_custom_version) - 1);
flight_custom_version[sizeof(flight_custom_version) - 1] = '\0';
}
if (version.middleware_hash_str) {
strncpy(middleware_custom_version, version.middleware_hash_str, sizeof(middleware_custom_version) - 1);
middleware_custom_version[sizeof(middleware_custom_version) - 1] = '\0';
}
if (version.os_hash_str) {
strncpy(os_custom_version, version.os_hash_str, sizeof(os_custom_version) - 1);
os_custom_version[sizeof(os_custom_version) - 1] = '\0';
}
mavlink_msg_autopilot_version_send(
chan,
capabilities(),
flight_sw_version,
middleware_sw_version,
version.os_sw_version,
board_version,
(uint8_t *)flight_custom_version,
(uint8_t *)middleware_custom_version,
(uint8_t *)os_custom_version,
vendor_id,
product_id,
uid,
uid2
);
}
/*
send LOCAL_POSITION_NED message
*/
void GCS_MAVLINK::send_local_position() const
{
const AP_AHRS &ahrs = AP::ahrs();
Vector3f local_position, velocity;
if (!ahrs.get_relative_position_NED_home(local_position) ||
!ahrs.get_velocity_NED(velocity)) {
// we don't know the position and velocity
return;
}
mavlink_msg_local_position_ned_send(
chan,
AP_HAL::millis(),
local_position.x,
local_position.y,
local_position.z,
velocity.x,
velocity.y,
velocity.z);
}
/*
send VIBRATION message
*/
void GCS_MAVLINK::send_vibration() const
{
const AP_InertialSensor &ins = AP::ins();
Vector3f vibration = ins.get_vibration_levels();
mavlink_msg_vibration_send(
chan,
AP_HAL::micros64(),
vibration.x,
vibration.y,
vibration.z,
ins.get_accel_clip_count(0),
ins.get_accel_clip_count(1),
ins.get_accel_clip_count(2));
}
void GCS_MAVLINK::send_named_float(const char *name, float value) const
{
char float_name[MAVLINK_MSG_NAMED_VALUE_FLOAT_FIELD_NAME_LEN+1] {};
strncpy(float_name, name, MAVLINK_MSG_NAMED_VALUE_FLOAT_FIELD_NAME_LEN);
mavlink_msg_named_value_float_send(chan, AP_HAL::millis(), float_name, value);
}
void GCS_MAVLINK::send_home_position() const
{
if (!AP::ahrs().home_is_set()) {
return;
}
const Location &home = AP::ahrs().get_home();
const float q[4] = {1.0f, 0.0f, 0.0f, 0.0f};
mavlink_msg_home_position_send(
chan,
home.lat,
home.lng,
home.alt * 10,
0.0f, 0.0f, 0.0f,
q,
0.0f, 0.0f, 0.0f,
AP_HAL::micros64());
}
void GCS_MAVLINK::send_gps_global_origin() const
{
Location ekf_origin;
if (!AP::ahrs().get_origin(ekf_origin)) {
return;
}
mavlink_msg_gps_global_origin_send(
chan,
ekf_origin.lat,
ekf_origin.lng,
ekf_origin.alt * 10,
AP_HAL::micros64());
}
/*
Send MAVLink heartbeat
*/
void GCS_MAVLINK::send_heartbeat() const
{
mavlink_msg_heartbeat_send(
chan,
gcs().frame_type(),
MAV_AUTOPILOT_ARDUPILOTMEGA,
base_mode(),
gcs().custom_mode(),
system_status());
}
MAV_RESULT GCS_MAVLINK::handle_command_set_message_interval(const mavlink_command_long_t &packet)
{
const uint32_t msg_id = (uint32_t)packet.param1;
const int32_t interval_us = (int32_t)packet.param2;
uint16_t interval_ms;
if (interval_us == 0) {
// zero is "reset to default rate"
if (!get_default_interval_for_mavlink_message_id(msg_id, interval_ms)) {
return MAV_RESULT_FAILED;
}
} else if (interval_us == -1) {
// minus-one is "stop sending"
interval_ms = 0;
} else if (interval_us < 1000) {
// don't squash sub-ms times to zero
interval_ms = 1;
} else if (interval_us > 60000000) {
interval_ms = 60000;
} else {
interval_ms = interval_us / 1000;
}
if (set_mavlink_message_id_interval(msg_id, interval_ms)) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
MAV_RESULT GCS_MAVLINK::handle_command_request_message(const mavlink_command_long_t &packet)
{
const uint32_t mavlink_id = (uint32_t)packet.param1;
const ap_message id = mavlink_id_to_ap_message_id(mavlink_id);
if (id == MSG_LAST) {
return MAV_RESULT_FAILED;
}
send_message(id);
return MAV_RESULT_ACCEPTED;
}
bool GCS_MAVLINK::get_ap_message_interval(ap_message id, uint16_t &interval_ms) const
{
// check if it's a specially-handled message:
const int8_t deferred_offset = get_deferred_message_index(id);
if (deferred_offset != -1) {
interval_ms = deferred_message[deferred_offset].interval_ms;
return true;
}
// check the deferred message buckets:
for (uint8_t i=0; i<ARRAY_SIZE(deferred_message_bucket); i++) {
const deferred_message_bucket_t &bucket = deferred_message_bucket[i];
if (bucket.ap_message_ids.get(id)) {
interval_ms = bucket.interval_ms;
return true;
}
}
return false;
}
MAV_RESULT GCS_MAVLINK::handle_command_get_message_interval(const mavlink_command_long_t &packet)
{
if (comm_get_txspace(chan) < PAYLOAD_SIZE(chan, MESSAGE_INTERVAL) + PAYLOAD_SIZE(chan, COMMAND_ACK)) {
return MAV_RESULT_TEMPORARILY_REJECTED;
}
const uint32_t mavlink_id = (uint32_t)packet.param1;
if (mavlink_id >= 2 << 15) {
// response packet limits range this works against!
mavlink_msg_message_interval_send(chan, mavlink_id, 0); // not available
return MAV_RESULT_FAILED;
}
const ap_message id = mavlink_id_to_ap_message_id(mavlink_id);
if (id == MSG_LAST) {
mavlink_msg_message_interval_send(chan, mavlink_id, 0); // not available
return MAV_RESULT_FAILED;
}
uint16_t interval_ms = 0;
if (!get_ap_message_interval(id, interval_ms)) {
// not streaming this message at the moment...
mavlink_msg_message_interval_send(chan, mavlink_id, -1); // disabled
return MAV_RESULT_ACCEPTED;
}
if (interval_ms == 0) {
mavlink_msg_message_interval_send(chan, mavlink_id, -1); // disabled
return MAV_RESULT_ACCEPTED;
}
mavlink_msg_message_interval_send(chan, mavlink_id, interval_ms * 1000);
return MAV_RESULT_ACCEPTED;
}
// are we still delaying telemetry to try to avoid Xbee bricking?
bool GCS_MAVLINK::telemetry_delayed() const
{
uint32_t tnow = AP_HAL::millis() >> 10;
if (tnow > telem_delay()) {
return false;
}
if (chan == MAVLINK_COMM_0 && hal.gpio->usb_connected()) {
// this is USB telemetry, so won't be an Xbee
return false;
}
// we're either on the 2nd UART, or no USB cable is connected
// we need to delay telemetry by the TELEM_DELAY time
return true;
}
/*
send SERVO_OUTPUT_RAW
*/
void GCS_MAVLINK::send_servo_output_raw()
{
uint16_t values[16] {};
if (in_hil_mode()) {
for (uint8_t i=0; i<16; i++) {
values[i] = SRV_Channels::srv_channel(i)->get_output_pwm();
}
} else {
hal.rcout->read(values, 16);
}
for (uint8_t i=0; i<16; i++) {
if (values[i] == 65535) {
values[i] = 0;
}
}
mavlink_msg_servo_output_raw_send(
chan,
AP_HAL::micros(),
0, // port
values[0], values[1], values[2], values[3],
values[4], values[5], values[6], values[7],
values[8], values[9], values[10], values[11],
values[12], values[13], values[14], values[15]);
}
void GCS_MAVLINK::send_accelcal_vehicle_position(uint32_t position)
{
if (HAVE_PAYLOAD_SPACE(chan, COMMAND_LONG)) {
mavlink_msg_command_long_send(
chan,
0,
0,
MAV_CMD_ACCELCAL_VEHICLE_POS,
0,
(float) position,
0, 0, 0, 0, 0, 0);
}
}
float GCS_MAVLINK::vfr_hud_airspeed() const
{
AP_Airspeed *airspeed = AP_Airspeed::get_singleton();
if (airspeed != nullptr && airspeed->healthy()) {
return airspeed->get_airspeed();
}
// because most vehicles don't have airspeed sensors, we return a
// different sort of speed estimate in the relevant field for
// comparison's sake.
return AP::gps().ground_speed();
}
float GCS_MAVLINK::vfr_hud_climbrate() const
{
Vector3f velned;
if (!AP::ahrs().get_velocity_NED(velned)) {
velned.zero();
}
return -velned.z;
}
float GCS_MAVLINK::vfr_hud_alt() const
{
return global_position_current_loc.alt * 0.01f; // cm -> m
}
void GCS_MAVLINK::send_vfr_hud()
{
AP_AHRS &ahrs = AP::ahrs();
// return values ignored; we send stale data
ahrs.get_position(global_position_current_loc);
mavlink_msg_vfr_hud_send(
chan,
vfr_hud_airspeed(),
ahrs.groundspeed(),
(ahrs.yaw_sensor / 100) % 360,
vfr_hud_throttle(),
vfr_hud_alt(),
vfr_hud_climbrate());
}
void GCS_MAVLINK::zero_rc_outputs()
{
// Send an invalid signal to the motors to prevent spinning due to neutral (1500) pwm pulse being cut short
// For that matter, send an invalid signal to all channels to prevent undesired/unexpected behavior
SRV_Channels::cork();
for (int i=0; i<NUM_RC_CHANNELS; i++) {
hal.rcout->write(i, 0);
}
SRV_Channels::push();
}
/*
handle a MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN command
Optionally disable PX4IO overrides. This is done for quadplanes to
prevent the mixer running while rebooting which can start the VTOL
motors. That can be dangerous when a preflight reboot is done with
the pilot close to the aircraft and can also damage the aircraft
*/
MAV_RESULT GCS_MAVLINK::handle_preflight_reboot(const mavlink_command_long_t &packet)
{
if (is_equal(packet.param1, 42.0f) &&
is_equal(packet.param2, 24.0f) &&
is_equal(packet.param3, 71.0f) &&
is_equal(packet.param4, 93.0f)) {
// this is a magic sequence to force the main loop to
// lockup. This is for testing the stm32 watchdog
// functionality
while (true) {
send_text(MAV_SEVERITY_WARNING,"entering lockup");
hal.scheduler->delay(250);
}
}
if (hal.util->get_soft_armed()) {
// refuse reboot when armed
return MAV_RESULT_FAILED;
}
if (!(is_equal(packet.param1, 1.0f) || is_equal(packet.param1, 3.0f))) {
// param1 must be 1 or 3 - 1 being reboot, 3 being reboot-to-bootloader
return MAV_RESULT_UNSUPPORTED;
}
if (should_zero_rc_outputs_on_reboot()) {
zero_rc_outputs();
}
// send ack before we reboot
mavlink_msg_command_ack_send(chan, packet.command, MAV_RESULT_ACCEPTED);
// Notify might want to blink some LEDs:
AP_Notify *notify = AP_Notify::get_singleton();
if (notify) {
AP_Notify::flags.firmware_update = 1;
notify->update();
}
// force safety on
hal.rcout->force_safety_on();
hal.rcout->force_safety_no_wait();
// flush pending parameter writes
AP_Param::flush();
hal.scheduler->delay(200);
// when packet.param1 == 3 we reboot to hold in bootloader
const bool hold_in_bootloader = is_equal(packet.param1, 3.0f);
hal.scheduler->reboot(hold_in_bootloader);
return MAV_RESULT_FAILED;
}
/*
handle a flight termination request
*/
MAV_RESULT GCS_MAVLINK::handle_flight_termination(const mavlink_command_long_t &packet)
{
AP_AdvancedFailsafe *failsafe = get_advanced_failsafe();
if (failsafe == nullptr) {
return MAV_RESULT_UNSUPPORTED;
}
bool should_terminate = packet.param1 > 0.5f;
if (failsafe->gcs_terminate(should_terminate, "GCS request")) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
/*
handle a R/C bind request (for spektrum)
*/
MAV_RESULT GCS_MAVLINK::handle_rc_bind(const mavlink_command_long_t &packet)
{
// initiate bind procedure. We accept the DSM type from either
// param1 or param2 due to a past mixup with what parameter is the
// right one
if (!RC_Channels::receiver_bind(packet.param2>0?packet.param2:packet.param1)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
uint64_t GCS_MAVLINK::timesync_receive_timestamp_ns() const
{
uint64_t ret = _port->receive_time_constraint_us(PAYLOAD_SIZE(chan, TIMESYNC));
if (ret == 0) {
ret = AP_HAL::micros64();
}
return ret*1000LL;
}
uint64_t GCS_MAVLINK::timesync_timestamp_ns() const
{
// we add in our own system id try to ensure we only consider
// responses to our own timesync request messages
return AP_HAL::micros64()*1000LL + mavlink_system.sysid;
}
/*
return a timesync request
Sends back ts1 as received, and tc1 is the local timestamp in usec
*/
void GCS_MAVLINK::handle_timesync(const mavlink_message_t &msg)
{
// decode incoming timesync message
mavlink_timesync_t tsync;
mavlink_msg_timesync_decode(&msg, &tsync);
if (tsync.tc1 != 0) {
// this is a response to a timesync request
if (tsync.ts1 != _timesync_request.sent_ts1) {
// we didn't actually send the request.... or it's a
// response to an ancient request...
return;
}
const uint64_t round_trip_time_us = (timesync_receive_timestamp_ns() - _timesync_request.sent_ts1)*0.001f;
#if 0
gcs().send_text(MAV_SEVERITY_INFO,
"timesync response sysid=%u (latency=%fms)",
msg.sysid,
round_trip_time_us*0.001f);
#endif
AP_Logger *logger = AP_Logger::get_singleton();
if (logger != nullptr) {
AP::logger().Write(
"TSYN",
"TimeUS,SysID,RTT",
"s-s",
"F-F",
"QBQ",
AP_HAL::micros64(),
msg.sysid,
round_trip_time_us
);
}
return;
}
if (!HAVE_PAYLOAD_SPACE(chan, TIMESYNC)) {
// drop this timesync request entirely
return;
}
// create new timesync struct with tc1 field as system time in
// nanoseconds. The client timestamp is as close as possible to
// the time we received the TIMESYNC message.
mavlink_timesync_t rsync;
rsync.tc1 = timesync_receive_timestamp_ns();
rsync.ts1 = tsync.ts1;
// respond with a timesync message
mavlink_msg_timesync_send(
chan,
rsync.tc1,
rsync.ts1
);
}
/*
* broadcast a timesync message. We may get multiple responses to this request.
*/
void GCS_MAVLINK::send_timesync()
{
_timesync_request.sent_ts1 = timesync_timestamp_ns();
mavlink_msg_timesync_send(
chan,
0,
_timesync_request.sent_ts1
);
}
void GCS_MAVLINK::handle_statustext(const mavlink_message_t &msg)
{
AP_Logger *logger = AP_Logger::get_singleton();
if (logger == nullptr) {
return;
}
mavlink_statustext_t packet;
mavlink_msg_statustext_decode(&msg, &packet);
const uint8_t max_prefix_len = 20;
const uint8_t text_len = MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1+max_prefix_len;
char text[text_len] = { 'G','C','S',':'};
uint8_t offset = strlen(text);
if (msg.sysid != sysid_my_gcs()) {
offset = hal.util->snprintf(text,
max_prefix_len,
"SRC=%u/%u:",
msg.sysid,
msg.compid);
}
memcpy(&text[offset], packet.text, MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN);
logger->Write_Message(text);
}
void GCS_MAVLINK::handle_system_time_message(const mavlink_message_t &msg)
{
mavlink_system_time_t packet;
mavlink_msg_system_time_decode(&msg, &packet);
AP::rtc().set_utc_usec(packet.time_unix_usec, AP_RTC::SOURCE_MAVLINK_SYSTEM_TIME);
}
MAV_RESULT GCS_MAVLINK::handle_command_camera(const mavlink_command_long_t &packet)
{
AP_Camera *camera = AP::camera();
if (camera == nullptr) {
return MAV_RESULT_UNSUPPORTED;
}
MAV_RESULT result = MAV_RESULT_FAILED;
switch (packet.command) {
case MAV_CMD_DO_DIGICAM_CONFIGURE:
camera->configure(packet.param1,
packet.param2,
packet.param3,
packet.param4,
packet.param5,
packet.param6,
packet.param7);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_DO_DIGICAM_CONTROL:
camera->control(packet.param1,
packet.param2,
packet.param3,
packet.param4,
packet.param5,
packet.param6);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_DO_SET_CAM_TRIGG_DIST:
camera->set_trigger_distance(packet.param1);
result = MAV_RESULT_ACCEPTED;
break;
default:
result = MAV_RESULT_UNSUPPORTED;
break;
}
return result;
}
// sets ekf_origin if it has not been set.
// should only be used when there is no GPS to provide an absolute position
void GCS_MAVLINK::set_ekf_origin(const Location& loc)
{
// check location is valid
if (!loc.check_latlng()) {
return;
}
AP_AHRS &ahrs = AP::ahrs();
// check if EKF origin has already been set
Location ekf_origin;
if (ahrs.get_origin(ekf_origin)) {
return;
}
if (!ahrs.set_origin(loc)) {
return;
}
ahrs.Log_Write_Home_And_Origin();
// send ekf origin to GCS
if (!try_send_message(MSG_ORIGIN)) {
// try again later
send_message(MSG_ORIGIN);
}
}
void GCS_MAVLINK::handle_set_gps_global_origin(const mavlink_message_t &msg)
{
mavlink_set_gps_global_origin_t packet;
mavlink_msg_set_gps_global_origin_decode(&msg, &packet);
// sanity check location
if (!check_latlng(packet.latitude, packet.longitude)) {
// silently drop the request
return;
}
Location ekf_origin {};
ekf_origin.lat = packet.latitude;
ekf_origin.lng = packet.longitude;
ekf_origin.alt = packet.altitude / 10;
set_ekf_origin(ekf_origin);
}
/*
handle a DATA96 message
*/
void GCS_MAVLINK::handle_data_packet(const mavlink_message_t &msg)
{
#if HAL_RCINPUT_WITH_AP_RADIO
mavlink_data96_t m;
mavlink_msg_data96_decode(&msg, &m);
switch (m.type) {
case 42:
case 43: {
// pass to AP_Radio (for firmware upload and playing test tunes)
AP_Radio *radio = AP_Radio::get_singleton();
if (radio != nullptr) {
radio->handle_data_packet(chan, m);
}
break;
}
default:
// unknown
break;
}
#endif
}
void GCS_MAVLINK::handle_vision_position_delta(const mavlink_message_t &msg)
{
AP_VisualOdom *visual_odom = AP::visualodom();
if (visual_odom == nullptr) {
return;
}
visual_odom->handle_msg(msg);
}
void GCS_MAVLINK::handle_vision_position_estimate(const mavlink_message_t &msg)
{
mavlink_vision_position_estimate_t m;
mavlink_msg_vision_position_estimate_decode(&msg, &m);
handle_common_vision_position_estimate_data(m.usec, m.x, m.y, m.z, m.roll, m.pitch, m.yaw,
PAYLOAD_SIZE(chan, VISION_POSITION_ESTIMATE));
}
void GCS_MAVLINK::handle_global_vision_position_estimate(const mavlink_message_t &msg)
{
mavlink_global_vision_position_estimate_t m;
mavlink_msg_global_vision_position_estimate_decode(&msg, &m);
handle_common_vision_position_estimate_data(m.usec, m.x, m.y, m.z, m.roll, m.pitch, m.yaw,
PAYLOAD_SIZE(chan, GLOBAL_VISION_POSITION_ESTIMATE));
}
void GCS_MAVLINK::handle_vicon_position_estimate(const mavlink_message_t &msg)
{
mavlink_vicon_position_estimate_t m;
mavlink_msg_vicon_position_estimate_decode(&msg, &m);
handle_common_vision_position_estimate_data(m.usec, m.x, m.y, m.z, m.roll, m.pitch, m.yaw,
PAYLOAD_SIZE(chan, VICON_POSITION_ESTIMATE));
}
// there are several messages which all have identical fields in them.
// This function provides common handling for the data contained in
// these packets
void GCS_MAVLINK::handle_common_vision_position_estimate_data(const uint64_t usec,
const float x,
const float y,
const float z,
const float roll,
const float pitch,
const float yaw,
const uint16_t payload_size)
{
// correct offboard timestamp to be in local ms since boot
uint32_t timestamp_ms = correct_offboard_timestamp_usec_to_ms(usec, payload_size);
// sensor assumed to be at 0,0,0 body-frame; need parameters for this?
// or a new message
const Vector3f sensor_offset = {};
const Vector3f pos = {
x,
y,
z
};
Quaternion attitude;
attitude.from_euler(roll, pitch, yaw); // from_vector312?
const float posErr = 0; // parameter required?
const float angErr = 0; // parameter required?
const uint32_t reset_timestamp_ms = 0; // no data available
AP::ahrs().writeExtNavData(sensor_offset,
pos,
attitude,
posErr,
angErr,
timestamp_ms,
reset_timestamp_ms);
log_vision_position_estimate_data(usec, x, y, z, roll, pitch, yaw);
}
void GCS_MAVLINK::log_vision_position_estimate_data(const uint64_t usec,
const float x,
const float y,
const float z,
const float roll,
const float pitch,
const float yaw)
{
AP::logger().Write("VISP", "TimeUS,RemTimeUS,PX,PY,PZ,Roll,Pitch,Yaw",
"ssmmmddh", "FF000000", "QQffffff",
(uint64_t)AP_HAL::micros64(),
(uint64_t)usec,
(double)x,
(double)y,
(double)z,
(double)(roll * RAD_TO_DEG),
(double)(pitch * RAD_TO_DEG),
(double)(yaw * RAD_TO_DEG));
}
void GCS_MAVLINK::handle_att_pos_mocap(const mavlink_message_t &msg)
{
mavlink_att_pos_mocap_t m;
mavlink_msg_att_pos_mocap_decode(&msg, &m);
// sensor assumed to be at 0,0,0 body-frame; need parameters for this?
const Vector3f sensor_offset = {};
const Vector3f pos = {
m.x,
m.y,
m.z
};
Quaternion attitude = Quaternion(m.q);
const float posErr = 0; // parameter required?
const float angErr = 0; // parameter required?
// correct offboard timestamp to be in local ms since boot
uint32_t timestamp_ms = correct_offboard_timestamp_usec_to_ms(m.time_usec, PAYLOAD_SIZE(chan, ATT_POS_MOCAP));
const uint32_t reset_timestamp_ms = 0; // no data available
AP::ahrs().writeExtNavData(sensor_offset,
pos,
attitude,
posErr,
angErr,
timestamp_ms,
reset_timestamp_ms);
// calculate euler orientation for logging
float roll;
float pitch;
float yaw;
attitude.to_euler(roll, pitch, yaw);
log_vision_position_estimate_data(m.time_usec, m.x, m.y, m.z, roll, pitch, yaw);
}
void GCS_MAVLINK::handle_command_ack(const mavlink_message_t &msg)
{
AP_AccelCal *accelcal = AP::ins().get_acal();
if (accelcal != nullptr) {
accelcal->handleMessage(msg);
}
}
// allow override of RC channel values for HIL or for complete GCS
// control of switch position and RC PWM values.
void GCS_MAVLINK::handle_rc_channels_override(const mavlink_message_t &msg)
{
if(msg.sysid != sysid_my_gcs()) {
return; // Only accept control from our gcs
}
const uint32_t tnow = AP_HAL::millis();
mavlink_rc_channels_override_t packet;
mavlink_msg_rc_channels_override_decode(&msg, &packet);
const uint16_t override_data[] = {
packet.chan1_raw,
packet.chan2_raw,
packet.chan3_raw,
packet.chan4_raw,
packet.chan5_raw,
packet.chan6_raw,
packet.chan7_raw,
packet.chan8_raw,
packet.chan9_raw,
packet.chan10_raw,
packet.chan11_raw,
packet.chan12_raw,
packet.chan13_raw,
packet.chan14_raw,
packet.chan15_raw,
packet.chan16_raw
};
for (uint8_t i=0; i<ARRAY_SIZE(override_data); i++) {
// Per MAVLink spec a value of UINT16_MAX means to ignore this field.
if (override_data[i] != UINT16_MAX) {
RC_Channels::set_override(i, override_data[i], tnow);
}
}
}
// allow override of RC channel values for HIL or for complete GCS
// control of switch position and RC PWM values.
void GCS_MAVLINK::handle_optical_flow(const mavlink_message_t &msg)
{
OpticalFlow *optflow = AP::opticalflow();
if (optflow == nullptr) {
return;
}
optflow->handle_msg(msg);
}
/*
handle messages which don't require vehicle specific data
*/
void GCS_MAVLINK::handle_common_message(const mavlink_message_t &msg)
{
switch (msg.msgid) {
case MAVLINK_MSG_ID_COMMAND_ACK: {
handle_command_ack(msg);
break;
}
case MAVLINK_MSG_ID_SETUP_SIGNING:
handle_setup_signing(msg);
break;
case MAVLINK_MSG_ID_PARAM_REQUEST_LIST:
case MAVLINK_MSG_ID_PARAM_SET:
case MAVLINK_MSG_ID_PARAM_REQUEST_READ:
handle_common_param_message(msg);
break;
case MAVLINK_MSG_ID_SET_GPS_GLOBAL_ORIGIN:
handle_set_gps_global_origin(msg);
break;
case MAVLINK_MSG_ID_DEVICE_OP_READ:
handle_device_op_read(msg);
break;
case MAVLINK_MSG_ID_DEVICE_OP_WRITE:
handle_device_op_write(msg);
break;
case MAVLINK_MSG_ID_TIMESYNC:
handle_timesync(msg);
break;
case MAVLINK_MSG_ID_LOG_REQUEST_LIST:
case MAVLINK_MSG_ID_LOG_REQUEST_DATA:
case MAVLINK_MSG_ID_LOG_ERASE:
case MAVLINK_MSG_ID_LOG_REQUEST_END:
case MAVLINK_MSG_ID_REMOTE_LOG_BLOCK_STATUS:
AP::logger().handle_mavlink_msg(*this, msg);
break;
case MAVLINK_MSG_ID_DIGICAM_CONTROL:
{
AP_Camera *camera = AP::camera();
if (camera == nullptr) {
return;
}
camera->control_msg(msg);
}
break;
case MAVLINK_MSG_ID_SET_MODE:
handle_set_mode(msg);
break;
case MAVLINK_MSG_ID_AUTOPILOT_VERSION_REQUEST:
handle_send_autopilot_version(msg);
break;
case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST:
case MAVLINK_MSG_ID_MISSION_REQUEST_LIST:
case MAVLINK_MSG_ID_MISSION_COUNT:
case MAVLINK_MSG_ID_MISSION_CLEAR_ALL:
case MAVLINK_MSG_ID_MISSION_ITEM:
case MAVLINK_MSG_ID_MISSION_ITEM_INT:
case MAVLINK_MSG_ID_MISSION_REQUEST_INT:
case MAVLINK_MSG_ID_MISSION_REQUEST:
case MAVLINK_MSG_ID_MISSION_ACK:
case MAVLINK_MSG_ID_MISSION_SET_CURRENT:
handle_common_mission_message(msg);
break;
case MAVLINK_MSG_ID_COMMAND_LONG:
handle_command_long(msg);
break;
case MAVLINK_MSG_ID_COMMAND_INT:
handle_command_int(msg);
break;
case MAVLINK_MSG_ID_FENCE_POINT:
case MAVLINK_MSG_ID_FENCE_FETCH_POINT:
handle_fence_message(msg);
break;
case MAVLINK_MSG_ID_GIMBAL_REPORT:
handle_mount_message(msg);
break;
case MAVLINK_MSG_ID_PARAM_VALUE:
handle_param_value(msg);
break;
case MAVLINK_MSG_ID_SERIAL_CONTROL:
handle_serial_control(msg);
break;
case MAVLINK_MSG_ID_GPS_RTCM_DATA:
case MAVLINK_MSG_ID_GPS_INPUT:
case MAVLINK_MSG_ID_HIL_GPS:
case MAVLINK_MSG_ID_GPS_INJECT_DATA:
AP::gps().handle_msg(msg);
break;
case MAVLINK_MSG_ID_STATUSTEXT:
handle_statustext(msg);
break;
case MAVLINK_MSG_ID_LED_CONTROL:
// send message to Notify
AP_Notify::handle_led_control(msg);
break;
case MAVLINK_MSG_ID_MOUNT_CONFIGURE: // deprecated. Use MAV_CMD_DO_MOUNT_CONFIGURE
case MAVLINK_MSG_ID_MOUNT_CONTROL: // deprecated. Use MAV_CMD_DO_MOUNT_CONTROL
handle_mount_message(msg);
break;
case MAVLINK_MSG_ID_PLAY_TUNE:
// send message to Notify
AP_Notify::handle_play_tune(msg);
break;
case MAVLINK_MSG_ID_RALLY_POINT:
case MAVLINK_MSG_ID_RALLY_FETCH_POINT:
handle_common_rally_message(msg);
break;
case MAVLINK_MSG_ID_REQUEST_DATA_STREAM:
handle_request_data_stream(msg);
break;
case MAVLINK_MSG_ID_DATA96:
handle_data_packet(msg);
break;
case MAVLINK_MSG_ID_VISION_POSITION_DELTA:
handle_vision_position_delta(msg);
break;
case MAVLINK_MSG_ID_VISION_POSITION_ESTIMATE:
handle_vision_position_estimate(msg);
break;
case MAVLINK_MSG_ID_GLOBAL_VISION_POSITION_ESTIMATE:
handle_global_vision_position_estimate(msg);
break;
case MAVLINK_MSG_ID_VICON_POSITION_ESTIMATE:
handle_vicon_position_estimate(msg);
break;
case MAVLINK_MSG_ID_ATT_POS_MOCAP:
handle_att_pos_mocap(msg);
break;
case MAVLINK_MSG_ID_SYSTEM_TIME:
handle_system_time_message(msg);
break;
case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE:
handle_rc_channels_override(msg);
break;
case MAVLINK_MSG_ID_OPTICAL_FLOW:
handle_optical_flow(msg);
break;
}
}
void GCS_MAVLINK::handle_common_mission_message(const mavlink_message_t &msg)
{
AP_Mission *_mission = AP::mission();
if (_mission == nullptr) {
return;
}
switch (msg.msgid) {
case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST: // MAV ID: 38
{
handle_mission_write_partial_list(msg);
break;
}
// GCS has sent us a mission item, store to EEPROM
case MAVLINK_MSG_ID_MISSION_ITEM: // MAV ID: 39
case MAVLINK_MSG_ID_MISSION_ITEM_INT:
handle_mission_item(msg);
break;
// read an individual command from EEPROM and send it to the GCS
case MAVLINK_MSG_ID_MISSION_REQUEST_INT:
handle_mission_request_int(msg);
break;
case MAVLINK_MSG_ID_MISSION_REQUEST:
handle_mission_request(msg);
break;
case MAVLINK_MSG_ID_MISSION_SET_CURRENT: // MAV ID: 41
{
handle_mission_set_current(*_mission, msg);
break;
}
// GCS request the full list of commands, we return just the number and leave the GCS to then request each command individually
case MAVLINK_MSG_ID_MISSION_REQUEST_LIST: // MAV ID: 43
{
handle_mission_request_list(msg);
break;
}
// GCS provides the full number of commands it wishes to upload
// individual commands will then be sent from the GCS using the MAVLINK_MSG_ID_MISSION_ITEM message
case MAVLINK_MSG_ID_MISSION_COUNT: // MAV ID: 44
{
handle_mission_count(msg);
break;
}
case MAVLINK_MSG_ID_MISSION_CLEAR_ALL: // MAV ID: 45
{
handle_mission_clear_all(msg);
break;
}
case MAVLINK_MSG_ID_MISSION_ACK:
/* not used */
break;
}
}
void GCS_MAVLINK::handle_send_autopilot_version(const mavlink_message_t &msg)
{
send_autopilot_version();
}
void GCS_MAVLINK::send_banner()
{
// mark the firmware version in the tlog
const AP_FWVersion &fwver = AP::fwversion();
send_text(MAV_SEVERITY_INFO, "%s", fwver.fw_string);
if (fwver.middleware_name && fwver.os_name) {
send_text(MAV_SEVERITY_INFO, "%s: %s %s: %s",
fwver.middleware_name, fwver.middleware_hash_str,
fwver.os_name, fwver.os_hash_str);
} else if (fwver.os_name) {
send_text(MAV_SEVERITY_INFO, "%s: %s",
fwver.os_name, fwver.os_hash_str);
}
// send system ID if we can
char sysid[40];
if (hal.util->get_system_id(sysid)) {
send_text(MAV_SEVERITY_INFO, "%s", sysid);
}
}
void GCS_MAVLINK::send_simstate() const
{
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
SITL::SITL *sitl = AP::sitl();
if (sitl == nullptr) {
return;
}
sitl->simstate_send(get_chan());
#endif
}
MAV_RESULT GCS_MAVLINK::handle_command_flash_bootloader(const mavlink_command_long_t &packet)
{
if (uint32_t(packet.param5) != 290876) {
gcs().send_text(MAV_SEVERITY_INFO, "Magic not set");
return MAV_RESULT_FAILED;
}
if (!hal.util->flash_bootloader()) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK::handle_command_preflight_set_sensor_offsets(const mavlink_command_long_t &packet)
{
Compass &compass = AP::compass();
uint8_t compassNumber = -1;
if (is_equal(packet.param1, 2.0f)) {
compassNumber = 0;
} else if (is_equal(packet.param1, 5.0f)) {
compassNumber = 1;
} else if (is_equal(packet.param1, 6.0f)) {
compassNumber = 2;
}
if (compassNumber == (uint8_t) -1) {
return MAV_RESULT_FAILED;
}
compass.set_and_save_offsets(compassNumber, Vector3f(packet.param2, packet.param3, packet.param4));
return MAV_RESULT_ACCEPTED;
}
bool GCS_MAVLINK::calibrate_gyros()
{
AP::ins().init_gyro();
if (!AP::ins().gyro_calibrated_ok_all()) {
return false;
}
AP::ahrs().reset_gyro_drift();
return true;
}
MAV_RESULT GCS_MAVLINK::_handle_command_preflight_calibration_baro()
{
// fast barometer calibration
gcs().send_text(MAV_SEVERITY_INFO, "Updating barometer calibration");
AP::baro().update_calibration();
gcs().send_text(MAV_SEVERITY_INFO, "Barometer calibration complete");
AP_Airspeed *airspeed = AP_Airspeed::get_singleton();
if (airspeed != nullptr) {
airspeed->calibrate(false);
}
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK::_handle_command_preflight_calibration(const mavlink_command_long_t &packet)
{
if (is_equal(packet.param1,1.0f)) {
if (!calibrate_gyros()) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
if (is_equal(packet.param3,1.0f)) {
return _handle_command_preflight_calibration_baro();
}
if (is_equal(packet.param5,1.0f)) {
// start with gyro calibration
if (!calibrate_gyros()) {
return MAV_RESULT_FAILED;
}
// start accel cal
AP::ins().acal_init();
AP::ins().get_acal()->start(this);
return MAV_RESULT_ACCEPTED;
}
if (is_equal(packet.param5,2.0f)) {
if (!calibrate_gyros()) {
return MAV_RESULT_FAILED;
}
float trim_roll, trim_pitch;
if (!AP::ins().calibrate_trim(trim_roll, trim_pitch)) {
return MAV_RESULT_FAILED;
}
// reset ahrs's trim to suggested values from calibration routine
AP::ahrs().set_trim(Vector3f(trim_roll, trim_pitch, 0));
return MAV_RESULT_ACCEPTED;
}
if (is_equal(packet.param5,4.0f)) {
// simple accel calibration
return AP::ins().simple_accel_cal();
}
return MAV_RESULT_UNSUPPORTED;
}
MAV_RESULT GCS_MAVLINK::handle_command_preflight_calibration(const mavlink_command_long_t &packet)
{
if (hal.util->get_soft_armed()) {
// *preflight*, remember?
return MAV_RESULT_FAILED;
}
// now call subclass methods:
return _handle_command_preflight_calibration(packet);
}
MAV_RESULT GCS_MAVLINK::handle_command_preflight_can(const mavlink_command_long_t &packet)
{
#if HAL_WITH_UAVCAN
if (hal.util->get_soft_armed()) {
// *preflight*, remember?
return MAV_RESULT_TEMPORARILY_REJECTED;
}
bool start_stop = is_equal(packet.param1,1.0f) ? true : false;
bool result = true;
bool can_exists = false;
uint8_t num_drivers = AP::can().get_num_drivers();
for (uint8_t i = 0; i < num_drivers; i++) {
switch (AP::can().get_protocol_type(i)) {
case AP_BoardConfig_CAN::Protocol_Type_KDECAN: {
// To be replaced with macro saying if KDECAN library is included
#if APM_BUILD_TYPE(APM_BUILD_ArduCopter) || APM_BUILD_TYPE(APM_BUILD_ArduPlane) || APM_BUILD_TYPE(APM_BUILD_ArduSub)
AP_KDECAN *ap_kdecan = AP_KDECAN::get_kdecan(i);
if (ap_kdecan != nullptr) {
can_exists = true;
result = ap_kdecan->run_enumeration(start_stop) && result;
}
break;
#else
UNUSED_RESULT(start_stop); // prevent unused variable error
#endif
}
case AP_BoardConfig_CAN::Protocol_Type_UAVCAN:
case AP_BoardConfig_CAN::Protocol_Type_None:
default:
break;
}
}
MAV_RESULT ack = MAV_RESULT_DENIED;
if (can_exists) {
ack = result ? MAV_RESULT_ACCEPTED : MAV_RESULT_FAILED;
}
return ack;
#else
return MAV_RESULT_UNSUPPORTED;
#endif
}
MAV_RESULT GCS_MAVLINK::handle_command_battery_reset(const mavlink_command_long_t &packet)
{
const uint16_t battery_mask = packet.param1;
const float percentage = packet.param2;
if (AP::battery().reset_remaining(battery_mask, percentage)) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
MAV_RESULT GCS_MAVLINK::handle_command_mag_cal(const mavlink_command_long_t &packet)
{
return AP::compass().handle_mag_cal_command(packet);
}
MAV_RESULT GCS_MAVLINK::handle_command_request_autopilot_capabilities(const mavlink_command_long_t &packet)
{
if (!is_equal(packet.param1,1.0f)) {
return MAV_RESULT_FAILED;
}
send_autopilot_version();
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK::handle_command_do_send_banner(const mavlink_command_long_t &packet)
{
send_banner();
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK::handle_command_do_set_mode(const mavlink_command_long_t &packet)
{
const MAV_MODE _base_mode = (MAV_MODE)packet.param1;
const uint32_t _custom_mode = (uint32_t)packet.param2;
return _set_mode_common(_base_mode, _custom_mode);
}
MAV_RESULT GCS_MAVLINK::handle_command_get_home_position(const mavlink_command_long_t &packet)
{
if (!AP::ahrs().home_is_set()) {
return MAV_RESULT_FAILED;
}
if (!try_send_message(MSG_HOME)) {
// try again later
send_message(MSG_HOME);
}
if (!try_send_message(MSG_ORIGIN)) {
// try again later
send_message(MSG_ORIGIN);
}
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK::handle_command_do_gripper(const mavlink_command_long_t &packet)
{
AP_Gripper *gripper = AP::gripper();
if (gripper == nullptr) {
return MAV_RESULT_FAILED;
}
// param1 : gripper number (ignored)
// param2 : action (0=release, 1=grab). See GRIPPER_ACTIONS enum.
if(!gripper->enabled()) {
return MAV_RESULT_FAILED;
}
MAV_RESULT result = MAV_RESULT_ACCEPTED;
switch ((uint8_t)packet.param2) {
case GRIPPER_ACTION_RELEASE:
gripper->release();
break;
case GRIPPER_ACTION_GRAB:
gripper->grab();
break;
default:
result = MAV_RESULT_FAILED;
break;
}
return result;
}
MAV_RESULT GCS_MAVLINK::handle_command_accelcal_vehicle_pos(const mavlink_command_long_t &packet)
{
if (!AP::ins().get_acal()->gcs_vehicle_position(packet.param1)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK::handle_command_mount(const mavlink_command_long_t &packet)
{
AP_Mount *mount = AP::mount();
if (mount == nullptr) {
return MAV_RESULT_UNSUPPORTED;
}
return mount->handle_command_long(packet);
}
MAV_RESULT GCS_MAVLINK::handle_command_do_set_home(const mavlink_command_long_t &packet)
{
if (is_equal(packet.param1, 1.0f) || (is_zero(packet.param5) && is_zero(packet.param6))) {
// param1 is 1 (or both lat and lon are zero); use current location
if (!set_home_to_current_location(true)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
// ensure param1 is zero
if (!is_zero(packet.param1)) {
return MAV_RESULT_FAILED;
}
Location new_home_loc;
new_home_loc.lat = (int32_t)(packet.param5 * 1.0e7f);
new_home_loc.lng = (int32_t)(packet.param6 * 1.0e7f);
new_home_loc.alt = (int32_t)(packet.param7 * 100.0f);
if (!set_home(new_home_loc, true)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK::handle_command_long_packet(const mavlink_command_long_t &packet)
{
MAV_RESULT result = MAV_RESULT_FAILED;
switch (packet.command) {
case MAV_CMD_ACCELCAL_VEHICLE_POS:
result = handle_command_accelcal_vehicle_pos(packet);
break;
case MAV_CMD_DO_SET_MODE:
result = handle_command_do_set_mode(packet);
break;
case MAV_CMD_DO_SEND_BANNER:
result = handle_command_do_send_banner(packet);
break;
case MAV_CMD_DO_SET_HOME:
result = handle_command_do_set_home(packet);
break;
case MAV_CMD_DO_FENCE_ENABLE:
result = handle_command_do_fence_enable(packet);
break;
case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN:
result = handle_preflight_reboot(packet);
break;
case MAV_CMD_DO_START_MAG_CAL:
case MAV_CMD_DO_ACCEPT_MAG_CAL:
case MAV_CMD_DO_CANCEL_MAG_CAL: {
result = handle_command_mag_cal(packet);
break;
}
case MAV_CMD_START_RX_PAIR:
result = handle_rc_bind(packet);
break;
case MAV_CMD_DO_DIGICAM_CONFIGURE:
case MAV_CMD_DO_DIGICAM_CONTROL:
case MAV_CMD_DO_SET_CAM_TRIGG_DIST:
result = handle_command_camera(packet);
break;
case MAV_CMD_DO_GRIPPER:
result = handle_command_do_gripper(packet);
break;
case MAV_CMD_DO_MOUNT_CONFIGURE:
case MAV_CMD_DO_MOUNT_CONTROL:
result = handle_command_mount(packet);
break;
case MAV_CMD_REQUEST_AUTOPILOT_CAPABILITIES: {
result = handle_command_request_autopilot_capabilities(packet);
break;
}
case MAV_CMD_DO_SET_ROI_LOCATION:
case MAV_CMD_DO_SET_ROI:
result = handle_command_do_set_roi(packet);
break;
case MAV_CMD_PREFLIGHT_CALIBRATION:
result = handle_command_preflight_calibration(packet);
break;
case MAV_CMD_BATTERY_RESET:
result = handle_command_battery_reset(packet);
break;
case MAV_CMD_PREFLIGHT_UAVCAN:
result = handle_command_preflight_can(packet);
break;
case MAV_CMD_FLASH_BOOTLOADER:
result = handle_command_flash_bootloader(packet);
break;
case MAV_CMD_PREFLIGHT_SET_SENSOR_OFFSETS: {
result = handle_command_preflight_set_sensor_offsets(packet);
break;
}
case MAV_CMD_GET_HOME_POSITION:
result = handle_command_get_home_position(packet);
break;
case MAV_CMD_PREFLIGHT_STORAGE:
if (is_equal(packet.param1, 2.0f)) {
AP_Param::erase_all();
send_text(MAV_SEVERITY_WARNING, "All parameters reset, reboot board");
result= MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_SET_MESSAGE_INTERVAL:
result = handle_command_set_message_interval(packet);
break;
case MAV_CMD_GET_MESSAGE_INTERVAL:
result = handle_command_get_message_interval(packet);
break;
case MAV_CMD_REQUEST_MESSAGE:
result = handle_command_request_message(packet);
break;
case MAV_CMD_DO_SET_SERVO:
case MAV_CMD_DO_REPEAT_SERVO:
case MAV_CMD_DO_SET_RELAY:
case MAV_CMD_DO_REPEAT_RELAY:
result = handle_servorelay_message(packet);
break;
case MAV_CMD_DO_FLIGHTTERMINATION:
result = handle_flight_termination(packet);
break;
case MAV_CMD_COMPONENT_ARM_DISARM:
if (is_equal(packet.param1,1.0f)) {
// run pre_arm_checks and arm_checks and display failures
const bool do_arming_checks = !is_equal(packet.param2,magic_force_arm_value);
if (AP::arming().is_armed() ||
AP::arming().arm(AP_Arming::Method::MAVLINK, do_arming_checks)) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
if (is_zero(packet.param1)) {
if (!AP::arming().is_armed()) {
return MAV_RESULT_ACCEPTED;
}
// allow vehicle to disallow disarm. Copter does this if
// the vehicle isn't considered landed.
if (!allow_disarm() &&
!is_equal(packet.param2, magic_force_disarm_value)) {
return MAV_RESULT_FAILED;
}
if (AP::arming().disarm()) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
return MAV_RESULT_UNSUPPORTED;
default:
result = MAV_RESULT_UNSUPPORTED;
break;
}
return result;
}
void GCS_MAVLINK::handle_command_long(const mavlink_message_t &msg)
{
// decode packet
mavlink_command_long_t packet;
mavlink_msg_command_long_decode(&msg, &packet);
hal.util->persistent_data.last_mavlink_cmd = packet.command;
const MAV_RESULT result = handle_command_long_packet(packet);
// send ACK or NAK
mavlink_msg_command_ack_send(chan, packet.command, result);
hal.util->persistent_data.last_mavlink_cmd = 0;
}
MAV_RESULT GCS_MAVLINK::handle_command_do_set_roi(const Location &roi_loc)
{
AP_Mount *mount = AP::mount();
if (mount == nullptr) {
return MAV_RESULT_UNSUPPORTED;
}
// sanity check location
if (!roi_loc.check_latlng()) {
return MAV_RESULT_FAILED;
}
if (roi_loc.lat == 0 && roi_loc.lng == 0 && roi_loc.alt == 0) {
// switch off the camera tracking if enabled
if (mount->get_mode() == MAV_MOUNT_MODE_GPS_POINT) {
mount->set_mode_to_default();
}
} else {
// send the command to the camera mount
mount->set_roi_target(roi_loc);
}
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK::handle_command_int_do_set_home(const mavlink_command_int_t &packet)
{
if (is_equal(packet.param1, 1.0f) || (packet.x == 0 && packet.y == 0)) {
// param1 is 1 (or both lat and lon are zero); use current location
if (!set_home_to_current_location(true)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
// ensure param1 is zero
if (!is_zero(packet.param1)) {
return MAV_RESULT_FAILED;
}
Location::AltFrame frame;
if (!mavlink_coordinate_frame_to_location_alt_frame((MAV_FRAME)packet.frame, frame)) {
// unknown coordinate frame
return MAV_RESULT_UNSUPPORTED;
}
const Location new_home_loc{
packet.x,
packet.y,
int32_t(packet.z * 100),
frame,
};
if (!set_home(new_home_loc, true)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK::handle_command_do_set_roi(const mavlink_command_int_t &packet)
{
// be aware that this method is called for both MAV_CMD_DO_SET_ROI
// and MAV_CMD_DO_SET_ROI_LOCATION. If you intend to support any
// of the extra fields in the former then you will need to split
// off support for MAV_CMD_DO_SET_ROI_LOCATION (which doesn't
// support the extra fields).
// param1 : /* Region of interest mode (not used)*/
// param2 : /* MISSION index/ target ID (not used)*/
// param3 : /* ROI index (not used)*/
// param4 : /* empty */
// x : lat
// y : lon
// z : alt
Location roi_loc;
roi_loc.lat = packet.x;
roi_loc.lng = packet.y;
roi_loc.alt = (int32_t)(packet.z * 100.0f);
return handle_command_do_set_roi(roi_loc);
}
MAV_RESULT GCS_MAVLINK::handle_command_do_set_roi(const mavlink_command_long_t &packet)
{
// be aware that this method is called for both MAV_CMD_DO_SET_ROI
// and MAV_CMD_DO_SET_ROI_LOCATION. If you intend to support any
// of the extra fields in the former then you will need to split
// off support for MAV_CMD_DO_SET_ROI_LOCATION (which doesn't
// support the extra fields).
Location roi_loc;
roi_loc.lat = (int32_t)(packet.param5 * 1.0e7f);
roi_loc.lng = (int32_t)(packet.param6 * 1.0e7f);
roi_loc.alt = (int32_t)(packet.param7 * 100.0f);
return handle_command_do_set_roi(roi_loc);
}
MAV_RESULT GCS_MAVLINK::handle_command_int_packet(const mavlink_command_int_t &packet)
{
switch (packet.command) {
case MAV_CMD_DO_SET_ROI:
case MAV_CMD_DO_SET_ROI_LOCATION:
return handle_command_do_set_roi(packet);
case MAV_CMD_DO_SET_HOME:
return handle_command_int_do_set_home(packet);
default:
break;
}
return MAV_RESULT_UNSUPPORTED;
}
void GCS_MAVLINK::handle_command_int(const mavlink_message_t &msg)
{
// decode packet
mavlink_command_int_t packet;
mavlink_msg_command_int_decode(&msg, &packet);
hal.util->persistent_data.last_mavlink_cmd = packet.command;
const MAV_RESULT result = handle_command_int_packet(packet);
// send ACK or NAK
mavlink_msg_command_ack_send(chan, packet.command, result);
hal.util->persistent_data.last_mavlink_cmd = 0;
}
void GCS::try_send_queued_message_for_type(MAV_MISSION_TYPE type) {
MissionItemProtocol *prot = get_prot_for_mission_type(type);
if (prot == nullptr) {
return;
}
prot->queued_request_send();
}
bool GCS_MAVLINK::try_send_mission_message(const enum ap_message id)
{
AP_Mission *mission = AP::mission();
if (mission == nullptr) {
return true;
}
bool ret = true;
switch (id) {
case MSG_CURRENT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_CURRENT);
mavlink_msg_mission_current_send(chan, mission->get_current_nav_index());
ret = true;
break;
case MSG_MISSION_ITEM_REACHED:
CHECK_PAYLOAD_SIZE(MISSION_ITEM_REACHED);
mavlink_msg_mission_item_reached_send(chan, mission_item_reached_index);
ret = true;
break;
case MSG_NEXT_MISSION_REQUEST_WAYPOINTS:
CHECK_PAYLOAD_SIZE(MISSION_REQUEST);
gcs().try_send_queued_message_for_type(MAV_MISSION_TYPE_MISSION);
ret = true;
break;
case MSG_NEXT_MISSION_REQUEST_RALLY:
CHECK_PAYLOAD_SIZE(MISSION_REQUEST);
gcs().try_send_queued_message_for_type(MAV_MISSION_TYPE_RALLY);
ret = true;
break;
default:
ret = true;
break;
}
return ret;
}
void GCS_MAVLINK::send_hwstatus()
{
mavlink_msg_hwstatus_send(
chan,
hal.analogin->board_voltage()*1000,
0);
}
void GCS_MAVLINK::send_rpm() const
{
AP_RPM *rpm = AP::rpm();
if (rpm == nullptr) {
return;
}
if (!rpm->enabled(0) && !rpm->enabled(1)) {
return;
}
mavlink_msg_rpm_send(
chan,
rpm->get_rpm(0),
rpm->get_rpm(1));
}
void GCS_MAVLINK::send_sys_status()
{
// send extended status only once vehicle has been initialised
// to avoid unnecessary errors being reported to user
if (!gcs().vehicle_initialised()) {
return;
}
const AP_BattMonitor &battery = AP::battery();
float battery_current;
int8_t battery_remaining;
if (battery.healthy() && battery.current_amps(battery_current)) {
battery_remaining = battery.capacity_remaining_pct();
battery_current *= 100;
} else {
battery_current = -1;
battery_remaining = -1;
}
uint32_t control_sensors_present;
uint32_t control_sensors_enabled;
uint32_t control_sensors_health;
gcs().get_sensor_status_flags(control_sensors_present, control_sensors_enabled, control_sensors_health);
const uint32_t errors = AP::internalerror().errors();
const uint16_t errors1 = errors & 0xffff;
const uint16_t errors2 = (errors>>16) & 0xffff;
const uint16_t errors4 = AP::internalerror().count() & 0xffff;
mavlink_msg_sys_status_send(
chan,
control_sensors_present,
control_sensors_enabled,
control_sensors_health,
static_cast<uint16_t>(AP::scheduler().load_average() * 1000),
battery.voltage() * 1000, // mV
battery_current, // in 10mA units
battery_remaining, // in %
0, // comm drops %,
0, // comm drops in pkts,
errors1,
errors2,
0, // errors3
errors4); // errors4
}
void GCS_MAVLINK::send_extended_sys_state() const
{
mavlink_msg_extended_sys_state_send(chan, vtol_state(), landed_state());
}
void GCS_MAVLINK::send_attitude() const
{
const AP_AHRS &ahrs = AP::ahrs();
const Vector3f omega = ahrs.get_gyro();
mavlink_msg_attitude_send(
chan,
AP_HAL::millis(),
ahrs.roll,
ahrs.pitch,
ahrs.yaw,
omega.x,
omega.y,
omega.z);
}
int32_t GCS_MAVLINK::global_position_int_alt() const {
return global_position_current_loc.alt * 10UL;
}
int32_t GCS_MAVLINK::global_position_int_relative_alt() const {
float posD;
AP::ahrs().get_relative_position_D_home(posD);
posD *= -1000.0f; // change from down to up and metres to millimeters
return posD;
}
void GCS_MAVLINK::send_global_position_int()
{
AP_AHRS &ahrs = AP::ahrs();
ahrs.get_position(global_position_current_loc); // return value ignored; we send stale data
Vector3f vel;
if (!ahrs.get_velocity_NED(vel)) {
vel.zero();
}
mavlink_msg_global_position_int_send(
chan,
AP_HAL::millis(),
global_position_current_loc.lat, // in 1E7 degrees
global_position_current_loc.lng, // in 1E7 degrees
global_position_int_alt(), // millimeters above ground/sea level
global_position_int_relative_alt(), // millimeters above home
vel.x * 100, // X speed cm/s (+ve North)
vel.y * 100, // Y speed cm/s (+ve East)
vel.z * 100, // Z speed cm/s (+ve Down)
ahrs.yaw_sensor); // compass heading in 1/100 degree
}
void GCS_MAVLINK::send_gimbal_report() const
{
AP_Mount *mount = AP::mount();
if (mount == nullptr) {
return;
}
mount->send_gimbal_report(chan);
}
void GCS_MAVLINK::send_mount_status() const
{
AP_Mount *mount = AP::mount();
if (mount == nullptr) {
return;
}
mount->send_mount_status(chan);
}
void GCS_MAVLINK::send_set_position_target_global_int(uint8_t target_system, uint8_t target_component, const Location& loc)
{
const uint16_t type_mask = POSITION_TARGET_TYPEMASK_VX_IGNORE | POSITION_TARGET_TYPEMASK_VY_IGNORE | POSITION_TARGET_TYPEMASK_VZ_IGNORE | \
POSITION_TARGET_TYPEMASK_AX_IGNORE | POSITION_TARGET_TYPEMASK_AY_IGNORE | POSITION_TARGET_TYPEMASK_AZ_IGNORE | \
POSITION_TARGET_TYPEMASK_YAW_IGNORE | POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE;
// convert altitude to relative to home
int32_t rel_alt;
if (!loc.get_alt_cm(Location::AltFrame::ABOVE_HOME, rel_alt)) {
return;
}
mavlink_msg_set_position_target_global_int_send(
chan,
AP_HAL::millis(),
target_system,
target_component,
MAV_FRAME_GLOBAL_RELATIVE_ALT_INT,
type_mask,
loc.lat,
loc.lng,
rel_alt,
0,0,0, // vx, vy, vz
0,0,0, // ax, ay, az
0,0); // yaw, yaw_rate
}
bool GCS_MAVLINK::try_send_message(const enum ap_message id)
{
bool ret = true;
switch(id) {
case MSG_ATTITUDE:
CHECK_PAYLOAD_SIZE(ATTITUDE);
send_attitude();
break;
case MSG_NEXT_PARAM:
CHECK_PAYLOAD_SIZE(PARAM_VALUE);
queued_param_send();
break;
case MSG_GIMBAL_REPORT:
CHECK_PAYLOAD_SIZE(GIMBAL_REPORT);
send_gimbal_report();
break;
case MSG_HEARTBEAT:
CHECK_PAYLOAD_SIZE(HEARTBEAT);
last_heartbeat_time = AP_HAL::millis();
send_heartbeat();
break;
case MSG_HWSTATUS:
CHECK_PAYLOAD_SIZE(HWSTATUS);
send_hwstatus();
break;
case MSG_LOCATION:
CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT);
send_global_position_int();
break;
case MSG_HOME:
CHECK_PAYLOAD_SIZE(HOME_POSITION);
send_home_position();
break;
case MSG_ORIGIN:
CHECK_PAYLOAD_SIZE(GPS_GLOBAL_ORIGIN);
send_gps_global_origin();
break;
case MSG_RPM:
CHECK_PAYLOAD_SIZE(RPM);
send_rpm();
break;
case MSG_CURRENT_WAYPOINT:
case MSG_MISSION_ITEM_REACHED:
case MSG_NEXT_MISSION_REQUEST_WAYPOINTS:
case MSG_NEXT_MISSION_REQUEST_RALLY:
ret = try_send_mission_message(id);
break;
case MSG_MAG_CAL_PROGRESS:
ret = AP::compass().send_mag_cal_progress(*this);
break;
case MSG_MAG_CAL_REPORT:
ret = AP::compass().send_mag_cal_report(*this);
break;
case MSG_BATTERY_STATUS:
send_battery_status();
break;
case MSG_BATTERY2:
CHECK_PAYLOAD_SIZE(BATTERY2);
send_battery2();
break;
case MSG_EKF_STATUS_REPORT:
#if AP_AHRS_NAVEKF_AVAILABLE
CHECK_PAYLOAD_SIZE(EKF_STATUS_REPORT);
AP::ahrs_navekf().send_ekf_status_report(chan);
#endif
break;
case MSG_MEMINFO:
CHECK_PAYLOAD_SIZE(MEMINFO);
send_meminfo();
break;
case MSG_FENCE_STATUS:
CHECK_PAYLOAD_SIZE(FENCE_STATUS);
send_fence_status();
break;
case MSG_RANGEFINDER:
CHECK_PAYLOAD_SIZE(RANGEFINDER);
send_rangefinder();
break;
case MSG_DISTANCE_SENSOR:
send_distance_sensor();
break;
case MSG_CAMERA_FEEDBACK:
{
AP_Camera *camera = AP::camera();
if (camera == nullptr) {
break;
}
CHECK_PAYLOAD_SIZE(CAMERA_FEEDBACK);
camera->send_feedback(chan);
}
break;
case MSG_SYSTEM_TIME:
CHECK_PAYLOAD_SIZE(SYSTEM_TIME);
send_system_time();
break;
case MSG_GPS_RAW:
CHECK_PAYLOAD_SIZE(GPS_RAW_INT);
AP::gps().send_mavlink_gps_raw(chan);
break;
case MSG_GPS_RTK:
CHECK_PAYLOAD_SIZE(GPS_RTK);
AP::gps().send_mavlink_gps_rtk(chan, 0);
break;
case MSG_GPS2_RAW:
CHECK_PAYLOAD_SIZE(GPS2_RAW);
AP::gps().send_mavlink_gps2_raw(chan);
break;
case MSG_GPS2_RTK:
CHECK_PAYLOAD_SIZE(GPS2_RTK);
AP::gps().send_mavlink_gps_rtk(chan, 1);
break;
case MSG_LOCAL_POSITION:
CHECK_PAYLOAD_SIZE(LOCAL_POSITION_NED);
send_local_position();
break;
case MSG_MOUNT_STATUS:
CHECK_PAYLOAD_SIZE(MOUNT_STATUS);
send_mount_status();
break;
case MSG_OPTICAL_FLOW:
CHECK_PAYLOAD_SIZE(OPTICAL_FLOW);
send_opticalflow();
break;
case MSG_POSITION_TARGET_GLOBAL_INT:
CHECK_PAYLOAD_SIZE(POSITION_TARGET_GLOBAL_INT);
send_position_target_global_int();
break;
case MSG_POSITION_TARGET_LOCAL_NED:
CHECK_PAYLOAD_SIZE(POSITION_TARGET_LOCAL_NED);
send_position_target_local_ned();
break;
case MSG_POWER_STATUS:
CHECK_PAYLOAD_SIZE(POWER_STATUS);
send_power_status();
break;
case MSG_RC_CHANNELS:
CHECK_PAYLOAD_SIZE(RC_CHANNELS);
send_rc_channels();
break;
case MSG_RC_CHANNELS_RAW:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW);
send_rc_channels_raw();
break;
case MSG_RAW_IMU:
CHECK_PAYLOAD_SIZE(RAW_IMU);
send_raw_imu();
break;
case MSG_SCALED_IMU:
CHECK_PAYLOAD_SIZE(SCALED_IMU);
send_scaled_imu(0, mavlink_msg_scaled_imu_send);
break;
case MSG_SCALED_IMU2:
CHECK_PAYLOAD_SIZE(SCALED_IMU2);
send_scaled_imu(1, mavlink_msg_scaled_imu2_send);
break;
case MSG_SCALED_IMU3:
CHECK_PAYLOAD_SIZE(SCALED_IMU3);
send_scaled_imu(2, mavlink_msg_scaled_imu3_send);
break;
case MSG_SCALED_PRESSURE:
CHECK_PAYLOAD_SIZE(SCALED_PRESSURE);
send_scaled_pressure();
break;
case MSG_SCALED_PRESSURE2:
CHECK_PAYLOAD_SIZE(SCALED_PRESSURE2);
send_scaled_pressure2();
break;
case MSG_SCALED_PRESSURE3:
CHECK_PAYLOAD_SIZE(SCALED_PRESSURE3);
send_scaled_pressure3();
break;
case MSG_SENSOR_OFFSETS:
CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS);
send_sensor_offsets();
break;
case MSG_SERVO_OUTPUT_RAW:
CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW);
send_servo_output_raw();
break;
case MSG_SIMSTATE:
CHECK_PAYLOAD_SIZE(SIMSTATE);
send_simstate();
break;
case MSG_SYS_STATUS:
CHECK_PAYLOAD_SIZE(SYS_STATUS);
send_sys_status();
break;
case MSG_AHRS2:
CHECK_PAYLOAD_SIZE(AHRS2);
send_ahrs2();
break;
case MSG_AHRS3:
CHECK_PAYLOAD_SIZE(AHRS3);
send_ahrs3();
break;
case MSG_PID_TUNING:
CHECK_PAYLOAD_SIZE(PID_TUNING);
send_pid_tuning();
break;
case MSG_NAV_CONTROLLER_OUTPUT:
CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT);
send_nav_controller_output();
break;
case MSG_AHRS:
CHECK_PAYLOAD_SIZE(AHRS);
send_ahrs();
break;
case MSG_EXTENDED_SYS_STATE:
CHECK_PAYLOAD_SIZE(EXTENDED_SYS_STATE);
send_extended_sys_state();
break;
case MSG_VFR_HUD:
CHECK_PAYLOAD_SIZE(VFR_HUD);
send_vfr_hud();
break;
case MSG_VIBRATION:
CHECK_PAYLOAD_SIZE(VIBRATION);
send_vibration();
break;
case MSG_ESC_TELEMETRY: {
#ifdef HAVE_AP_BLHELI_SUPPORT
CHECK_PAYLOAD_SIZE(ESC_TELEMETRY_1_TO_4);
AP_BLHeli *blheli = AP_BLHeli::get_singleton();
if (blheli) {
blheli->send_esc_telemetry_mavlink(uint8_t(chan));
}
#endif
#if HAL_WITH_UAVCAN
uint8_t num_drivers = AP::can().get_num_drivers();
for (uint8_t i = 0; i < num_drivers; i++) {
switch (AP::can().get_protocol_type(i)) {
case AP_BoardConfig_CAN::Protocol_Type_KDECAN: {
// To be replaced with macro saying if KDECAN library is included
#if APM_BUILD_TYPE(APM_BUILD_ArduCopter) || APM_BUILD_TYPE(APM_BUILD_ArduPlane) || APM_BUILD_TYPE(APM_BUILD_ArduSub)
AP_KDECAN *ap_kdecan = AP_KDECAN::get_kdecan(i);
if (ap_kdecan != nullptr) {
ap_kdecan->send_mavlink(uint8_t(chan));
}
#endif
break;
}
case AP_BoardConfig_CAN::Protocol_Type_ToshibaCAN: {
AP_ToshibaCAN *ap_tcan = AP_ToshibaCAN::get_tcan(i);
if (ap_tcan != nullptr) {
ap_tcan->send_esc_telemetry_mavlink(uint8_t(chan));
}
break;
}
case AP_BoardConfig_CAN::Protocol_Type_UAVCAN:
case AP_BoardConfig_CAN::Protocol_Type_None:
default:
break;
}
}
#endif
break;
}
default:
// try_send_message must always at some stage return true for
// a message, or we will attempt to infinitely retry the
// message as part of send_message.
// This message will be sent out at the same rate as the
// unknown message, so should be safe.
gcs().send_text(MAV_SEVERITY_DEBUG, "Sending unknown message (%u)", id);
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
AP_HAL::panic("Sending unknown ap_message %u", id);
#endif
break;
}
return ret;
}
uint16_t GCS_MAVLINK::get_interval_for_stream(GCS_MAVLINK::streams id) const
{
const int16_t frate = streamRates[id].get();
if (frate == 0) {
return 0;
}
const uint32_t ret = 1000/frate;
if (ret > 60000) {
return 60000;
}
return ret;
}
void GCS_MAVLINK::initialise_message_intervals_for_stream(GCS_MAVLINK::streams id)
{
for (uint8_t i=0; all_stream_entries[i].ap_message_ids != nullptr; i++) {
const GCS_MAVLINK::stream_entries &entries = all_stream_entries[i];
if (entries.stream_id != id) {
continue;
}
// found it!
const uint16_t interval_ms = get_interval_for_stream(id);
for (uint8_t j=0; j<entries.num_ap_message_ids; j++) {
set_ap_message_interval(entries.ap_message_ids[j], interval_ms);
}
break;
}
}
void GCS_MAVLINK::initialise_message_intervals_from_streamrates()
{
// this is O(n^2), but it's once at boot and across a 10-entry list...
for (uint8_t i=0; all_stream_entries[i].ap_message_ids != nullptr; i++) {
initialise_message_intervals_for_stream(all_stream_entries[i].stream_id);
}
set_mavlink_message_id_interval(MAVLINK_MSG_ID_HEARTBEAT, 1000);
}
bool GCS_MAVLINK::get_default_interval_for_ap_message(const ap_message id, uint16_t &interval) const
{
if (id == MSG_HEARTBEAT) {
// handle heartbeat requests as a special case because heartbeat is not "streamed"
interval = 1000;
return true;
}
// find which stream this ap_message is in
for (uint8_t i=0; all_stream_entries[i].ap_message_ids != nullptr; i++) {
const GCS_MAVLINK::stream_entries &entries = all_stream_entries[i];
for (uint8_t j=0; j<entries.num_ap_message_ids; j++) {
if (entries.ap_message_ids[j] == id) {
interval = get_interval_for_stream(all_stream_entries[i].stream_id);
return true;
}
}
}
return false;
}
bool GCS_MAVLINK::get_default_interval_for_mavlink_message_id(const uint32_t mavlink_message_id, uint16_t &interval) const
{
const ap_message id = mavlink_id_to_ap_message_id(mavlink_message_id);
if (id == MSG_LAST) {
return false;
}
return get_default_interval_for_ap_message(id, interval);
}
/*
correct an offboard timestamp in microseconds into a local timestamp
since boot in milliseconds. See the JitterCorrection code for details
Return a value in milliseconds since boot (for use by the EKF)
*/
uint32_t GCS_MAVLINK::correct_offboard_timestamp_usec_to_ms(uint64_t offboard_usec, uint16_t payload_size)
{
uint64_t local_us;
// if the HAL supports it then constrain the latest possible time
// the packet could have been sent by the uart receive time and
// the baudrate and packet size.
uint64_t uart_receive_time = _port->receive_time_constraint_us(payload_size);
if (uart_receive_time != 0) {
local_us = uart_receive_time;
} else {
local_us = AP_HAL::micros64();
}
uint64_t corrected_us = lag_correction.correct_offboard_timestamp_usec(offboard_usec, local_us);
return corrected_us / 1000U;
}
/*
return true if we will accept this packet. Used to implement SYSID_ENFORCE
*/
bool GCS_MAVLINK::accept_packet(const mavlink_status_t &status,
const mavlink_message_t &msg)
{
if (msg.sysid == mavlink_system.sysid) {
// accept packets from our own components
// (e.g. mavlink-connected companion computers)
return true;
}
if (msg.sysid == sysid_my_gcs()) {
return true;
}
if (msg.msgid == MAVLINK_MSG_ID_RADIO ||
msg.msgid == MAVLINK_MSG_ID_RADIO_STATUS) {
return true;
}
if (!sysid_enforce()) {
return true;
}
return false;
}
/*
update UART pass-thru, if enabled
*/
void GCS::update_passthru(void)
{
WITH_SEMAPHORE(_passthru.sem);
uint32_t now = AP_HAL::millis();
bool enabled = AP::serialmanager().get_passthru(_passthru.port1, _passthru.port2, _passthru.timeout_s);
if (enabled && !_passthru.enabled) {
_passthru.start_ms = now;
_passthru.last_ms = 0;
_passthru.enabled = true;
_passthru.last_port1_data_ms = now;
gcs().send_text(MAV_SEVERITY_INFO, "Passthru enabled");
if (!_passthru.timer_installed) {
_passthru.timer_installed = true;
hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&GCS::passthru_timer, void));
}
} else if (!enabled && _passthru.enabled) {
_passthru.enabled = false;
_passthru.port1->lock_port(0, 0);
_passthru.port2->lock_port(0, 0);
gcs().send_text(MAV_SEVERITY_INFO, "Passthru disabled");
} else if (enabled &&
_passthru.timeout_s &&
now - _passthru.last_port1_data_ms > uint32_t(_passthru.timeout_s)*1000U) {
// timed out, disable
_passthru.enabled = false;
_passthru.port1->lock_port(0, 0);
_passthru.port2->lock_port(0, 0);
AP::serialmanager().disable_passthru();
gcs().send_text(MAV_SEVERITY_INFO, "Passthru timed out");
}
}
/*
called at 1kHz to handle pass-thru between SERIA0_PASSTHRU port and hal.console
*/
void GCS::passthru_timer(void)
{
WITH_SEMAPHORE(_passthru.sem);
if (!_passthru.enabled) {
// it has been disabled after starting
return;
}
if (_passthru.start_ms != 0) {
uint32_t now = AP_HAL::millis();
if (now - _passthru.start_ms < 1000) {
// delay for 1s so the reply for the SERIAL0_PASSTHRU param set can be seen by GCS
return;
}
_passthru.start_ms = 0;
}
// while pass-thru is enabled lock both ports. They remain
// locked until disabled again, or reboot
const uint32_t lock_key = 0x3256AB9F;
_passthru.port1->lock_port(lock_key, lock_key);
_passthru.port2->lock_port(lock_key, lock_key);
int16_t b;
uint8_t buf[64];
uint8_t nbytes = 0;
// read from port1, and write to port2
while (nbytes < sizeof(buf) && (b = _passthru.port1->read_locked(lock_key)) >= 0) {
buf[nbytes++] = b;
}
if (nbytes > 0) {
_passthru.last_port1_data_ms = AP_HAL::millis();
_passthru.port2->write_locked(buf, nbytes, lock_key);
}
// read from port2, and write to port1
nbytes = 0;
while (nbytes < sizeof(buf) && (b = _passthru.port2->read_locked(lock_key)) >= 0) {
buf[nbytes++] = b;
}
if (nbytes > 0) {
_passthru.port1->write_locked(buf, nbytes, lock_key);
}
}
bool GCS_MAVLINK::mavlink_coordinate_frame_to_location_alt_frame(const MAV_FRAME coordinate_frame, Location::AltFrame &frame)
{
switch (coordinate_frame) {
case MAV_FRAME_GLOBAL_RELATIVE_ALT: // solo shot manager incorrectly sends RELATIVE_ALT instead of RELATIVE_ALT_INT
case MAV_FRAME_GLOBAL_RELATIVE_ALT_INT:
frame = Location::AltFrame::ABOVE_HOME;
return true;
case MAV_FRAME_GLOBAL_TERRAIN_ALT:
case MAV_FRAME_GLOBAL_TERRAIN_ALT_INT:
frame = Location::AltFrame::ABOVE_TERRAIN;
return true;
case MAV_FRAME_GLOBAL:
case MAV_FRAME_GLOBAL_INT:
frame = Location::AltFrame::ABSOLUTE;
return true;
default:
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
gcs().send_text(MAV_SEVERITY_INFO, "Unknown mavlink coordinate frame %u", coordinate_frame);
#endif
return false;
}
}
uint64_t GCS_MAVLINK::capabilities() const
{
uint64_t ret = 0;
AP_SerialManager::SerialProtocol mavlink_protocol = AP::serialmanager().get_mavlink_protocol(chan);
if (mavlink_protocol == AP_SerialManager::SerialProtocol_MAVLink2) {
ret |= MAV_PROTOCOL_CAPABILITY_MAVLINK2;
}
AP_AdvancedFailsafe *failsafe = get_advanced_failsafe();
if (failsafe != nullptr && failsafe->enabled()) {
// Copter and Sub may also set this bit as they can always terminate
ret |= MAV_PROTOCOL_CAPABILITY_FLIGHT_TERMINATION;
}
if (AP::rally()) {
ret |= MAV_PROTOCOL_CAPABILITY_MISSION_RALLY;
}
return ret;
}
void GCS_MAVLINK::manual_override(RC_Channel *c, int16_t value_in, const uint16_t offset, const float scaler, const uint32_t tnow, const bool reversed)
{
if (c == nullptr) {
return;
}
int16_t override_value = 0;
if (value_in != INT16_MAX) {
const int16_t radio_min = c->get_radio_min();
const int16_t radio_max = c->get_radio_max();
if (reversed) {
value_in *= -1;
}
override_value = radio_min + (radio_max - radio_min) * (value_in + offset) / scaler;
}
c->set_override(override_value, tnow);
}
GCS &gcs()
{
return *GCS::get_singleton();
}