ardupilot/libraries/SITL/SITL.cpp
Gustavo Jose de Sousa a02e7730ea SITL: standardize inclusion of libaries headers
This commit changes the way libraries headers are included in source files:

 - If the header is in the same directory the source belongs to, so the
 notation '#include ""' is used with the path relative to the directory
 containing the source.

 - If the header is outside the directory containing the source, then we use
 the notation '#include <>' with the path relative to libraries folder.

Some of the advantages of such approach:

 - Only one search path for libraries headers.

 - OSs like Windows may have a better lookup time.
2015-08-11 16:38:25 +10:00

173 lines
6.4 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
SITL.cpp - software in the loop state
*/
#include <AP_Common/AP_Common.h>
#include <AP_HAL/AP_HAL.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
#include "SITL.h"
extern const AP_HAL::HAL& hal;
// table of user settable parameters
const AP_Param::GroupInfo SITL::var_info[] PROGMEM = {
AP_GROUPINFO("BARO_RND", 0, SITL, baro_noise, 0.2f),
AP_GROUPINFO("GYR_RND", 1, SITL, gyro_noise, 0),
AP_GROUPINFO("ACC_RND", 2, SITL, accel_noise, 0),
AP_GROUPINFO("MAG_RND", 3, SITL, mag_noise, 0),
AP_GROUPINFO("GPS_DISABLE",4, SITL, gps_disable, 0),
AP_GROUPINFO("DRIFT_SPEED",5, SITL, drift_speed, 0.05f),
AP_GROUPINFO("DRIFT_TIME", 6, SITL, drift_time, 5),
AP_GROUPINFO("GPS_DELAY", 7, SITL, gps_delay, 1),
AP_GROUPINFO("ENGINE_MUL", 8, SITL, engine_mul, 1),
AP_GROUPINFO("WIND_SPD", 9, SITL, wind_speed, 0),
AP_GROUPINFO("WIND_DIR", 10, SITL, wind_direction, 180),
AP_GROUPINFO("WIND_TURB", 11, SITL, wind_turbulance, 0),
AP_GROUPINFO("GPS_TYPE", 12, SITL, gps_type, SITL::GPS_TYPE_UBLOX),
AP_GROUPINFO("GPS_BYTELOSS", 13, SITL, gps_byteloss, 0),
AP_GROUPINFO("GPS_NUMSATS", 14, SITL, gps_numsats, 10),
AP_GROUPINFO("MAG_ERROR", 15, SITL, mag_error, 0),
AP_GROUPINFO("SERVO_RATE", 16, SITL, servo_rate, 0),
AP_GROUPINFO("GPS_GLITCH", 17, SITL, gps_glitch, 0),
AP_GROUPINFO("GPS_HZ", 18, SITL, gps_hertz, 5),
AP_GROUPINFO("BATT_VOLTAGE", 19, SITL, batt_voltage, 12.6f),
AP_GROUPINFO("ASPD_RND", 20, SITL, aspd_noise, 0.5f),
AP_GROUPINFO("ACCEL_FAIL", 21, SITL, accel_fail, 0),
AP_GROUPINFO("BARO_DRIFT", 22, SITL, baro_drift, 0),
AP_GROUPINFO("SONAR_GLITCH", 23, SITL, sonar_glitch, 0),
AP_GROUPINFO("SONAR_RND", 24, SITL, sonar_noise, 0),
AP_GROUPINFO("RC_FAIL", 25, SITL, rc_fail, 0),
AP_GROUPINFO("GPS2_ENABLE", 26, SITL, gps2_enable, 0),
AP_GROUPINFO("BARO_DISABLE", 27, SITL, baro_disable, 0),
AP_GROUPINFO("FLOAT_EXCEPT", 28, SITL, float_exception, 1),
AP_GROUPINFO("MAG_MOT", 29, SITL, mag_mot, 0),
AP_GROUPINFO("ACC_BIAS", 30, SITL, accel_bias, 0),
AP_GROUPINFO("BARO_GLITCH", 31, SITL, baro_glitch, 0),
AP_GROUPINFO("SONAR_SCALE", 32, SITL, sonar_scale, 12.1212f),
AP_GROUPINFO("FLOW_ENABLE", 33, SITL, flow_enable, 0),
AP_GROUPINFO("TERRAIN", 34, SITL, terrain_enable, 1),
AP_GROUPINFO("FLOW_RATE", 35, SITL, flow_rate, 10),
AP_GROUPINFO("FLOW_DELAY", 36, SITL, flow_delay, 0),
AP_GROUPINFO("GPS_DRIFTALT", 37, SITL, gps_drift_alt, 0),
AP_GROUPINFO("BARO_DELAY", 38, SITL, baro_delay, 0),
AP_GROUPINFO("MAG_DELAY", 39, SITL, mag_delay, 0),
AP_GROUPINFO("WIND_DELAY", 40, SITL, wind_delay, 0),
AP_GROUPINFO("MAG_OFS", 41, SITL, mag_ofs, 0),
AP_GROUPINFO("ACC2_RND", 42, SITL, accel2_noise, 0),
AP_GROUPINFO("ARSP_FAIL", 43, SITL, aspd_fail, 0),
AP_GROUPEND
};
/* report SITL state via MAVLink */
void SITL::simstate_send(mavlink_channel_t chan)
{
float yaw;
// convert to same conventions as DCM
yaw = state.yawDeg;
if (yaw > 180) {
yaw -= 360;
}
mavlink_msg_simstate_send(chan,
ToRad(state.rollDeg),
ToRad(state.pitchDeg),
ToRad(yaw),
state.xAccel,
state.yAccel,
state.zAccel,
radians(state.rollRate),
radians(state.pitchRate),
radians(state.yawRate),
state.latitude*1.0e7,
state.longitude*1.0e7);
}
/* report SITL state to DataFlash */
void SITL::Log_Write_SIMSTATE(DataFlash_Class &DataFlash)
{
float yaw;
// convert to same conventions as DCM
yaw = state.yawDeg;
if (yaw > 180) {
yaw -= 360;
}
struct log_AHRS pkt = {
LOG_PACKET_HEADER_INIT(LOG_SIMSTATE_MSG),
time_us : hal.scheduler->micros64(),
roll : (int16_t)(state.rollDeg*100),
pitch : (int16_t)(state.pitchDeg*100),
yaw : (uint16_t)(wrap_360_cd(yaw*100)),
alt : (float)state.altitude,
lat : (int32_t)(state.latitude*1.0e7),
lng : (int32_t)(state.longitude*1.0e7)
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
/*
convert a set of roll rates from earth frame to body frame
output values are in radians/second
*/
void SITL::convert_body_frame(double rollDeg, double pitchDeg,
double rollRate, double pitchRate, double yawRate,
double *p, double *q, double *r)
{
double phi, theta, phiDot, thetaDot, psiDot;
phi = ToRad(rollDeg);
theta = ToRad(pitchDeg);
phiDot = ToRad(rollRate);
thetaDot = ToRad(pitchRate);
psiDot = ToRad(yawRate);
*p = phiDot - psiDot*sin(theta);
*q = cos(phi)*thetaDot + sin(phi)*psiDot*cos(theta);
*r = cos(phi)*psiDot*cos(theta) - sin(phi)*thetaDot;
}
/*
convert angular velocities from body frame to
earth frame.
all inputs and outputs are in radians/s
*/
Vector3f SITL::convert_earth_frame(const Matrix3f &dcm, const Vector3f &gyro)
{
float p = gyro.x;
float q = gyro.y;
float r = gyro.z;
float phi, theta, psi;
dcm.to_euler(&phi, &theta, &psi);
float phiDot = p + tanf(theta)*(q*sinf(phi) + r*cosf(phi));
float thetaDot = q*cosf(phi) - r*sinf(phi);
if (fabsf(cosf(theta)) < 1.0e-20f) {
theta += 1.0e-10f;
}
float psiDot = (q*sinf(phi) + r*cosf(phi))/cosf(theta);
return Vector3f(phiDot, thetaDot, psiDot);
}