mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-06 16:08:28 -04:00
5824a12b2e
This variable updated unpredictably, and it was easy to introduce bugs. It was not used in many places and is clearer to calculate the error directly when needed.
1546 lines
51 KiB
C++
1546 lines
51 KiB
C++
#include "GCS_Mavlink.h"
|
|
|
|
#include "Plane.h"
|
|
#include <AP_RPM/AP_RPM_config.h>
|
|
#include <AP_Airspeed/AP_Airspeed_config.h>
|
|
#include <AP_EFI/AP_EFI_config.h>
|
|
|
|
MAV_TYPE GCS_Plane::frame_type() const
|
|
{
|
|
#if HAL_QUADPLANE_ENABLED
|
|
return plane.quadplane.get_mav_type();
|
|
#else
|
|
return MAV_TYPE_FIXED_WING;
|
|
#endif
|
|
}
|
|
|
|
MAV_MODE GCS_MAVLINK_Plane::base_mode() const
|
|
{
|
|
uint8_t _base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
|
|
|
|
// work out the base_mode. This value is not very useful
|
|
// for APM, but we calculate it as best we can so a generic
|
|
// MAVLink enabled ground station can work out something about
|
|
// what the MAV is up to. The actual bit values are highly
|
|
// ambiguous for most of the APM flight modes. In practice, you
|
|
// only get useful information from the custom_mode, which maps to
|
|
// the APM flight mode and has a well defined meaning in the
|
|
// ArduPlane documentation
|
|
switch (plane.control_mode->mode_number()) {
|
|
case Mode::Number::MANUAL:
|
|
case Mode::Number::TRAINING:
|
|
case Mode::Number::ACRO:
|
|
#if HAL_QUADPLANE_ENABLED
|
|
case Mode::Number::QACRO:
|
|
_base_mode = MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
|
|
break;
|
|
#endif
|
|
case Mode::Number::STABILIZE:
|
|
case Mode::Number::FLY_BY_WIRE_A:
|
|
case Mode::Number::AUTOTUNE:
|
|
case Mode::Number::FLY_BY_WIRE_B:
|
|
#if HAL_QUADPLANE_ENABLED
|
|
case Mode::Number::QSTABILIZE:
|
|
case Mode::Number::QHOVER:
|
|
case Mode::Number::QLOITER:
|
|
case Mode::Number::QLAND:
|
|
#if QAUTOTUNE_ENABLED
|
|
case Mode::Number::QAUTOTUNE:
|
|
#endif
|
|
#endif // HAL_QUADPLANE_ENABLED
|
|
case Mode::Number::CRUISE:
|
|
_base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED;
|
|
break;
|
|
case Mode::Number::AUTO:
|
|
case Mode::Number::RTL:
|
|
case Mode::Number::LOITER:
|
|
case Mode::Number::THERMAL:
|
|
case Mode::Number::AVOID_ADSB:
|
|
case Mode::Number::GUIDED:
|
|
case Mode::Number::CIRCLE:
|
|
case Mode::Number::TAKEOFF:
|
|
#if HAL_QUADPLANE_ENABLED
|
|
case Mode::Number::QRTL:
|
|
case Mode::Number::LOITER_ALT_QLAND:
|
|
#endif
|
|
_base_mode = MAV_MODE_FLAG_GUIDED_ENABLED |
|
|
MAV_MODE_FLAG_STABILIZE_ENABLED;
|
|
// note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
|
|
// APM does in any mode, as that is defined as "system finds its own goal
|
|
// positions", which APM does not currently do
|
|
break;
|
|
case Mode::Number::INITIALISING:
|
|
break;
|
|
}
|
|
|
|
if (!plane.training_manual_pitch || !plane.training_manual_roll) {
|
|
_base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED;
|
|
}
|
|
|
|
if (plane.control_mode != &plane.mode_manual && plane.control_mode != &plane.mode_initializing) {
|
|
// stabiliser of some form is enabled
|
|
_base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED;
|
|
}
|
|
|
|
if (plane.g.stick_mixing != StickMixing::NONE && plane.control_mode != &plane.mode_initializing) {
|
|
if ((plane.g.stick_mixing != StickMixing::VTOL_YAW) || (plane.control_mode == &plane.mode_auto)) {
|
|
// all modes except INITIALISING have some form of manual
|
|
// override if stick mixing is enabled
|
|
_base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
|
|
}
|
|
}
|
|
|
|
// we are armed if we are not initialising
|
|
if (plane.control_mode != &plane.mode_initializing && plane.arming.is_armed()) {
|
|
_base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
|
|
}
|
|
|
|
// indicate we have set a custom mode
|
|
_base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
|
|
|
|
return (MAV_MODE)_base_mode;
|
|
}
|
|
|
|
uint32_t GCS_Plane::custom_mode() const
|
|
{
|
|
return plane.control_mode->mode_number();
|
|
}
|
|
|
|
MAV_STATE GCS_MAVLINK_Plane::vehicle_system_status() const
|
|
{
|
|
if (plane.control_mode == &plane.mode_initializing) {
|
|
return MAV_STATE_CALIBRATING;
|
|
}
|
|
if (plane.any_failsafe_triggered()) {
|
|
return MAV_STATE_CRITICAL;
|
|
}
|
|
if (plane.crash_state.is_crashed) {
|
|
return MAV_STATE_EMERGENCY;
|
|
}
|
|
if (plane.is_flying()) {
|
|
return MAV_STATE_ACTIVE;
|
|
}
|
|
|
|
return MAV_STATE_STANDBY;
|
|
}
|
|
|
|
|
|
void GCS_MAVLINK_Plane::send_attitude() const
|
|
{
|
|
const AP_AHRS &ahrs = AP::ahrs();
|
|
|
|
float r = ahrs.get_roll();
|
|
float p = ahrs.get_pitch();
|
|
float y = ahrs.get_yaw();
|
|
|
|
if (!(plane.flight_option_enabled(FlightOptions::GCS_REMOVE_TRIM_PITCH))) {
|
|
p -= radians(plane.g.pitch_trim);
|
|
}
|
|
|
|
#if HAL_QUADPLANE_ENABLED
|
|
if (plane.quadplane.show_vtol_view()) {
|
|
r = plane.quadplane.ahrs_view->roll;
|
|
p = plane.quadplane.ahrs_view->pitch;
|
|
y = plane.quadplane.ahrs_view->yaw;
|
|
}
|
|
#endif
|
|
|
|
const Vector3f &omega = ahrs.get_gyro();
|
|
mavlink_msg_attitude_send(
|
|
chan,
|
|
millis(),
|
|
r,
|
|
p,
|
|
y,
|
|
omega.x,
|
|
omega.y,
|
|
omega.z);
|
|
}
|
|
|
|
void GCS_MAVLINK_Plane::send_attitude_target()
|
|
{
|
|
#if HAL_QUADPLANE_ENABLED
|
|
// Check if the attitude target is valid for reporting
|
|
const uint32_t now = AP_HAL::millis();
|
|
if (now - plane.quadplane.last_att_control_ms > 100) {
|
|
return;
|
|
}
|
|
|
|
const Quaternion quat = plane.quadplane.attitude_control->get_attitude_target_quat();
|
|
const Vector3f& ang_vel = plane.quadplane.attitude_control->get_attitude_target_ang_vel();
|
|
const float throttle = plane.quadplane.attitude_control->get_throttle_in();
|
|
|
|
const float quat_out[4] {quat.q1, quat.q2, quat.q3, quat.q4};
|
|
|
|
const uint16_t typemask = 0;
|
|
|
|
mavlink_msg_attitude_target_send(
|
|
chan,
|
|
now, // time since boot (ms)
|
|
typemask, // Bitmask that tells the system what control dimensions should be ignored by the vehicle
|
|
quat_out, // Target attitude quaternion [w, x, y, z] order, zero-rotation is [1, 0, 0, 0], unit-length
|
|
ang_vel.x, // bodyframe target roll rate (rad/s)
|
|
ang_vel.y, // bodyframe target pitch rate (rad/s)
|
|
ang_vel.z, // bodyframe yaw rate (rad/s)
|
|
throttle); // Collective thrust, normalized to 0 .. 1
|
|
|
|
#endif // HAL_QUADPLANE_ENABLED
|
|
}
|
|
|
|
void GCS_MAVLINK_Plane::send_aoa_ssa()
|
|
{
|
|
AP_AHRS &ahrs = AP::ahrs();
|
|
|
|
mavlink_msg_aoa_ssa_send(
|
|
chan,
|
|
micros(),
|
|
ahrs.getAOA(),
|
|
ahrs.getSSA());
|
|
}
|
|
|
|
void GCS_MAVLINK_Plane::send_nav_controller_output() const
|
|
{
|
|
if (plane.control_mode == &plane.mode_manual) {
|
|
return;
|
|
}
|
|
#if HAL_QUADPLANE_ENABLED
|
|
const QuadPlane &quadplane = plane.quadplane;
|
|
if (quadplane.show_vtol_view() && quadplane.using_wp_nav()) {
|
|
const Vector3f &targets = quadplane.attitude_control->get_att_target_euler_cd();
|
|
|
|
const Vector2f& curr_pos = quadplane.inertial_nav.get_position_xy_cm();
|
|
const Vector2f& target_pos = quadplane.pos_control->get_pos_target_cm().xy().tofloat();
|
|
const Vector2f error = (target_pos - curr_pos) * 0.01;
|
|
|
|
mavlink_msg_nav_controller_output_send(
|
|
chan,
|
|
targets.x * 0.01,
|
|
targets.y * 0.01,
|
|
targets.z * 0.01,
|
|
degrees(error.angle()),
|
|
MIN(error.length(), UINT16_MAX),
|
|
(plane.control_mode != &plane.mode_qstabilize) ? quadplane.pos_control->get_pos_error_z_cm() * 0.01 : 0,
|
|
plane.airspeed_error * 100, // incorrect units; see PR#7933
|
|
quadplane.wp_nav->crosstrack_error());
|
|
return;
|
|
}
|
|
#endif
|
|
{
|
|
const AP_Navigation *nav_controller = plane.nav_controller;
|
|
mavlink_msg_nav_controller_output_send(
|
|
chan,
|
|
plane.nav_roll_cd * 0.01,
|
|
plane.nav_pitch_cd * 0.01,
|
|
nav_controller->nav_bearing_cd() * 0.01,
|
|
nav_controller->target_bearing_cd() * 0.01,
|
|
MIN(plane.auto_state.wp_distance, UINT16_MAX),
|
|
plane.calc_altitude_error_cm() * 0.01,
|
|
plane.airspeed_error * 100, // incorrect units; see PR#7933
|
|
nav_controller->crosstrack_error());
|
|
}
|
|
}
|
|
|
|
void GCS_MAVLINK_Plane::send_position_target_global_int()
|
|
{
|
|
if (plane.control_mode == &plane.mode_manual) {
|
|
return;
|
|
}
|
|
Location &next_WP_loc = plane.next_WP_loc;
|
|
static constexpr uint16_t POSITION_TARGET_TYPEMASK_LAST_BYTE = 0xF000;
|
|
static constexpr uint16_t TYPE_MASK = POSITION_TARGET_TYPEMASK_VX_IGNORE | POSITION_TARGET_TYPEMASK_VY_IGNORE | POSITION_TARGET_TYPEMASK_VZ_IGNORE |
|
|
POSITION_TARGET_TYPEMASK_AX_IGNORE | POSITION_TARGET_TYPEMASK_AY_IGNORE | POSITION_TARGET_TYPEMASK_AZ_IGNORE |
|
|
POSITION_TARGET_TYPEMASK_YAW_IGNORE | POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE | POSITION_TARGET_TYPEMASK_LAST_BYTE;
|
|
int32_t alt = 0;
|
|
if (!next_WP_loc.is_zero()) {
|
|
UNUSED_RESULT(next_WP_loc.get_alt_cm(Location::AltFrame::ABSOLUTE, alt));
|
|
}
|
|
|
|
mavlink_msg_position_target_global_int_send(
|
|
chan,
|
|
AP_HAL::millis(), // time_boot_ms
|
|
MAV_FRAME_GLOBAL, // targets are always global altitude
|
|
TYPE_MASK, // ignore everything except the x/y/z components
|
|
next_WP_loc.lat, // latitude as 1e7
|
|
next_WP_loc.lng, // longitude as 1e7
|
|
alt * 0.01, // altitude is sent as a float
|
|
0.0f, // vx
|
|
0.0f, // vy
|
|
0.0f, // vz
|
|
0.0f, // afx
|
|
0.0f, // afy
|
|
0.0f, // afz
|
|
0.0f, // yaw
|
|
0.0f); // yaw_rate
|
|
}
|
|
|
|
|
|
float GCS_MAVLINK_Plane::vfr_hud_airspeed() const
|
|
{
|
|
// airspeed sensors are best. While the AHRS airspeed_estimate
|
|
// will use an airspeed sensor, that value is constrained by the
|
|
// ground speed. When reporting we should send the true airspeed
|
|
// value if possible:
|
|
#if AP_AIRSPEED_ENABLED
|
|
if (plane.airspeed.enabled() && plane.airspeed.healthy()) {
|
|
return plane.airspeed.get_airspeed();
|
|
}
|
|
#endif
|
|
|
|
// airspeed estimates are OK:
|
|
float aspeed;
|
|
if (AP::ahrs().airspeed_estimate(aspeed)) {
|
|
return aspeed;
|
|
}
|
|
|
|
// lying is worst:
|
|
return 0;
|
|
}
|
|
|
|
int16_t GCS_MAVLINK_Plane::vfr_hud_throttle() const
|
|
{
|
|
return plane.throttle_percentage();
|
|
}
|
|
|
|
float GCS_MAVLINK_Plane::vfr_hud_climbrate() const
|
|
{
|
|
#if HAL_SOARING_ENABLED
|
|
if (plane.g2.soaring_controller.is_active()) {
|
|
return plane.g2.soaring_controller.get_vario_reading();
|
|
}
|
|
#endif
|
|
return GCS_MAVLINK::vfr_hud_climbrate();
|
|
}
|
|
|
|
void GCS_MAVLINK_Plane::send_wind() const
|
|
{
|
|
const Vector3f wind = AP::ahrs().wind_estimate();
|
|
mavlink_msg_wind_send(
|
|
chan,
|
|
degrees(atan2f(-wind.y, -wind.x)), // use negative, to give
|
|
// direction wind is coming from
|
|
wind.length(),
|
|
wind.z);
|
|
}
|
|
|
|
// sends a single pid info over the provided channel
|
|
void GCS_MAVLINK_Plane::send_pid_info(const AP_PIDInfo *pid_info,
|
|
const uint8_t axis, const float achieved)
|
|
{
|
|
if (pid_info == nullptr) {
|
|
return;
|
|
}
|
|
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
|
|
return;
|
|
}
|
|
mavlink_msg_pid_tuning_send(chan, axis,
|
|
pid_info->target,
|
|
achieved,
|
|
pid_info->FF,
|
|
pid_info->P,
|
|
pid_info->I,
|
|
pid_info->D,
|
|
pid_info->slew_rate,
|
|
pid_info->Dmod);
|
|
}
|
|
|
|
/*
|
|
send PID tuning message
|
|
*/
|
|
void GCS_MAVLINK_Plane::send_pid_tuning()
|
|
{
|
|
if (plane.control_mode == &plane.mode_manual) {
|
|
// no PIDs should be used in manual
|
|
return;
|
|
}
|
|
|
|
const Parameters &g = plane.g;
|
|
|
|
const AP_PIDInfo *pid_info;
|
|
if (g.gcs_pid_mask & TUNING_BITS_ROLL) {
|
|
pid_info = &plane.rollController.get_pid_info();
|
|
#if HAL_QUADPLANE_ENABLED
|
|
if (plane.quadplane.in_vtol_mode()) {
|
|
pid_info = &plane.quadplane.attitude_control->get_rate_roll_pid().get_pid_info();
|
|
}
|
|
#endif
|
|
send_pid_info(pid_info, PID_TUNING_ROLL, pid_info->actual);
|
|
}
|
|
if (g.gcs_pid_mask & TUNING_BITS_PITCH) {
|
|
pid_info = &plane.pitchController.get_pid_info();
|
|
#if HAL_QUADPLANE_ENABLED
|
|
if (plane.quadplane.in_vtol_mode()) {
|
|
pid_info = &plane.quadplane.attitude_control->get_rate_pitch_pid().get_pid_info();
|
|
}
|
|
#endif
|
|
send_pid_info(pid_info, PID_TUNING_PITCH, pid_info->actual);
|
|
}
|
|
if (g.gcs_pid_mask & TUNING_BITS_YAW) {
|
|
pid_info = &plane.yawController.get_pid_info();
|
|
#if HAL_QUADPLANE_ENABLED
|
|
if (plane.quadplane.in_vtol_mode()) {
|
|
pid_info = &plane.quadplane.attitude_control->get_rate_yaw_pid().get_pid_info();
|
|
}
|
|
#endif
|
|
send_pid_info(pid_info, PID_TUNING_YAW, pid_info->actual);
|
|
}
|
|
if (g.gcs_pid_mask & TUNING_BITS_STEER) {
|
|
pid_info = &plane.steerController.get_pid_info();
|
|
send_pid_info(pid_info, PID_TUNING_STEER, pid_info->actual);
|
|
}
|
|
if ((g.gcs_pid_mask & TUNING_BITS_LAND) && (plane.flight_stage == AP_FixedWing::FlightStage::LAND)) {
|
|
AP_AHRS &ahrs = AP::ahrs();
|
|
const Vector3f &gyro = ahrs.get_gyro();
|
|
send_pid_info(plane.landing.get_pid_info(), PID_TUNING_LANDING, degrees(gyro.z));
|
|
}
|
|
#if HAL_QUADPLANE_ENABLED
|
|
if (g.gcs_pid_mask & TUNING_BITS_ACCZ && plane.quadplane.in_vtol_mode()) {
|
|
pid_info = &plane.quadplane.pos_control->get_accel_z_pid().get_pid_info();
|
|
send_pid_info(pid_info, PID_TUNING_ACCZ, pid_info->actual);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
uint8_t GCS_MAVLINK_Plane::sysid_my_gcs() const
|
|
{
|
|
return plane.g.sysid_my_gcs;
|
|
}
|
|
bool GCS_MAVLINK_Plane::sysid_enforce() const
|
|
{
|
|
return plane.g2.sysid_enforce;
|
|
}
|
|
|
|
uint32_t GCS_MAVLINK_Plane::telem_delay() const
|
|
{
|
|
return (uint32_t)(plane.g.telem_delay);
|
|
}
|
|
|
|
// try to send a message, return false if it won't fit in the serial tx buffer
|
|
bool GCS_MAVLINK_Plane::try_send_message(enum ap_message id)
|
|
{
|
|
switch (id) {
|
|
|
|
case MSG_SERVO_OUT:
|
|
// unused
|
|
break;
|
|
|
|
case MSG_TERRAIN:
|
|
#if AP_TERRAIN_AVAILABLE
|
|
CHECK_PAYLOAD_SIZE(TERRAIN_REQUEST);
|
|
plane.terrain.send_request(chan);
|
|
#endif
|
|
break;
|
|
|
|
case MSG_WIND:
|
|
CHECK_PAYLOAD_SIZE(WIND);
|
|
send_wind();
|
|
break;
|
|
|
|
case MSG_ADSB_VEHICLE:
|
|
#if HAL_ADSB_ENABLED
|
|
CHECK_PAYLOAD_SIZE(ADSB_VEHICLE);
|
|
plane.adsb.send_adsb_vehicle(chan);
|
|
#endif
|
|
break;
|
|
|
|
case MSG_AOA_SSA:
|
|
CHECK_PAYLOAD_SIZE(AOA_SSA);
|
|
send_aoa_ssa();
|
|
break;
|
|
case MSG_LANDING:
|
|
plane.landing.send_landing_message(chan);
|
|
break;
|
|
|
|
case MSG_HYGROMETER:
|
|
#if AP_AIRSPEED_HYGROMETER_ENABLE
|
|
CHECK_PAYLOAD_SIZE(HYGROMETER_SENSOR);
|
|
send_hygrometer();
|
|
#endif
|
|
break;
|
|
|
|
default:
|
|
return GCS_MAVLINK::try_send_message(id);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#if AP_AIRSPEED_HYGROMETER_ENABLE
|
|
void GCS_MAVLINK_Plane::send_hygrometer()
|
|
{
|
|
if (!HAVE_PAYLOAD_SPACE(chan, HYGROMETER_SENSOR)) {
|
|
return;
|
|
}
|
|
|
|
const auto *airspeed = AP::airspeed();
|
|
if (airspeed == nullptr) {
|
|
return;
|
|
}
|
|
const uint32_t now = AP_HAL::millis();
|
|
|
|
for (uint8_t i=0; i<AIRSPEED_MAX_SENSORS; i++) {
|
|
uint8_t idx = (i+last_hygrometer_send_idx+1) % AIRSPEED_MAX_SENSORS;
|
|
float temperature, humidity;
|
|
uint32_t last_sample_ms;
|
|
if (!airspeed->get_hygrometer(idx, last_sample_ms, temperature, humidity)) {
|
|
continue;
|
|
}
|
|
if (now - last_sample_ms > 2000) {
|
|
// not updating, stop sending
|
|
continue;
|
|
}
|
|
if (!HAVE_PAYLOAD_SPACE(chan, HYGROMETER_SENSOR)) {
|
|
return;
|
|
}
|
|
|
|
mavlink_msg_hygrometer_sensor_send(
|
|
chan,
|
|
idx,
|
|
int16_t(temperature*100),
|
|
uint16_t(humidity*100));
|
|
last_hygrometer_send_idx = idx;
|
|
}
|
|
}
|
|
#endif // AP_AIRSPEED_HYGROMETER_ENABLE
|
|
|
|
|
|
/*
|
|
default stream rates to 1Hz
|
|
*/
|
|
const AP_Param::GroupInfo GCS_MAVLINK_Parameters::var_info[] = {
|
|
// @Param: RAW_SENS
|
|
// @DisplayName: Raw sensor stream rate
|
|
// @Description: MAVLink Stream rate of RAW_IMU, SCALED_IMU2, SCALED_IMU3, SCALED_PRESSURE, SCALED_PRESSURE2, and SCALED_PRESSURE3
|
|
// @Units: Hz
|
|
// @Range: 0 50
|
|
// @Increment: 1
|
|
// @RebootRequired: True
|
|
// @User: Advanced
|
|
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK_Parameters, streamRates[0], 1),
|
|
|
|
// @Param: EXT_STAT
|
|
// @DisplayName: Extended status stream rate
|
|
// @Description: MAVLink Stream rate of SYS_STATUS, POWER_STATUS, MCU_STATUS, MEMINFO, CURRENT_WAYPOINT, GPS_RAW_INT, GPS_RTK (if available), GPS2_RAW_INT (if available), GPS2_RTK (if available), NAV_CONTROLLER_OUTPUT, FENCE_STATUS, and GLOBAL_TARGET_POS_INT
|
|
// @Units: Hz
|
|
// @Range: 0 50
|
|
// @Increment: 1
|
|
// @RebootRequired: True
|
|
// @User: Advanced
|
|
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK_Parameters, streamRates[1], 1),
|
|
|
|
// @Param: RC_CHAN
|
|
// @DisplayName: RC Channel stream rate
|
|
// @Description: MAVLink Stream rate of SERVO_OUTPUT_RAW and RC_CHANNELS
|
|
// @Units: Hz
|
|
// @Range: 0 50
|
|
// @Increment: 1
|
|
// @RebootRequired: True
|
|
// @User: Advanced
|
|
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK_Parameters, streamRates[2], 1),
|
|
|
|
// @Param: RAW_CTRL
|
|
// @DisplayName: Raw Control stream rate
|
|
// @Description: MAVLink Raw Control stream rate of SERVO_OUT
|
|
// @Units: Hz
|
|
// @Range: 0 50
|
|
// @Increment: 1
|
|
// @RebootRequired: True
|
|
// @User: Advanced
|
|
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK_Parameters, streamRates[3], 1),
|
|
|
|
// @Param: POSITION
|
|
// @DisplayName: Position stream rate
|
|
// @Description: MAVLink Stream rate of GLOBAL_POSITION_INT and LOCAL_POSITION_NED
|
|
// @Units: Hz
|
|
// @Range: 0 50
|
|
// @Increment: 1
|
|
// @RebootRequired: True
|
|
// @User: Advanced
|
|
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK_Parameters, streamRates[4], 1),
|
|
|
|
// @Param: EXTRA1
|
|
// @DisplayName: Extra data type 1 stream rate
|
|
// @Description: MAVLink Stream rate of ATTITUDE, SIMSTATE (SIM only), AHRS2, RPM, AOA_SSA, LANDING,ESC_TELEMETRY,EFI_STATUS, and PID_TUNING
|
|
// @Units: Hz
|
|
// @Range: 0 50
|
|
// @Increment: 1
|
|
// @RebootRequired: True
|
|
// @User: Advanced
|
|
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK_Parameters, streamRates[5], 1),
|
|
|
|
// @Param: EXTRA2
|
|
// @DisplayName: Extra data type 2 stream rate
|
|
// @Description: MAVLink Stream rate of VFR_HUD
|
|
// @Range: 0 50
|
|
// @Increment: 1
|
|
// @RebootRequired: True
|
|
// @User: Advanced
|
|
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK_Parameters, streamRates[6], 1),
|
|
|
|
// @Param: EXTRA3
|
|
// @DisplayName: Extra data type 3 stream rate
|
|
// @Description: MAVLink Stream rate of AHRS, SYSTEM_TIME, WIND, RANGEFINDER, DISTANCE_SENSOR, TERRAIN_REQUEST, BATTERY2, GIMBAL_DEVICE_ATTITUDE_STATUS, OPTICAL_FLOW, MAG_CAL_REPORT, MAG_CAL_PROGRESS, EKF_STATUS_REPORT, VIBRATION, and BATTERY_STATUS
|
|
// @Units: Hz
|
|
// @Range: 0 50
|
|
// @Increment: 1
|
|
// @RebootRequired: True
|
|
// @User: Advanced
|
|
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK_Parameters, streamRates[7], 1),
|
|
|
|
// @Param: PARAMS
|
|
// @DisplayName: Parameter stream rate
|
|
// @Description: MAVLink Stream rate of PARAM_VALUE
|
|
// @Units: Hz
|
|
// @Range: 0 50
|
|
// @Increment: 1
|
|
// @RebootRequired: True
|
|
// @User: Advanced
|
|
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK_Parameters, streamRates[8], 10),
|
|
|
|
// @Param: ADSB
|
|
// @DisplayName: ADSB stream rate
|
|
// @Description: MAVLink ADSB stream rate
|
|
// @Units: Hz
|
|
// @Range: 0 50
|
|
// @Increment: 1
|
|
// @RebootRequired: True
|
|
// @User: Advanced
|
|
AP_GROUPINFO("ADSB", 9, GCS_MAVLINK_Parameters, streamRates[9], 5),
|
|
AP_GROUPEND
|
|
};
|
|
|
|
static const ap_message STREAM_RAW_SENSORS_msgs[] = {
|
|
MSG_RAW_IMU,
|
|
MSG_SCALED_IMU2,
|
|
MSG_SCALED_IMU3,
|
|
MSG_SCALED_PRESSURE,
|
|
MSG_SCALED_PRESSURE2,
|
|
MSG_SCALED_PRESSURE3,
|
|
};
|
|
static const ap_message STREAM_EXTENDED_STATUS_msgs[] = {
|
|
MSG_SYS_STATUS,
|
|
MSG_POWER_STATUS,
|
|
#if HAL_WITH_MCU_MONITORING
|
|
MSG_MCU_STATUS,
|
|
#endif
|
|
MSG_MEMINFO,
|
|
MSG_CURRENT_WAYPOINT,
|
|
MSG_GPS_RAW,
|
|
MSG_GPS_RTK,
|
|
#if GPS_MAX_RECEIVERS > 1
|
|
MSG_GPS2_RAW,
|
|
MSG_GPS2_RTK,
|
|
#endif
|
|
MSG_NAV_CONTROLLER_OUTPUT,
|
|
#if AP_FENCE_ENABLED
|
|
MSG_FENCE_STATUS,
|
|
#endif
|
|
MSG_POSITION_TARGET_GLOBAL_INT,
|
|
};
|
|
static const ap_message STREAM_POSITION_msgs[] = {
|
|
MSG_LOCATION,
|
|
MSG_LOCAL_POSITION
|
|
};
|
|
static const ap_message STREAM_RAW_CONTROLLER_msgs[] = {
|
|
MSG_SERVO_OUT,
|
|
};
|
|
static const ap_message STREAM_RC_CHANNELS_msgs[] = {
|
|
MSG_SERVO_OUTPUT_RAW,
|
|
MSG_RC_CHANNELS,
|
|
MSG_RC_CHANNELS_RAW, // only sent on a mavlink1 connection
|
|
};
|
|
static const ap_message STREAM_EXTRA1_msgs[] = {
|
|
MSG_ATTITUDE,
|
|
#if AP_SIM_ENABLED
|
|
MSG_SIMSTATE,
|
|
#endif
|
|
MSG_AHRS2,
|
|
#if AP_RPM_ENABLED
|
|
MSG_RPM,
|
|
#endif
|
|
MSG_AOA_SSA,
|
|
MSG_PID_TUNING,
|
|
MSG_LANDING,
|
|
#if HAL_WITH_ESC_TELEM
|
|
MSG_ESC_TELEMETRY,
|
|
#endif
|
|
#if HAL_EFI_ENABLED
|
|
MSG_EFI_STATUS,
|
|
#endif
|
|
#if AP_AIRSPEED_HYGROMETER_ENABLE
|
|
MSG_HYGROMETER,
|
|
#endif
|
|
};
|
|
static const ap_message STREAM_EXTRA2_msgs[] = {
|
|
MSG_VFR_HUD
|
|
};
|
|
static const ap_message STREAM_EXTRA3_msgs[] = {
|
|
MSG_AHRS,
|
|
MSG_WIND,
|
|
#if AP_RANGEFINDER_ENABLED
|
|
MSG_RANGEFINDER,
|
|
#endif
|
|
MSG_DISTANCE_SENSOR,
|
|
MSG_SYSTEM_TIME,
|
|
#if AP_TERRAIN_AVAILABLE
|
|
MSG_TERRAIN,
|
|
#endif
|
|
#if AP_BATTERY_ENABLED
|
|
MSG_BATTERY_STATUS,
|
|
#endif
|
|
#if HAL_MOUNT_ENABLED
|
|
MSG_GIMBAL_DEVICE_ATTITUDE_STATUS,
|
|
#endif
|
|
#if AP_OPTICALFLOW_ENABLED
|
|
MSG_OPTICAL_FLOW,
|
|
#endif
|
|
#if COMPASS_CAL_ENABLED
|
|
MSG_MAG_CAL_REPORT,
|
|
MSG_MAG_CAL_PROGRESS,
|
|
#endif
|
|
MSG_EKF_STATUS_REPORT,
|
|
MSG_VIBRATION,
|
|
};
|
|
static const ap_message STREAM_PARAMS_msgs[] = {
|
|
MSG_NEXT_PARAM
|
|
};
|
|
static const ap_message STREAM_ADSB_msgs[] = {
|
|
MSG_ADSB_VEHICLE,
|
|
#if AP_AIS_ENABLED
|
|
MSG_AIS_VESSEL,
|
|
#endif
|
|
};
|
|
|
|
const struct GCS_MAVLINK::stream_entries GCS_MAVLINK::all_stream_entries[] = {
|
|
MAV_STREAM_ENTRY(STREAM_RAW_SENSORS),
|
|
MAV_STREAM_ENTRY(STREAM_EXTENDED_STATUS),
|
|
MAV_STREAM_ENTRY(STREAM_POSITION),
|
|
MAV_STREAM_ENTRY(STREAM_RAW_CONTROLLER),
|
|
MAV_STREAM_ENTRY(STREAM_RC_CHANNELS),
|
|
MAV_STREAM_ENTRY(STREAM_EXTRA1),
|
|
MAV_STREAM_ENTRY(STREAM_EXTRA2),
|
|
MAV_STREAM_ENTRY(STREAM_EXTRA3),
|
|
MAV_STREAM_ENTRY(STREAM_PARAMS),
|
|
MAV_STREAM_ENTRY(STREAM_ADSB),
|
|
MAV_STREAM_TERMINATOR // must have this at end of stream_entries
|
|
};
|
|
|
|
/*
|
|
handle a request to switch to guided mode. This happens via a
|
|
callback from handle_mission_item()
|
|
*/
|
|
bool GCS_MAVLINK_Plane::handle_guided_request(AP_Mission::Mission_Command &cmd)
|
|
{
|
|
return plane.control_mode->handle_guided_request(cmd.content.location);
|
|
}
|
|
|
|
/*
|
|
handle a request to change current WP altitude. This happens via a
|
|
callback from handle_mission_item()
|
|
*/
|
|
void GCS_MAVLINK_Plane::handle_change_alt_request(AP_Mission::Mission_Command &cmd)
|
|
{
|
|
plane.next_WP_loc.alt = cmd.content.location.alt;
|
|
if (cmd.content.location.relative_alt) {
|
|
plane.next_WP_loc.alt += plane.home.alt;
|
|
}
|
|
plane.next_WP_loc.relative_alt = false;
|
|
plane.next_WP_loc.terrain_alt = cmd.content.location.terrain_alt;
|
|
plane.reset_offset_altitude();
|
|
}
|
|
|
|
|
|
/*
|
|
handle a LANDING_TARGET command. The timestamp has been jitter corrected
|
|
*/
|
|
void GCS_MAVLINK_Plane::handle_landing_target(const mavlink_landing_target_t &packet, uint32_t timestamp_ms)
|
|
{
|
|
#if AC_PRECLAND_ENABLED
|
|
plane.g2.precland.handle_msg(packet, timestamp_ms);
|
|
#endif
|
|
}
|
|
|
|
MAV_RESULT GCS_MAVLINK_Plane::handle_command_preflight_calibration(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
|
|
{
|
|
plane.in_calibration = true;
|
|
MAV_RESULT ret = GCS_MAVLINK::handle_command_preflight_calibration(packet, msg);
|
|
plane.in_calibration = false;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void GCS_MAVLINK_Plane::packetReceived(const mavlink_status_t &status,
|
|
const mavlink_message_t &msg)
|
|
{
|
|
#if HAL_ADSB_ENABLED
|
|
plane.avoidance_adsb.handle_msg(msg);
|
|
#endif
|
|
#if AP_SCRIPTING_ENABLED && AP_FOLLOW_ENABLED
|
|
// pass message to follow library
|
|
plane.g2.follow.handle_msg(msg);
|
|
#endif
|
|
GCS_MAVLINK::packetReceived(status, msg);
|
|
}
|
|
|
|
|
|
bool Plane::set_home_to_current_location(bool _lock)
|
|
{
|
|
if (!set_home_persistently(AP::gps().location())) {
|
|
return false;
|
|
}
|
|
if (_lock) {
|
|
AP::ahrs().lock_home();
|
|
}
|
|
if ((control_mode == &mode_rtl)
|
|
#if HAL_QUADPLANE_ENABLED
|
|
|| (control_mode == &mode_qrtl)
|
|
#endif
|
|
) {
|
|
// if in RTL head to the updated home location
|
|
control_mode->enter();
|
|
}
|
|
return true;
|
|
}
|
|
bool Plane::set_home(const Location& loc, bool _lock)
|
|
{
|
|
if (!AP::ahrs().set_home(loc)) {
|
|
return false;
|
|
}
|
|
if (_lock) {
|
|
AP::ahrs().lock_home();
|
|
}
|
|
if ((control_mode == &mode_rtl)
|
|
#if HAL_QUADPLANE_ENABLED
|
|
|| (control_mode == &mode_qrtl)
|
|
#endif
|
|
) {
|
|
// if in RTL head to the updated home location
|
|
control_mode->enter();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
MAV_RESULT GCS_MAVLINK_Plane::handle_command_int_do_reposition(const mavlink_command_int_t &packet)
|
|
{
|
|
// sanity check location
|
|
if (!check_latlng(packet.x, packet.y)) {
|
|
return MAV_RESULT_DENIED;
|
|
}
|
|
|
|
Location requested_position;
|
|
if (!location_from_command_t(packet, requested_position)) {
|
|
return MAV_RESULT_DENIED;
|
|
}
|
|
|
|
if (isnan(packet.param4) || is_zero(packet.param4)) {
|
|
requested_position.loiter_ccw = 0;
|
|
} else {
|
|
requested_position.loiter_ccw = 1;
|
|
}
|
|
|
|
if (requested_position.sanitize(plane.current_loc)) {
|
|
// if the location wasn't already sane don't load it
|
|
return MAV_RESULT_DENIED;
|
|
}
|
|
|
|
// location is valid load and set
|
|
if (((int32_t)packet.param2 & MAV_DO_REPOSITION_FLAGS_CHANGE_MODE) ||
|
|
(plane.control_mode == &plane.mode_guided)) {
|
|
plane.set_mode(plane.mode_guided, ModeReason::GCS_COMMAND);
|
|
|
|
// add home alt if needed
|
|
if (requested_position.relative_alt) {
|
|
requested_position.alt += plane.home.alt;
|
|
requested_position.relative_alt = 0;
|
|
}
|
|
|
|
plane.set_guided_WP(requested_position);
|
|
|
|
// Loiter radius for planes. Positive radius in meters, direction is controlled by Yaw (param4) value, parsed above
|
|
if (!isnan(packet.param3) && packet.param3 > 0) {
|
|
plane.mode_guided.set_radius_and_direction(packet.param3, requested_position.loiter_ccw);
|
|
}
|
|
|
|
return MAV_RESULT_ACCEPTED;
|
|
}
|
|
return MAV_RESULT_FAILED;
|
|
}
|
|
|
|
// these are GUIDED mode commands that are RATE or slew enabled, so you can have more powerful control than default controls.
|
|
MAV_RESULT GCS_MAVLINK_Plane::handle_command_int_guided_slew_commands(const mavlink_command_int_t &packet)
|
|
{
|
|
switch(packet.command) {
|
|
|
|
#if OFFBOARD_GUIDED == ENABLED
|
|
case MAV_CMD_GUIDED_CHANGE_SPEED: {
|
|
// command is only valid in guided mode
|
|
if (plane.control_mode != &plane.mode_guided) {
|
|
return MAV_RESULT_FAILED;
|
|
}
|
|
|
|
// only airspeed commands are supported right now...
|
|
if (int(packet.param1) != SPEED_TYPE_AIRSPEED) { // since SPEED_TYPE is int in range 0-1 and packet.param1 is a *float* this works.
|
|
return MAV_RESULT_DENIED;
|
|
}
|
|
|
|
// reject airspeeds that are outside of the tuning envelope
|
|
if (packet.param2 > plane.aparm.airspeed_max || packet.param2 < plane.aparm.airspeed_min) {
|
|
return MAV_RESULT_DENIED;
|
|
}
|
|
|
|
// no need to process any new packet/s with the
|
|
// same airspeed any further, if we are already doing it.
|
|
float new_target_airspeed_cm = packet.param2 * 100;
|
|
if ( is_equal(new_target_airspeed_cm,plane.guided_state.target_airspeed_cm)) {
|
|
return MAV_RESULT_ACCEPTED;
|
|
}
|
|
plane.guided_state.target_airspeed_cm = new_target_airspeed_cm;
|
|
plane.guided_state.target_airspeed_time_ms = AP_HAL::millis();
|
|
|
|
if (is_zero(packet.param3)) {
|
|
// the user wanted /maximum acceleration, pick a large value as close enough
|
|
plane.guided_state.target_airspeed_accel = 1000.0f;
|
|
} else {
|
|
plane.guided_state.target_airspeed_accel = fabsf(packet.param3);
|
|
}
|
|
|
|
// assign an acceleration direction
|
|
if (plane.guided_state.target_airspeed_cm < plane.target_airspeed_cm) {
|
|
plane.guided_state.target_airspeed_accel *= -1.0f;
|
|
}
|
|
return MAV_RESULT_ACCEPTED;
|
|
}
|
|
|
|
case MAV_CMD_GUIDED_CHANGE_ALTITUDE: {
|
|
// command is only valid in guided
|
|
if (plane.control_mode != &plane.mode_guided) {
|
|
return MAV_RESULT_FAILED;
|
|
}
|
|
|
|
// disallow default value of -1 and dangerous value of zero
|
|
if (is_equal(packet.z, -1.0f) || is_equal(packet.z, 0.0f)){
|
|
return MAV_RESULT_DENIED;
|
|
}
|
|
|
|
// the requested alt data might be relative or absolute
|
|
float new_target_alt = packet.z * 100;
|
|
float new_target_alt_rel = packet.z * 100 + plane.home.alt;
|
|
|
|
// only global/relative/terrain frames are supported
|
|
switch(packet.frame) {
|
|
case MAV_FRAME_GLOBAL_RELATIVE_ALT: {
|
|
if (is_equal(plane.guided_state.target_alt,new_target_alt_rel) ) { // compare two floats as near-enough
|
|
// no need to process any new packet/s with the same ALT any further, if we are already doing it.
|
|
return MAV_RESULT_ACCEPTED;
|
|
}
|
|
plane.guided_state.target_alt = new_target_alt_rel;
|
|
break;
|
|
}
|
|
case MAV_FRAME_GLOBAL: {
|
|
if (is_equal(plane.guided_state.target_alt,new_target_alt) ) { // compare two floats as near-enough
|
|
// no need to process any new packet/s with the same ALT any further, if we are already doing it.
|
|
return MAV_RESULT_ACCEPTED;
|
|
}
|
|
plane.guided_state.target_alt = new_target_alt;
|
|
break;
|
|
}
|
|
default:
|
|
// MAV_RESULT_DENIED means Command is invalid (is supported but has invalid parameters).
|
|
return MAV_RESULT_DENIED;
|
|
}
|
|
|
|
plane.guided_state.target_alt_frame = packet.frame;
|
|
plane.guided_state.last_target_alt = plane.current_loc.alt; // FIXME: Reference frame is not corrected for here
|
|
plane.guided_state.target_alt_time_ms = AP_HAL::millis();
|
|
|
|
if (is_zero(packet.param3)) {
|
|
// the user wanted /maximum acceleration, pick a large value as close enough
|
|
plane.guided_state.target_alt_accel = 1000.0;
|
|
} else {
|
|
plane.guided_state.target_alt_accel = fabsf(packet.param3);
|
|
}
|
|
|
|
// assign an acceleration direction
|
|
if (plane.guided_state.target_alt < plane.current_loc.alt) {
|
|
plane.guided_state.target_alt_accel *= -1.0f;
|
|
}
|
|
return MAV_RESULT_ACCEPTED;
|
|
}
|
|
|
|
case MAV_CMD_GUIDED_CHANGE_HEADING: {
|
|
|
|
// command is only valid in guided mode
|
|
if (plane.control_mode != &plane.mode_guided) {
|
|
return MAV_RESULT_FAILED;
|
|
}
|
|
|
|
// don't accept packets outside of [0-360] degree range
|
|
if (packet.param2 < 0.0f || packet.param2 >= 360.0f) {
|
|
return MAV_RESULT_DENIED;
|
|
}
|
|
|
|
float new_target_heading = radians(wrap_180(packet.param2));
|
|
|
|
// course over ground
|
|
if ( int(packet.param1) == HEADING_TYPE_COURSE_OVER_GROUND) { // compare as nearest int
|
|
plane.guided_state.target_heading_type = GUIDED_HEADING_COG;
|
|
plane.prev_WP_loc = plane.current_loc;
|
|
// normal vehicle heading
|
|
} else if (int(packet.param1) == HEADING_TYPE_HEADING) { // compare as nearest int
|
|
plane.guided_state.target_heading_type = GUIDED_HEADING_HEADING;
|
|
} else {
|
|
// MAV_RESULT_DENIED means Command is invalid (is supported but has invalid parameters).
|
|
return MAV_RESULT_DENIED;
|
|
}
|
|
|
|
plane.g2.guidedHeading.reset_I();
|
|
|
|
plane.guided_state.target_heading = new_target_heading;
|
|
plane.guided_state.target_heading_accel_limit = MAX(packet.param3, 0.05f);
|
|
plane.guided_state.target_heading_time_ms = AP_HAL::millis();
|
|
return MAV_RESULT_ACCEPTED;
|
|
}
|
|
#endif // OFFBOARD_GUIDED == ENABLED
|
|
|
|
|
|
}
|
|
// anything else ...
|
|
return MAV_RESULT_UNSUPPORTED;
|
|
|
|
}
|
|
|
|
MAV_RESULT GCS_MAVLINK_Plane::handle_command_int_packet(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
|
|
{
|
|
switch(packet.command) {
|
|
|
|
case MAV_CMD_DO_AUTOTUNE_ENABLE:
|
|
return handle_MAV_CMD_DO_AUTOTUNE_ENABLE(packet);
|
|
|
|
case MAV_CMD_DO_REPOSITION:
|
|
return handle_command_int_do_reposition(packet);
|
|
|
|
// special 'slew-enabled' guided commands here... for speed,alt, and direction commands
|
|
case MAV_CMD_GUIDED_CHANGE_SPEED:
|
|
case MAV_CMD_GUIDED_CHANGE_ALTITUDE:
|
|
case MAV_CMD_GUIDED_CHANGE_HEADING:
|
|
return handle_command_int_guided_slew_commands(packet);
|
|
|
|
#if AP_SCRIPTING_ENABLED && AP_FOLLOW_ENABLED
|
|
case MAV_CMD_DO_FOLLOW:
|
|
// param1: sysid of target to follow
|
|
if ((packet.param1 > 0) && (packet.param1 <= 255)) {
|
|
plane.g2.follow.set_target_sysid((uint8_t)packet.param1);
|
|
return MAV_RESULT_ACCEPTED;
|
|
}
|
|
return MAV_RESULT_DENIED;
|
|
#endif
|
|
|
|
#if AP_ICENGINE_ENABLED
|
|
case MAV_CMD_DO_ENGINE_CONTROL:
|
|
if (!plane.g2.ice_control.engine_control(packet.param1, packet.param2, packet.param3, (uint32_t)packet.param4)) {
|
|
return MAV_RESULT_FAILED;
|
|
}
|
|
return MAV_RESULT_ACCEPTED;
|
|
#endif
|
|
|
|
case MAV_CMD_DO_CHANGE_SPEED:
|
|
return handle_command_DO_CHANGE_SPEED(packet);
|
|
|
|
#if PARACHUTE == ENABLED
|
|
case MAV_CMD_DO_PARACHUTE:
|
|
return handle_MAV_CMD_DO_PARACHUTE(packet);
|
|
#endif
|
|
|
|
#if HAL_QUADPLANE_ENABLED
|
|
case MAV_CMD_DO_MOTOR_TEST:
|
|
return handle_MAV_CMD_DO_MOTOR_TEST(packet);
|
|
|
|
case MAV_CMD_DO_VTOL_TRANSITION:
|
|
return handle_command_DO_VTOL_TRANSITION(packet);
|
|
|
|
case MAV_CMD_NAV_TAKEOFF:
|
|
return handle_command_MAV_CMD_NAV_TAKEOFF(packet);
|
|
#endif
|
|
|
|
case MAV_CMD_DO_GO_AROUND:
|
|
return plane.trigger_land_abort(packet.param1) ? MAV_RESULT_ACCEPTED : MAV_RESULT_FAILED;
|
|
|
|
case MAV_CMD_DO_LAND_START:
|
|
// attempt to switch to next DO_LAND_START command in the mission
|
|
if (plane.have_position && plane.mission.jump_to_landing_sequence(plane.current_loc)) {
|
|
plane.set_mode(plane.mode_auto, ModeReason::GCS_COMMAND);
|
|
return MAV_RESULT_ACCEPTED;
|
|
}
|
|
return MAV_RESULT_FAILED;
|
|
|
|
case MAV_CMD_MISSION_START:
|
|
plane.set_mode(plane.mode_auto, ModeReason::GCS_COMMAND);
|
|
return MAV_RESULT_ACCEPTED;
|
|
|
|
case MAV_CMD_NAV_LOITER_UNLIM:
|
|
plane.set_mode(plane.mode_loiter, ModeReason::GCS_COMMAND);
|
|
return MAV_RESULT_ACCEPTED;
|
|
|
|
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
|
|
plane.set_mode(plane.mode_rtl, ModeReason::GCS_COMMAND);
|
|
return MAV_RESULT_ACCEPTED;
|
|
|
|
default:
|
|
return GCS_MAVLINK::handle_command_int_packet(packet, msg);
|
|
}
|
|
}
|
|
|
|
MAV_RESULT GCS_MAVLINK_Plane::handle_command_DO_CHANGE_SPEED(const mavlink_command_int_t &packet)
|
|
{
|
|
// if we're in failsafe modes (e.g., RTL, LOITER) or in pilot
|
|
// controlled modes (e.g., MANUAL, TRAINING)
|
|
// this command should be ignored since it comes in from GCS
|
|
// or a companion computer:
|
|
if ((!plane.control_mode->is_guided_mode()) &&
|
|
(plane.control_mode != &plane.mode_auto)) {
|
|
// failed
|
|
return MAV_RESULT_FAILED;
|
|
}
|
|
|
|
if (plane.do_change_speed(packet.param1, packet.param2, packet.param3)) {
|
|
return MAV_RESULT_ACCEPTED;
|
|
}
|
|
return MAV_RESULT_FAILED;
|
|
}
|
|
|
|
#if HAL_QUADPLANE_ENABLED
|
|
#if AP_MAVLINK_COMMAND_LONG_ENABLED
|
|
void GCS_MAVLINK_Plane::convert_MAV_CMD_NAV_TAKEOFF_to_COMMAND_INT(const mavlink_command_long_t &in, mavlink_command_int_t &out)
|
|
{
|
|
// convert to MAV_FRAME_LOCAL_OFFSET_NED, "NED local tangent frame
|
|
// with origin that travels with the vehicle"
|
|
out = {};
|
|
out.target_system = in.target_system;
|
|
out.target_component = in.target_component;
|
|
out.frame = MAV_FRAME_LOCAL_OFFSET_NED;
|
|
out.command = in.command;
|
|
// out.current = 0;
|
|
// out.autocontinue = 0;
|
|
// out.param1 = in.param1; // we only use the "z" parameter in this command:
|
|
// out.param2 = in.param2;
|
|
// out.param3 = in.param3;
|
|
// out.param4 = in.param4;
|
|
// out.x = 0; // we don't handle positioning when doing takeoffs
|
|
// out.y = 0;
|
|
out.z = -in.param7; // up -> down
|
|
}
|
|
|
|
void GCS_MAVLINK_Plane::convert_COMMAND_LONG_to_COMMAND_INT(const mavlink_command_long_t &in, mavlink_command_int_t &out, MAV_FRAME frame)
|
|
{
|
|
switch (in.command) {
|
|
case MAV_CMD_NAV_TAKEOFF:
|
|
convert_MAV_CMD_NAV_TAKEOFF_to_COMMAND_INT(in, out);
|
|
return;
|
|
}
|
|
return GCS_MAVLINK::convert_COMMAND_LONG_to_COMMAND_INT(in, out, frame);
|
|
}
|
|
#endif // AP_MAVLINK_COMMAND_LONG_ENABLED
|
|
|
|
MAV_RESULT GCS_MAVLINK_Plane::handle_command_MAV_CMD_NAV_TAKEOFF(const mavlink_command_int_t &packet)
|
|
{
|
|
float takeoff_alt = packet.z;
|
|
switch (packet.frame) {
|
|
case MAV_FRAME_LOCAL_OFFSET_NED: // "NED local tangent frame with origin that travels with the vehicle"
|
|
takeoff_alt = -takeoff_alt; // down -> up
|
|
break;
|
|
default:
|
|
return MAV_RESULT_DENIED; // "is supported but has invalid parameters"
|
|
}
|
|
if (!plane.quadplane.available()) {
|
|
return MAV_RESULT_FAILED;
|
|
}
|
|
if (!plane.quadplane.do_user_takeoff(takeoff_alt)) {
|
|
return MAV_RESULT_FAILED;
|
|
}
|
|
return MAV_RESULT_ACCEPTED;
|
|
}
|
|
#endif
|
|
|
|
MAV_RESULT GCS_MAVLINK_Plane::handle_MAV_CMD_DO_AUTOTUNE_ENABLE(const mavlink_command_int_t &packet)
|
|
{
|
|
// param1 : enable/disable
|
|
plane.autotune_enable(!is_zero(packet.param1));
|
|
return MAV_RESULT_ACCEPTED;
|
|
}
|
|
|
|
#if PARACHUTE == ENABLED
|
|
MAV_RESULT GCS_MAVLINK_Plane::handle_MAV_CMD_DO_PARACHUTE(const mavlink_command_int_t &packet)
|
|
{
|
|
// configure or release parachute
|
|
switch ((uint16_t)packet.param1) {
|
|
case PARACHUTE_DISABLE:
|
|
plane.parachute.enabled(false);
|
|
return MAV_RESULT_ACCEPTED;
|
|
case PARACHUTE_ENABLE:
|
|
plane.parachute.enabled(true);
|
|
return MAV_RESULT_ACCEPTED;
|
|
case PARACHUTE_RELEASE:
|
|
// treat as a manual release which performs some additional check of altitude
|
|
if (plane.parachute.released()) {
|
|
gcs().send_text(MAV_SEVERITY_NOTICE, "Parachute already released");
|
|
return MAV_RESULT_FAILED;
|
|
}
|
|
if (!plane.parachute.enabled()) {
|
|
gcs().send_text(MAV_SEVERITY_NOTICE, "Parachute not enabled");
|
|
return MAV_RESULT_FAILED;
|
|
}
|
|
if (!plane.parachute_manual_release()) {
|
|
return MAV_RESULT_FAILED;
|
|
}
|
|
return MAV_RESULT_ACCEPTED;
|
|
default:
|
|
break;
|
|
}
|
|
return MAV_RESULT_FAILED;
|
|
}
|
|
#endif
|
|
|
|
|
|
#if HAL_QUADPLANE_ENABLED
|
|
MAV_RESULT GCS_MAVLINK_Plane::handle_MAV_CMD_DO_MOTOR_TEST(const mavlink_command_int_t &packet)
|
|
{
|
|
// param1 : motor sequence number (a number from 1 to max number of motors on the vehicle)
|
|
// param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum)
|
|
// param3 : throttle (range depends upon param2)
|
|
// param4 : timeout (in seconds)
|
|
// param5 : motor count (number of motors to test in sequence)
|
|
return plane.quadplane.mavlink_motor_test_start(chan,
|
|
(uint8_t)packet.param1,
|
|
(uint8_t)packet.param2,
|
|
(uint16_t)packet.param3,
|
|
packet.param4,
|
|
(uint8_t)packet.x);
|
|
}
|
|
|
|
MAV_RESULT GCS_MAVLINK_Plane::handle_command_DO_VTOL_TRANSITION(const mavlink_command_int_t &packet)
|
|
{
|
|
if (!plane.quadplane.handle_do_vtol_transition((enum MAV_VTOL_STATE)packet.param1)) {
|
|
return MAV_RESULT_FAILED;
|
|
}
|
|
return MAV_RESULT_ACCEPTED;
|
|
}
|
|
#endif
|
|
|
|
// this is called on receipt of a MANUAL_CONTROL packet and is
|
|
// expected to call manual_override to override RC input on desired
|
|
// axes.
|
|
void GCS_MAVLINK_Plane::handle_manual_control_axes(const mavlink_manual_control_t &packet, const uint32_t tnow)
|
|
{
|
|
manual_override(plane.channel_roll, packet.y, 1000, 2000, tnow);
|
|
manual_override(plane.channel_pitch, packet.x, 1000, 2000, tnow, true);
|
|
manual_override(plane.channel_throttle, packet.z, 0, 1000, tnow);
|
|
manual_override(plane.channel_rudder, packet.r, 1000, 2000, tnow);
|
|
}
|
|
|
|
void GCS_MAVLINK_Plane::handle_message(const mavlink_message_t &msg)
|
|
{
|
|
switch (msg.msgid) {
|
|
|
|
case MAVLINK_MSG_ID_TERRAIN_DATA:
|
|
case MAVLINK_MSG_ID_TERRAIN_CHECK:
|
|
#if AP_TERRAIN_AVAILABLE
|
|
plane.terrain.handle_data(chan, msg);
|
|
#endif
|
|
break;
|
|
|
|
case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET:
|
|
handle_set_attitude_target(msg);
|
|
break;
|
|
|
|
case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED:
|
|
handle_set_position_target_local_ned(msg);
|
|
break;
|
|
|
|
case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT:
|
|
handle_set_position_target_global_int(msg);
|
|
break;
|
|
|
|
default:
|
|
GCS_MAVLINK::handle_message(msg);
|
|
break;
|
|
} // end switch
|
|
} // end handle mavlink
|
|
|
|
void GCS_MAVLINK_Plane::handle_set_attitude_target(const mavlink_message_t &msg)
|
|
{
|
|
// Only allow companion computer (or other external controller) to
|
|
// control attitude in GUIDED mode. We DON'T want external control
|
|
// in e.g., RTL, CICLE. Specifying a single mode for companion
|
|
// computer control is more safe (even more so when using
|
|
// FENCE_ACTION = 4 for geofence failures).
|
|
if (plane.control_mode != &plane.mode_guided) { // don't screw up failsafes
|
|
return;
|
|
}
|
|
|
|
mavlink_set_attitude_target_t att_target;
|
|
mavlink_msg_set_attitude_target_decode(&msg, &att_target);
|
|
|
|
// Mappings: If any of these bits are set, the corresponding input should be ignored.
|
|
// NOTE, when parsing the bits we invert them for easier interpretation but transport has them inverted
|
|
// bit 1: body roll rate
|
|
// bit 2: body pitch rate
|
|
// bit 3: body yaw rate
|
|
// bit 4: unknown
|
|
// bit 5: unknown
|
|
// bit 6: reserved
|
|
// bit 7: throttle
|
|
// bit 8: attitude
|
|
|
|
// if not setting all Quaternion values, use _rate flags to indicate which fields.
|
|
|
|
// Extract the Euler roll angle from the Quaternion.
|
|
Quaternion q(att_target.q[0], att_target.q[1],
|
|
att_target.q[2], att_target.q[3]);
|
|
|
|
// NOTE: att_target.type_mask is inverted for easier interpretation
|
|
att_target.type_mask = att_target.type_mask ^ 0xFF;
|
|
|
|
uint8_t attitude_mask = att_target.type_mask & 0b10000111; // q plus rpy
|
|
|
|
uint32_t now = AP_HAL::millis();
|
|
if ((attitude_mask & 0b10000001) || // partial, including roll
|
|
(attitude_mask == 0b10000000)) { // all angles
|
|
plane.guided_state.forced_rpy_cd.x = degrees(q.get_euler_roll()) * 100.0f;
|
|
|
|
// Update timer for external roll to the nav control
|
|
plane.guided_state.last_forced_rpy_ms.x = now;
|
|
}
|
|
|
|
if ((attitude_mask & 0b10000010) || // partial, including pitch
|
|
(attitude_mask == 0b10000000)) { // all angles
|
|
plane.guided_state.forced_rpy_cd.y = degrees(q.get_euler_pitch()) * 100.0f;
|
|
|
|
// Update timer for external pitch to the nav control
|
|
plane.guided_state.last_forced_rpy_ms.y = now;
|
|
}
|
|
|
|
if ((attitude_mask & 0b10000100) || // partial, including yaw
|
|
(attitude_mask == 0b10000000)) { // all angles
|
|
plane.guided_state.forced_rpy_cd.z = degrees(q.get_euler_yaw()) * 100.0f;
|
|
|
|
// Update timer for external yaw to the nav control
|
|
plane.guided_state.last_forced_rpy_ms.z = now;
|
|
}
|
|
if (att_target.type_mask & 0b01000000) { // throttle
|
|
plane.guided_state.forced_throttle = att_target.thrust * 100.0f;
|
|
|
|
// Update timer for external throttle
|
|
plane.guided_state.last_forced_throttle_ms = now;
|
|
}
|
|
}
|
|
|
|
void GCS_MAVLINK_Plane::handle_set_position_target_local_ned(const mavlink_message_t &msg)
|
|
{
|
|
// decode packet
|
|
mavlink_set_position_target_local_ned_t packet;
|
|
mavlink_msg_set_position_target_local_ned_decode(&msg, &packet);
|
|
|
|
// exit if vehicle is not in Guided mode
|
|
if (plane.control_mode != &plane.mode_guided) {
|
|
return;
|
|
}
|
|
|
|
// only local moves for now
|
|
if (packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED) {
|
|
return;
|
|
}
|
|
|
|
// just do altitude for now
|
|
plane.next_WP_loc.alt += -packet.z*100.0;
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Change alt to %.1f",
|
|
(double)((plane.next_WP_loc.alt - plane.home.alt)*0.01));
|
|
}
|
|
|
|
void GCS_MAVLINK_Plane::handle_set_position_target_global_int(const mavlink_message_t &msg)
|
|
{
|
|
// Only want to allow companion computer position control when
|
|
// in a certain mode to avoid inadvertently sending these
|
|
// kinds of commands when the autopilot is responding to problems
|
|
// in modes such as RTL, CIRCLE, etc. Specifying ONLY one mode
|
|
// for companion computer control is more safe (provided
|
|
// one uses the FENCE_ACTION = 4 (RTL) for geofence failures).
|
|
if (plane.control_mode != &plane.mode_guided) {
|
|
//don't screw up failsafes
|
|
return;
|
|
}
|
|
|
|
mavlink_set_position_target_global_int_t pos_target;
|
|
mavlink_msg_set_position_target_global_int_decode(&msg, &pos_target);
|
|
// Unexpectedly, the mask is expecting "ones" for dimensions that should
|
|
// be IGNORNED rather than INCLUDED. See mavlink documentation of the
|
|
// SET_POSITION_TARGET_GLOBAL_INT message, type_mask field.
|
|
const uint16_t alt_mask = 0b1111111111111011; // (z mask at bit 3)
|
|
|
|
bool msg_valid = true;
|
|
AP_Mission::Mission_Command cmd = {0};
|
|
|
|
if (pos_target.type_mask & alt_mask)
|
|
{
|
|
cmd.content.location.alt = pos_target.alt * 100;
|
|
cmd.content.location.relative_alt = false;
|
|
cmd.content.location.terrain_alt = false;
|
|
switch (pos_target.coordinate_frame)
|
|
{
|
|
case MAV_FRAME_GLOBAL:
|
|
case MAV_FRAME_GLOBAL_INT:
|
|
break; //default to MSL altitude
|
|
case MAV_FRAME_GLOBAL_RELATIVE_ALT:
|
|
case MAV_FRAME_GLOBAL_RELATIVE_ALT_INT:
|
|
cmd.content.location.relative_alt = true;
|
|
break;
|
|
case MAV_FRAME_GLOBAL_TERRAIN_ALT:
|
|
case MAV_FRAME_GLOBAL_TERRAIN_ALT_INT:
|
|
cmd.content.location.relative_alt = true;
|
|
cmd.content.location.terrain_alt = true;
|
|
break;
|
|
default:
|
|
gcs().send_text(MAV_SEVERITY_WARNING, "Invalid coord frame in SET_POSTION_TARGET_GLOBAL_INT");
|
|
msg_valid = false;
|
|
break;
|
|
}
|
|
|
|
if (msg_valid) {
|
|
handle_change_alt_request(cmd);
|
|
}
|
|
} // end if alt_mask
|
|
}
|
|
|
|
MAV_RESULT GCS_MAVLINK_Plane::handle_command_do_set_mission_current(const mavlink_command_int_t &packet)
|
|
{
|
|
const MAV_RESULT result = GCS_MAVLINK::handle_command_do_set_mission_current(packet);
|
|
if (result != MAV_RESULT_ACCEPTED) {
|
|
return result;
|
|
}
|
|
|
|
// if you change this you must change handle_mission_set_current
|
|
plane.auto_state.next_wp_crosstrack = false;
|
|
if (plane.control_mode == &plane.mode_auto && plane.mission.state() == AP_Mission::MISSION_STOPPED) {
|
|
plane.mission.resume();
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
#if AP_MAVLINK_MISSION_SET_CURRENT_ENABLED
|
|
void GCS_MAVLINK_Plane::handle_mission_set_current(AP_Mission &mission, const mavlink_message_t &msg)
|
|
{
|
|
// if you change this you must change handle_command_do_set_mission_current
|
|
plane.auto_state.next_wp_crosstrack = false;
|
|
GCS_MAVLINK::handle_mission_set_current(mission, msg);
|
|
if (plane.control_mode == &plane.mode_auto && plane.mission.state() == AP_Mission::MISSION_STOPPED) {
|
|
plane.mission.resume();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
uint64_t GCS_MAVLINK_Plane::capabilities() const
|
|
{
|
|
return (MAV_PROTOCOL_CAPABILITY_MISSION_FLOAT |
|
|
MAV_PROTOCOL_CAPABILITY_COMMAND_INT |
|
|
MAV_PROTOCOL_CAPABILITY_MISSION_INT |
|
|
MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_GLOBAL_INT |
|
|
MAV_PROTOCOL_CAPABILITY_SET_ATTITUDE_TARGET |
|
|
#if AP_TERRAIN_AVAILABLE
|
|
(plane.terrain.enabled() ? MAV_PROTOCOL_CAPABILITY_TERRAIN : 0) |
|
|
#endif
|
|
GCS_MAVLINK::capabilities());
|
|
}
|
|
|
|
#if HAL_HIGH_LATENCY2_ENABLED
|
|
int16_t GCS_MAVLINK_Plane::high_latency_target_altitude() const
|
|
{
|
|
AP_AHRS &ahrs = AP::ahrs();
|
|
Location global_position_current;
|
|
UNUSED_RESULT(ahrs.get_location(global_position_current));
|
|
|
|
#if HAL_QUADPLANE_ENABLED
|
|
const QuadPlane &quadplane = plane.quadplane;
|
|
//return units are m
|
|
if (quadplane.show_vtol_view()) {
|
|
return (plane.control_mode != &plane.mode_qstabilize) ? 0.01 * (global_position_current.alt + quadplane.pos_control->get_pos_error_z_cm()) : 0;
|
|
}
|
|
#endif
|
|
return 0.01 * (global_position_current.alt + plane.calc_altitude_error_cm());
|
|
}
|
|
|
|
uint8_t GCS_MAVLINK_Plane::high_latency_tgt_heading() const
|
|
{
|
|
// return units are deg/2
|
|
#if HAL_QUADPLANE_ENABLED
|
|
const QuadPlane &quadplane = plane.quadplane;
|
|
if (quadplane.show_vtol_view()) {
|
|
const Vector3f &targets = quadplane.attitude_control->get_att_target_euler_cd();
|
|
return ((uint16_t)(targets.z * 0.01)) / 2;
|
|
}
|
|
#endif
|
|
const AP_Navigation *nav_controller = plane.nav_controller;
|
|
// need to convert -18000->18000 to 0->360/2
|
|
return wrap_360_cd(nav_controller->target_bearing_cd() ) / 200;
|
|
}
|
|
|
|
// return units are dm
|
|
uint16_t GCS_MAVLINK_Plane::high_latency_tgt_dist() const
|
|
{
|
|
#if HAL_QUADPLANE_ENABLED
|
|
const QuadPlane &quadplane = plane.quadplane;
|
|
if (quadplane.show_vtol_view()) {
|
|
bool wp_nav_valid = quadplane.using_wp_nav();
|
|
return (wp_nav_valid ? MIN(quadplane.wp_nav->get_wp_distance_to_destination(), UINT16_MAX) : 0) / 10;
|
|
}
|
|
#endif
|
|
|
|
return MIN(plane.auto_state.wp_distance, UINT16_MAX) / 10;
|
|
}
|
|
|
|
uint8_t GCS_MAVLINK_Plane::high_latency_tgt_airspeed() const
|
|
{
|
|
// return units are m/s*5
|
|
return plane.target_airspeed_cm * 0.05;
|
|
}
|
|
|
|
uint8_t GCS_MAVLINK_Plane::high_latency_wind_speed() const
|
|
{
|
|
Vector3f wind;
|
|
wind = AP::ahrs().wind_estimate();
|
|
|
|
// return units are m/s*5
|
|
return MIN(wind.length() * 5, UINT8_MAX);
|
|
}
|
|
|
|
uint8_t GCS_MAVLINK_Plane::high_latency_wind_direction() const
|
|
{
|
|
const Vector3f wind = AP::ahrs().wind_estimate();
|
|
|
|
// return units are deg/2
|
|
// need to convert -180->180 to 0->360/2
|
|
return wrap_360(degrees(atan2f(-wind.y, -wind.x))) / 2;
|
|
}
|
|
#endif // HAL_HIGH_LATENCY2_ENABLED
|
|
|
|
MAV_VTOL_STATE GCS_MAVLINK_Plane::vtol_state() const
|
|
{
|
|
#if !HAL_QUADPLANE_ENABLED
|
|
return MAV_VTOL_STATE_UNDEFINED;
|
|
#else
|
|
if (!plane.quadplane.available()) {
|
|
return MAV_VTOL_STATE_UNDEFINED;
|
|
}
|
|
|
|
return plane.quadplane.transition->get_mav_vtol_state();
|
|
#endif
|
|
};
|
|
|
|
MAV_LANDED_STATE GCS_MAVLINK_Plane::landed_state() const
|
|
{
|
|
if (plane.is_flying()) {
|
|
// note that Q-modes almost always consider themselves as flying
|
|
return MAV_LANDED_STATE_IN_AIR;
|
|
}
|
|
|
|
return MAV_LANDED_STATE_ON_GROUND;
|
|
}
|
|
|