ardupilot/libraries/AP_Motors/AP_Motors_Class.h
2015-07-21 16:24:38 +09:00

251 lines
14 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#ifndef __AP_MOTORS_CLASS_H__
#define __AP_MOTORS_CLASS_H__
#include <AP_Common.h>
#include <AP_Progmem.h>
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <AP_Notify.h> // Notify library
#include <RC_Channel.h> // RC Channel Library
#include <Filter.h> // filter library
// offsets for motors in motor_out, _motor_filtered and _motor_to_channel_map arrays
#define AP_MOTORS_MOT_1 0
#define AP_MOTORS_MOT_2 1
#define AP_MOTORS_MOT_3 2
#define AP_MOTORS_MOT_4 3
#define AP_MOTORS_MOT_5 4
#define AP_MOTORS_MOT_6 5
#define AP_MOTORS_MOT_7 6
#define AP_MOTORS_MOT_8 7
#define MOTOR_TO_CHANNEL_MAP CH_1,CH_2,CH_3,CH_4,CH_5,CH_6,CH_7,CH_8
#define AP_MOTORS_MAX_NUM_MOTORS 8
#define AP_MOTORS_DEFAULT_MIN_THROTTLE 130
#define AP_MOTORS_DEFAULT_MID_THROTTLE 500
#define AP_MOTORS_DEFAULT_MAX_THROTTLE 1000
// frame definitions
#define AP_MOTORS_PLUS_FRAME 0
#define AP_MOTORS_X_FRAME 1
#define AP_MOTORS_V_FRAME 2
#define AP_MOTORS_H_FRAME 3 // same as X frame but motors spin in opposite direction
#define AP_MOTORS_VTAIL_FRAME 4 // Lynxmotion Hunter VTail 400/500
#define AP_MOTORS_ATAIL_FRAME 5 // A-Shaped VTail Quads
#define AP_MOTORS_NEW_PLUS_FRAME 10 // NEW frames are same as original 4 but with motor orders changed to be clockwise from the front
#define AP_MOTORS_NEW_X_FRAME 11
#define AP_MOTORS_NEW_V_FRAME 12
#define AP_MOTORS_NEW_H_FRAME 13 // same as X frame but motors spin in opposite direction
// motor update rate
#define AP_MOTORS_SPEED_DEFAULT 490 // default output rate to the motors
#define THROTTLE_CURVE_ENABLED 1 // throttle curve disabled by default
#define THROTTLE_CURVE_MID_THRUST 52 // throttle which produces 1/2 the maximum thrust. expressed as a percentage of the full throttle range (i.e 0 ~ 100)
#define THROTTLE_CURVE_MAX_THRUST 93 // throttle which produces the maximum thrust. expressed as a percentage of the full throttle range (i.e 0 ~ 100)
// bit mask for recording which limits we have reached when outputting to motors
#define AP_MOTOR_NO_LIMITS_REACHED 0x00
#define AP_MOTOR_ROLLPITCH_LIMIT 0x01
#define AP_MOTOR_YAW_LIMIT 0x02
#define AP_MOTOR_THROTTLE_LIMIT 0x04
#define AP_MOTOR_ANY_LIMIT 0xFF
/// @class AP_Motors
class AP_Motors {
public:
// Constructor
AP_Motors(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT);
// set update rate to motors - a value in hertz
virtual void set_update_rate( uint16_t speed_hz ) { _speed_hz = speed_hz; };
// set frame orientation (normally + or X)
virtual void set_frame_orientation( uint8_t new_orientation ) { _flags.frame_orientation = new_orientation; };
// arm, disarm or check status status of motors
bool armed() const { return _flags.armed; };
void armed(bool arm);
// set motor interlock status
void set_interlock(bool set) { _flags.interlock = set;}
// get motor interlock status. true means motors run, false motors don't run
bool get_interlock() const { return _flags.interlock; };
// set_throttle_range - sets the minimum throttle that will be sent to the engines when they're not off (i.e. to prevents issues with some motors spinning and some not at very low throttle)
// also sets throttle channel minimum and maximum pwm
virtual void set_throttle_range(uint16_t min_throttle, int16_t radio_min, int16_t radio_max) {}
// set_hover_throttle - sets the mid throttle which is close to the hover throttle of the copter
// this is used to limit the amount that the stability patch will increase the throttle to give more room for roll, pitch and yaw control
void set_hover_throttle(uint16_t hov_thr) { _hover_out = hov_thr; }
// get_hover_throttle_as_pwm - converts hover throttle to pwm (i.e. range 1000 ~ 2000)
int16_t get_hover_throttle_as_pwm() const;
int16_t throttle_min() const { return rel_pwm_to_thr_range(_min_throttle); }
int16_t throttle_max() const { return _max_throttle;}
// set_roll, set_pitch, set_yaw, set_throttle
void set_roll(int16_t roll_in) { _roll_control_input = roll_in; }; // range -4500 ~ 4500
void set_pitch(int16_t pitch_in) { _pitch_control_input = pitch_in; }; // range -4500 ~ 4500
void set_yaw(int16_t yaw_in) { _yaw_control_input = yaw_in; }; // range -4500 ~ 4500
void set_throttle(float throttle_in) { _throttle_in = constrain_float(throttle_in,-100.0f,1100.0f); }; // range 0 ~ 1000
void set_stabilizing(bool stabilizing) { _flags.stabilizing = stabilizing; }
// accessors for roll, pitch, yaw and throttle inputs to motors
float get_roll() const { return _roll_control_input; }
float get_pitch() const { return _pitch_control_input; }
float get_yaw() const { return _yaw_control_input; }
float get_throttle() const { return _throttle_control_input; }
void set_throttle_filter_cutoff(float filt_hz) { _throttle_filter.set_cutoff_frequency(filt_hz); }
// set_voltage - set voltage to be used for output scaling
virtual void set_voltage(float volts){ _batt_voltage = volts; }
// set_current - set current to be used for output scaling
virtual void set_current(float current){ _batt_current = current; }
// set_density_ratio - sets air density as a proportion of sea level density
void set_air_density_ratio(float ratio) { _air_density_ratio = ratio; }
// get_lift_max - get maximum lift ratio
float get_lift_max() { return _lift_max; }
// get_batt_voltage_filt - get battery voltage ratio
float get_batt_voltage_filt() { return _batt_voltage_filt.get(); }
// get_batt_resistance - get battery resistance approximation
float get_batt_resistance() { return _batt_resistance; }
// get_throttle_limit - throttle limit ratio
float get_throttle_limit() { return _throttle_limit; }
// 1 if motor is enabled, 0 otherwise
bool motor_enabled[AP_MOTORS_MAX_NUM_MOTORS];
// structure for holding motor limit flags
struct AP_Motors_limit {
uint8_t roll_pitch : 1; // we have reached roll or pitch limit
uint8_t yaw : 1; // we have reached yaw limit
uint8_t throttle_lower : 1; // we have reached throttle's lower limit
uint8_t throttle_upper : 1; // we have reached throttle's upper limit
} limit;
////////////////////////////////////////////////////////////////////////
// Virtual Functions to be overloaded by child classes
// in most cases this is done because of global usage of multirotor specific
// functions which do not apply to helicopters
// init
virtual void Init() {}
// enable - starts allowing signals to be sent to motors
virtual void enable() = 0;
// output - sends commands to the motors
virtual void output() = 0;
// output_min - sends minimum values out to the motors
virtual void output_min() = 0;
// output_test - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
virtual void output_test(uint8_t motor_seq, int16_t pwm) = 0;
virtual int16_t throttle_min() { return AP_MOTORS_DEFAULT_MIN_THROTTLE;};
virtual int16_t throttle_max() { return AP_MOTORS_DEFAULT_MAX_THROTTLE;};
// set_hover_throttle - sets the mid throttle which is close to the hover throttle of the copter
// this is used to limit the amount that the stability patch will increase the throttle to give more room for roll, pitch and yaw control
virtual void set_hover_throttle(uint16_t hov_thr) {}
// throttle_pass_through - passes provided pwm directly to all motors - dangerous but used for initialising ESCs
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
virtual void throttle_pass_through(int16_t pwm) {}
// returns warning throttle
virtual float get_throttle_warn() { return 0; }
// set_throttle_thr_mix - set desired throttle_thr_mix (actual throttle_thr_mix is slewed towards this value over 1~2 seconds)
// low values favour pilot/autopilot throttle over attitude control, high values favour attitude control over throttle
// has no effect when throttle is above hover throttle
virtual void set_throttle_mix_min() {}
virtual void set_throttle_mix_mid() {}
virtual void set_throttle_mix_max() {}
// slow_start - set to true to slew motors from current speed to maximum
// Note: this must be set immediately before a step up in throttle
virtual void slow_start(bool true_false) {};
// get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
virtual uint16_t get_motor_mask() = 0;
protected:
// output functions that should be overloaded by child classes
virtual void output_armed_stabilizing()=0;
virtual void output_armed_not_stabilizing()=0;
virtual void output_armed_zero_throttle() { output_min(); }
virtual void output_disarmed()=0;
// update the throttle input filter
virtual void update_throttle_filter() = 0;
// convert RPY and Throttle servo ranges from legacy controller scheme back into PWM values
// RPY channels typically +/-45 degrees servo travel between +/-400 PWM
// Throttle channel typically 0-1000 range converts to 1100-1900 PWM for final output signal to motors
// ToDo: this should all be handled as floats +/- 1.0 instead of PWM and fake angle ranges
int16_t calc_roll_pwm() { return (_roll_control_input / 11.25f);}
int16_t calc_pitch_pwm() { return (_pitch_control_input / 11.25f);}
int16_t calc_yaw_pwm() { return (_yaw_control_input / 11.25f);}
int16_t calc_throttle_radio_output() { return (_throttle_control_input * _throttle_pwm_scalar) + _throttle_radio_min;}
// flag bitmask
struct AP_Motors_flags {
uint8_t armed : 1; // 0 if disarmed, 1 if armed
uint8_t stabilizing : 1; // 0 if not controlling attitude, 1 if controlling attitude
uint8_t frame_orientation : 4; // PLUS_FRAME 0, X_FRAME 1, V_FRAME 2, H_FRAME 3, NEW_PLUS_FRAME 10, NEW_X_FRAME, NEW_V_FRAME, NEW_H_FRAME
uint8_t slow_start : 1; // 1 if slow start is active
uint8_t slow_start_low_end : 1; // 1 just after arming so we can ramp up the spin_when_armed value
uint8_t interlock : 1; // 1 if the motor interlock is enabled (i.e. motors run), 0 if disabled (motors don't run)
} _flags;
// mapping of motor number (as received from upper APM code) to RC channel output - used to account for differences between APM1 and APM2
static const uint8_t _motor_to_channel_map[AP_MOTORS_MAX_NUM_MOTORS] PROGMEM;
// internal variables
float _roll_control_input; // desired roll control from attitude controllers, +/- 4500
float _pitch_control_input; // desired pitch control from attitude controller, +/- 4500
float _throttle_control_input; // desired throttle (thrust) control from attitude controller, 0-1000
float _yaw_control_input; // desired yaw control from attitude controller, +/- 4500
float _throttle_pwm_scalar; // scalar used to convert throttle channel pwm range into 0-1000 range, ~0.8 - 1.0
uint16_t _loop_rate; // rate at which output() function is called (normally 400hz)
uint16_t _speed_hz; // speed in hz to send updates to motors
int16_t _throttle_radio_min; // minimum radio channel pwm
int16_t _throttle_radio_max; // maximum radio channel pwm
int16_t _spin_when_armed_ramped; // equal to _spin_when_armed parameter but slowly ramped up from zero
// battery voltage compensation variables
float _batt_voltage; // latest battery voltage reading
float _batt_voltage_resting; // battery voltage reading at minimum throttle
LowPassFilterFloat _batt_voltage_filt; // filtered battery voltage expressed as a percentage (0 ~ 1.0) of batt_voltage_max
float _batt_current; // latest battery current reading
float _batt_current_resting; // battery's current when motors at minimum
float _batt_resistance; // battery's resistance calculated by comparing resting voltage vs in flight voltage
int16_t _batt_timer; // timer used in battery resistance calcs
float _air_density_ratio; // air density / sea level density - decreases in altitude
float _lift_max; // maximum lift ratio from battery voltage
float _throttle_limit; // ratio of throttle limit between hover and maximum
float _throttle_in; // last throttle input from set_throttle caller
LowPassFilterFloat _throttle_filter; // throttle input filter
};
#endif // __AP_MOTORS_CLASS_H__