ardupilot/libraries/AP_NavEKF2/AP_NavEKF2_Measurements.cpp
2015-10-20 15:21:40 +11:00

824 lines
36 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL/AP_HAL.h>
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
#include "AP_NavEKF2.h"
#include "AP_NavEKF2_core.h"
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include <stdio.h>
extern const AP_HAL::HAL& hal;
/********************************************************
* OPT FLOW AND RANGE FINDER *
********************************************************/
// Read the range finder and take new measurements if available
// Read at 20Hz and apply a median filter
void NavEKF2_core::readRangeFinder(void)
{
uint8_t midIndex;
uint8_t maxIndex;
uint8_t minIndex;
// get theoretical correct range when the vehicle is on the ground
rngOnGnd = _rng.ground_clearance_cm() * 0.01f;
if (_rng.status() == RangeFinder::RangeFinder_Good && (imuSampleTime_ms - lastRngMeasTime_ms) > 50) {
// store samples and sample time into a ring buffer
rngMeasIndex ++;
if (rngMeasIndex > 2) {
rngMeasIndex = 0;
}
storedRngMeasTime_ms[rngMeasIndex] = imuSampleTime_ms;
storedRngMeas[rngMeasIndex] = _rng.distance_cm() * 0.01f;
// check for three fresh samples and take median
bool sampleFresh[3];
for (uint8_t index = 0; index <= 2; index++) {
sampleFresh[index] = (imuSampleTime_ms - storedRngMeasTime_ms[index]) < 500;
}
if (sampleFresh[0] && sampleFresh[1] && sampleFresh[2]) {
if (storedRngMeas[0] > storedRngMeas[1]) {
minIndex = 1;
maxIndex = 0;
} else {
maxIndex = 0;
minIndex = 1;
}
if (storedRngMeas[2] > storedRngMeas[maxIndex]) {
midIndex = maxIndex;
} else if (storedRngMeas[2] < storedRngMeas[minIndex]) {
midIndex = minIndex;
} else {
midIndex = 2;
}
rngMea = max(storedRngMeas[midIndex],rngOnGnd);
newDataRng = true;
rngValidMeaTime_ms = imuSampleTime_ms;
} else if (onGround) {
// if on ground and no return, we assume on ground range
rngMea = rngOnGnd;
newDataRng = true;
rngValidMeaTime_ms = imuSampleTime_ms;
} else {
newDataRng = false;
}
lastRngMeasTime_ms = imuSampleTime_ms;
}
}
// write the raw optical flow measurements
// this needs to be called externally.
void NavEKF2_core::writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas)
{
// The raw measurements need to be optical flow rates in radians/second averaged across the time since the last update
// The PX4Flow sensor outputs flow rates with the following axis and sign conventions:
// A positive X rate is produced by a positive sensor rotation about the X axis
// A positive Y rate is produced by a positive sensor rotation about the Y axis
// This filter uses a different definition of optical flow rates to the sensor with a positive optical flow rate produced by a
// negative rotation about that axis. For example a positive rotation of the flight vehicle about its X (roll) axis would produce a negative X flow rate
flowMeaTime_ms = imuSampleTime_ms;
// calculate bias errors on flow sensor gyro rates, but protect against spikes in data
// reset the accumulated body delta angle and time
// don't do the calculation if not enough time lapsed for a reliable body rate measurement
if (delTimeOF > 0.01f) {
flowGyroBias.x = 0.99f * flowGyroBias.x + 0.01f * constrain_float((rawGyroRates.x - delAngBodyOF.x/delTimeOF),-0.1f,0.1f);
flowGyroBias.y = 0.99f * flowGyroBias.y + 0.01f * constrain_float((rawGyroRates.y - delAngBodyOF.y/delTimeOF),-0.1f,0.1f);
delAngBodyOF.zero();
delTimeOF = 0.0f;
}
// check for takeoff if relying on optical flow and zero measurements until takeoff detected
// if we haven't taken off - constrain position and velocity states
if (frontend._fusionModeGPS == 3) {
detectOptFlowTakeoff();
}
// calculate rotation matrices at mid sample time for flow observations
stateStruct.quat.rotation_matrix(Tbn_flow);
Tnb_flow = Tbn_flow.transposed();
// don't use data with a low quality indicator or extreme rates (helps catch corrupt sensor data)
if ((rawFlowQuality > 0) && rawFlowRates.length() < 4.2f && rawGyroRates.length() < 4.2f) {
// correct flow sensor rates for bias
omegaAcrossFlowTime.x = rawGyroRates.x - flowGyroBias.x;
omegaAcrossFlowTime.y = rawGyroRates.y - flowGyroBias.y;
// write uncorrected flow rate measurements that will be used by the focal length scale factor estimator
// note correction for different axis and sign conventions used by the px4flow sensor
ofDataNew.flowRadXY = - rawFlowRates; // raw (non motion compensated) optical flow angular rate about the X axis (rad/sec)
// write flow rate measurements corrected for body rates
ofDataNew.flowRadXYcomp.x = ofDataNew.flowRadXY.x + omegaAcrossFlowTime.x;
ofDataNew.flowRadXYcomp.y = ofDataNew.flowRadXY.y + omegaAcrossFlowTime.y;
// record time last observation was received so we can detect loss of data elsewhere
flowValidMeaTime_ms = imuSampleTime_ms;
// estimate sample time of the measurement
ofDataNew.time_ms = imuSampleTime_ms - frontend._flowDelay_ms - frontend.flowTimeDeltaAvg_ms/2;
// Assign measurement to nearest fusion interval so that multiple measurements can be fused on the same frame
// This allows us to perform the covariance prediction over longer time steps which reduces numerical precision errors
ofDataNew.time_ms = roundToNearest(ofDataNew.time_ms, frontend.fusionTimeStep_ms);
// Prevent time delay exceeding age of oldest IMU data in the buffer
ofDataNew.time_ms = max(ofDataNew.time_ms,imuDataDelayed.time_ms);
// Save data to buffer
StoreOF();
// Check for data at the fusion time horizon
newDataFlow = RecallOF();
}
}
// store OF data in a history array
void NavEKF2_core::StoreOF()
{
if (ofStoreIndex >= OBS_BUFFER_LENGTH) {
ofStoreIndex = 0;
}
storedOF[ofStoreIndex] = ofDataNew;
ofStoreIndex += 1;
}
// return newest un-used optical flow data that has fallen behind the fusion time horizon
// if no un-used data is available behind the fusion horizon, return false
bool NavEKF2_core::RecallOF()
{
of_elements dataTemp;
of_elements dataTempZero;
dataTempZero.time_ms = 0;
uint32_t temp_ms = 0;
for (uint8_t i=0; i<OBS_BUFFER_LENGTH; i++) {
dataTemp = storedOF[i];
// find a measurement older than the fusion time horizon that we haven't checked before
if (dataTemp.time_ms != 0 && dataTemp.time_ms <= imuDataDelayed.time_ms) {
// zero the time stamp so we won't use it again
storedOF[i]=dataTempZero;
// Find the most recent non-stale measurement that meets the time horizon criteria
if (((imuDataDelayed.time_ms - dataTemp.time_ms) < 500) && dataTemp.time_ms > temp_ms) {
ofDataDelayed = dataTemp;
temp_ms = dataTemp.time_ms;
}
}
}
if (temp_ms != 0) {
return true;
} else {
return false;
}
}
/********************************************************
* MAGNETOMETER *
********************************************************/
// return magnetometer offsets
// return true if offsets are valid
bool NavEKF2_core::getMagOffsets(Vector3f &magOffsets) const
{
// compass offsets are valid if we have finalised magnetic field initialisation and magnetic field learning is not prohibited and primary compass is valid
if (secondMagYawInit && (frontend._magCal != 2) && _ahrs->get_compass()->healthy(0)) {
magOffsets = _ahrs->get_compass()->get_offsets(0) - stateStruct.body_magfield*1000.0f;
return true;
} else {
magOffsets = _ahrs->get_compass()->get_offsets(0);
return false;
}
}
// check for new magnetometer data and update store measurements if available
void NavEKF2_core::readMagData()
{
if (use_compass() && _ahrs->get_compass()->last_update_usec() != lastMagUpdate_ms) {
// store time of last measurement update
lastMagUpdate_ms = _ahrs->get_compass()->last_update_usec();
// estimate of time magnetometer measurement was taken, allowing for delays
magDataNew.time_ms = imuSampleTime_ms - frontend.magDelay_ms;
// Assign measurement to nearest fusion interval so that multiple measurements can be fused on the same frame
// This allows us to perform the covariance prediction over longer time steps which reduces numerical precision errors
magDataNew.time_ms = roundToNearest(magDataNew.time_ms, frontend.fusionTimeStep_ms);
// read compass data and scale to improve numerical conditioning
magDataNew.mag = _ahrs->get_compass()->get_field() * 0.001f;
// check for consistent data between magnetometers
consistentMagData = _ahrs->get_compass()->consistent();
// check if compass offsets have been changed and adjust EKF bias states to maintain consistent innovations
if (_ahrs->get_compass()->healthy(0)) {
Vector3f nowMagOffsets = _ahrs->get_compass()->get_offsets(0);
bool changeDetected = (!is_equal(nowMagOffsets.x,lastMagOffsets.x) || !is_equal(nowMagOffsets.y,lastMagOffsets.y) || !is_equal(nowMagOffsets.z,lastMagOffsets.z));
// Ignore bias changes before final mag field and yaw initialisation, as there may have been a compass calibration
if (changeDetected && secondMagYawInit) {
stateStruct.body_magfield.x += (nowMagOffsets.x - lastMagOffsets.x) * 0.001f;
stateStruct.body_magfield.y += (nowMagOffsets.y - lastMagOffsets.y) * 0.001f;
stateStruct.body_magfield.z += (nowMagOffsets.z - lastMagOffsets.z) * 0.001f;
}
lastMagOffsets = nowMagOffsets;
}
// save magnetometer measurement to buffer to be fused later
StoreMag();
}
}
// store magnetometer data in a history array
void NavEKF2_core::StoreMag()
{
if (magStoreIndex >= OBS_BUFFER_LENGTH) {
magStoreIndex = 0;
}
storedMag[magStoreIndex] = magDataNew;
magStoreIndex += 1;
}
// return newest un-used magnetometer data that has fallen behind the fusion time horizon
// if no un-used data is available behind the fusion horizon, return false
bool NavEKF2_core::RecallMag()
{
mag_elements dataTemp;
mag_elements dataTempZero;
dataTempZero.time_ms = 0;
uint32_t temp_ms = 0;
for (uint8_t i=0; i<OBS_BUFFER_LENGTH; i++) {
dataTemp = storedMag[i];
// find a measurement older than the fusion time horizon that we haven't checked before
if (dataTemp.time_ms != 0 && dataTemp.time_ms <= imuDataDelayed.time_ms) {
// zero the time stamp so we won't use it again
storedMag[i]=dataTempZero;
// Find the most recent non-stale measurement that meets the time horizon criteria
if (((imuDataDelayed.time_ms - dataTemp.time_ms) < 500) && dataTemp.time_ms > temp_ms) {
magDataDelayed = dataTemp;
temp_ms = dataTemp.time_ms;
}
}
}
if (temp_ms != 0) {
return true;
} else {
return false;
}
}
/********************************************************
* Inertial Measurements *
********************************************************/
// update IMU delta angle and delta velocity measurements
void NavEKF2_core::readIMUData()
{
const AP_InertialSensor &ins = _ahrs->get_ins();
// average IMU sampling rate
dtIMUavg = 1.0f/ins.get_sample_rate();
// the imu sample time is used as a common time reference throughout the filter
imuSampleTime_ms = hal.scheduler->millis();
if (ins.use_accel(0) && ins.use_accel(1)) {
// dual accel mode
float dtDelVel0, dtDelVel1; // delta time from each IMU
Vector3f delVel0, delVel1; // delta velocity vetor from each IMU
// Get delta velocity and time data from each IMU
readDeltaVelocity(0, delVel0, dtDelVel0);
readDeltaVelocity(1, delVel1, dtDelVel1);
// apply a peak hold 0.2 second time constant decaying envelope filter to the noise length on IMU 0
float alpha = 1.0f - 5.0f*dtDelVel0;
imuNoiseFiltState0 = maxf(ins.get_vibration_levels(0).length(), alpha*imuNoiseFiltState0);
// apply a peak hold 0.2 second time constant decaying envelope filter to the noise length on IMU 1
alpha = 1.0f - 5.0f*dtDelVel1;
imuNoiseFiltState1 = maxf(ins.get_vibration_levels(1).length(), alpha*imuNoiseFiltState1);
// calculate the filtered difference between acceleration vectors from IMU 0 and 1
// apply a LPF filter with a 1.0 second time constant
alpha = constrain_float(0.5f*(dtDelVel0 + dtDelVel1),0.0f,1.0f);
accelDiffFilt = (ins.get_accel(0) - ins.get_accel(1)) * alpha + accelDiffFilt * (1.0f - alpha);
float accelDiffLength = accelDiffFilt.length();
// Check the difference for excessive error and use the IMU with less noise
// Apply hysteresis to prevent rapid switching
if (accelDiffLength > 1.8f || (accelDiffLength > 1.2f && lastImuSwitchState != IMUSWITCH_MIXED)) {
if (lastImuSwitchState == IMUSWITCH_MIXED) {
// no previous fail so switch to the IMU with least noise
if (imuNoiseFiltState0 < imuNoiseFiltState1) {
lastImuSwitchState = IMUSWITCH_IMU0;
// Get data from IMU 0
imuDataNew.delVel = delVel0;
imuDataNew.delVelDT = dtDelVel0;
} else {
lastImuSwitchState = IMUSWITCH_IMU1;
// Get data from IMU 1
imuDataNew.delVel = delVel1;
imuDataNew.delVelDT = dtDelVel1;
}
} else if (lastImuSwitchState == IMUSWITCH_IMU0) {
// IMU 1 previously failed so require 5 m/s/s less noise on IMU 1 to switch
if (imuNoiseFiltState0 - imuNoiseFiltState1 > 5.0f) {
// IMU 1 is significantly less noisy, so switch
lastImuSwitchState = IMUSWITCH_IMU1;
// Get data from IMU 1
imuDataNew.delVel = delVel1;
imuDataNew.delVelDT = dtDelVel1;
}
} else {
// IMU 0 previously failed so require 5 m/s/s less noise on IMU 0 to switch across
if (imuNoiseFiltState1 - imuNoiseFiltState0 > 5.0f) {
// IMU 0 is significantly less noisy, so switch
lastImuSwitchState = IMUSWITCH_IMU0;
// Get data from IMU 0
imuDataNew.delVel = delVel0;
imuDataNew.delVelDT = dtDelVel0;
}
}
} else {
lastImuSwitchState = IMUSWITCH_MIXED;
// Use a blend of both accelerometers
imuDataNew.delVel = (delVel0 + delVel1)*0.5f;
imuDataNew.delVelDT = (dtDelVel0 + dtDelVel1)*0.5f;
}
} else {
// single accel mode - one of the first two accelerometers are unhealthy, not available or de-selected by the user
// set the switch state based on the IMU we are using to make the data source selection visible
if (ins.use_accel(0)) {
readDeltaVelocity(0, imuDataNew.delVel, imuDataNew.delVelDT);
lastImuSwitchState = IMUSWITCH_IMU0;
} else if (ins.use_accel(1)) {
readDeltaVelocity(1, imuDataNew.delVel, imuDataNew.delVelDT);
lastImuSwitchState = IMUSWITCH_IMU1;
} else {
readDeltaVelocity(ins.get_primary_accel(), imuDataNew.delVel, imuDataNew.delVelDT);
switch (ins.get_primary_accel()) {
case 0:
lastImuSwitchState = IMUSWITCH_IMU0;
break;
case 1:
lastImuSwitchState = IMUSWITCH_IMU1;
break;
default:
// we must be using an IMU which can't be properly represented so we set to "mixed"
lastImuSwitchState = IMUSWITCH_MIXED;
break;
}
}
}
// Get delta angle data from promary gyro
readDeltaAngle(ins.get_primary_gyro(), imuDataNew.delAng);
imuDataNew.delAngDT = max(ins.get_delta_time(),1.0e-4f);
// get current time stamp
imuDataNew.time_ms = imuSampleTime_ms;
// save data in the FIFO buffer
StoreIMU();
// extract the oldest available data from the FIFO buffer
imuDataDelayed = storedIMU[fifoIndexDelayed];
}
// store imu in the FIFO
void NavEKF2_core::StoreIMU()
{
fifoIndexDelayed = fifoIndexNow;
fifoIndexNow = fifoIndexNow + 1;
if (fifoIndexNow >= IMU_BUFFER_LENGTH) {
fifoIndexNow = 0;
}
storedIMU[fifoIndexNow] = imuDataNew;
}
// reset the stored imu history and store the current value
void NavEKF2_core::StoreIMU_reset()
{
// write current measurement to entire table
for (uint8_t i=0; i<IMU_BUFFER_LENGTH; i++) {
storedIMU[i] = imuDataNew;
}
imuDataDelayed = imuDataNew;
fifoIndexDelayed = fifoIndexNow+1;
if (fifoIndexDelayed >= IMU_BUFFER_LENGTH) {
fifoIndexDelayed = 0;
}
}
// recall IMU data from the FIFO
void NavEKF2_core::RecallIMU()
{
imuDataDelayed = storedIMU[fifoIndexDelayed];
}
bool NavEKF2_core::readDeltaVelocity(uint8_t ins_index, Vector3f &dVel, float &dVel_dt) {
const AP_InertialSensor &ins = _ahrs->get_ins();
if (ins_index < ins.get_accel_count()) {
ins.get_delta_velocity(ins_index,dVel);
dVel_dt = max(ins.get_delta_velocity_dt(ins_index),1.0e-4f);
return true;
}
return false;
}
/********************************************************
* Global Position Measurement *
********************************************************/
// check for new valid GPS data and update stored measurement if available
void NavEKF2_core::readGpsData()
{
// check for new GPS data
if (_ahrs->get_gps().last_message_time_ms() != lastTimeGpsReceived_ms) {
if (_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_3D) {
// report GPS fix status
gpsCheckStatus.bad_fix = false;
// store fix time from previous read
secondLastGpsTime_ms = lastTimeGpsReceived_ms;
// get current fix time
lastTimeGpsReceived_ms = _ahrs->get_gps().last_message_time_ms();
// estimate when the GPS fix was valid, allowing for GPS processing and other delays
// ideally we should be using a timing signal from the GPS receiver to set this time
gpsDataNew.time_ms = lastTimeGpsReceived_ms - frontend._gpsDelay_ms;
// Assign measurement to nearest fusion interval so that multiple measurements can be fused on the same frame
// This allows us to perform the covariance prediction over longer time steps which reduces numerical precision errors
gpsDataNew.time_ms = roundToNearest(gpsDataNew.time_ms, frontend.fusionTimeStep_ms);
// Prevent time delay exceeding age of oldest IMU data in the buffer
gpsDataNew.time_ms = max(gpsDataNew.time_ms,imuDataDelayed.time_ms);
// read the NED velocity from the GPS
gpsDataNew.vel = _ahrs->get_gps().velocity();
// Use the speed accuracy from the GPS if available, otherwise set it to zero.
// Apply a decaying envelope filter with a 5 second time constant to the raw speed accuracy data
float alpha = constrain_float(0.0002f * (lastTimeGpsReceived_ms - secondLastGpsTime_ms),0.0f,1.0f);
gpsSpdAccuracy *= (1.0f - alpha);
float gpsSpdAccRaw;
if (!_ahrs->get_gps().speed_accuracy(gpsSpdAccRaw)) {
gpsSpdAccuracy = 0.0f;
} else {
gpsSpdAccuracy = max(gpsSpdAccuracy,gpsSpdAccRaw);
}
// check if we have enough GPS satellites and increase the gps noise scaler if we don't
if (_ahrs->get_gps().num_sats() >= 6 && (PV_AidingMode == AID_ABSOLUTE)) {
gpsNoiseScaler = 1.0f;
} else if (_ahrs->get_gps().num_sats() == 5 && (PV_AidingMode == AID_ABSOLUTE)) {
gpsNoiseScaler = 1.4f;
} else { // <= 4 satellites or in constant position mode
gpsNoiseScaler = 2.0f;
}
// Check if GPS can output vertical velocity and set GPS fusion mode accordingly
if (_ahrs->get_gps().have_vertical_velocity() && frontend._fusionModeGPS == 0) {
useGpsVertVel = true;
} else {
useGpsVertVel = false;
}
// Monitor quality of the GPS velocity data before and after alignment using separate checks
if (PV_AidingMode != AID_ABSOLUTE) {
// Pre-alignment checks
gpsQualGood = calcGpsGoodToAlign();
} else {
// Post-alignment checks
calcGpsGoodForFlight();
}
// read latitutde and longitude from GPS and convert to local NE position relative to the stored origin
// If we don't have an origin, then set it to the current GPS coordinates
const struct Location &gpsloc = _ahrs->get_gps().location();
if (validOrigin) {
gpsDataNew.pos = location_diff(EKF_origin, gpsloc);
} else if (gpsQualGood) {
// Set the NE origin to the current GPS position
setOrigin();
// Now we know the location we have an estimate for the magnetic field declination and adjust the earth field accordingly
alignMagStateDeclination();
// Set the height of the NED origin to height of baro height datum relative to GPS height datum'
EKF_origin.alt = gpsloc.alt - baroDataNew.hgt;
// We are by definition at the origin at the instant of alignment so set NE position to zero
gpsDataNew.pos.zero();
// If GPS useage isn't explicitly prohibited, we switch to absolute position mode
if (isAiding && frontend._fusionModeGPS != 3) {
PV_AidingMode = AID_ABSOLUTE;
// Initialise EKF position and velocity states
ResetPosition();
ResetVelocity();
}
}
// calculate a position offset which is applied to NE position and velocity wherever it is used throughout code to allow GPS position jumps to be accommodated gradually
decayGpsOffset();
// save measurement to buffer to be fused later
StoreGPS();
// declare GPS available for use
gpsNotAvailable = false;
} else {
// report GPS fix status
gpsCheckStatus.bad_fix = true;
}
}
// We need to handle the case where GPS is lost for a period of time that is too long to dead-reckon
// If that happens we need to put the filter into a constant position mode, reset the velocity states to zero
// and use the last estimated position as a synthetic GPS position
// check if we can use opticalflow as a backup
bool optFlowBackupAvailable = (flowDataValid && !hgtTimeout);
// Set GPS time-out threshold depending on whether we have an airspeed sensor to constrain drift
uint16_t gpsRetryTimeout_ms = useAirspeed() ? frontend.gpsRetryTimeUseTAS_ms : frontend.gpsRetryTimeNoTAS_ms;
// Set the time that copters will fly without a GPS lock before failing the GPS and switching to a non GPS mode
uint16_t gpsFailTimeout_ms = optFlowBackupAvailable ? frontend.gpsFailTimeWithFlow_ms : gpsRetryTimeout_ms;
// If we haven't received GPS data for a while and we are using it for aiding, then declare the position and velocity data as being timed out
if (imuSampleTime_ms - lastTimeGpsReceived_ms > gpsFailTimeout_ms) {
// Let other processes know that GPS i snota vailable and that a timeout has occurred
posTimeout = true;
velTimeout = true;
gpsNotAvailable = true;
// If we are currently reliying on GPS for navigation, then we need to switch to a non-GPS mode of operation
if (PV_AidingMode == AID_ABSOLUTE) {
// If we don't have airspeed or sideslip assumption or optical flow to constrain drift, then go into constant position mode.
// If we can do optical flow nav (valid flow data and height above ground estimate), then go into flow nav mode.
if (!useAirspeed() && !assume_zero_sideslip()) {
if (optFlowBackupAvailable) {
// we can do optical flow only nav
frontend._fusionModeGPS = 3;
PV_AidingMode = AID_RELATIVE;
} else {
// store the current position
lastKnownPositionNE.x = stateStruct.position.x;
lastKnownPositionNE.y = stateStruct.position.y;
// put the filter into constant position mode
PV_AidingMode = AID_NONE;
// reset all glitch states
gpsPosGlitchOffsetNE.zero();
gpsVelGlitchOffset.zero();
// Reset the velocity and position states
ResetVelocity();
ResetPosition();
// Reset the normalised innovation to avoid false failing the bad position fusion test
velTestRatio = 0.0f;
posTestRatio = 0.0f;
}
}
}
}
// If not aiding we synthesise the GPS measurements at the last known position
if (PV_AidingMode == AID_NONE) {
if (imuSampleTime_ms - gpsDataNew.time_ms > 200) {
gpsDataNew.pos.x = lastKnownPositionNE.x;
gpsDataNew.pos.y = lastKnownPositionNE.y;
gpsDataNew.time_ms = imuSampleTime_ms-frontend._gpsDelay_ms;
// Assign measurement to nearest fusion interval so that multiple measurements can be fused on the same frame
// This allows us to perform the covariance prediction over longer time steps which reduces numerical precision errors
gpsDataNew.time_ms = roundToNearest(gpsDataNew.time_ms, frontend.fusionTimeStep_ms);
// Prevent time delay exceeding age of oldest IMU data in the buffer
gpsDataNew.time_ms = max(gpsDataNew.time_ms,imuDataDelayed.time_ms);
// save measurement to buffer to be fused later
StoreGPS();
}
}
}
// store GPS data in a history array
void NavEKF2_core::StoreGPS()
{
if (gpsStoreIndex >= OBS_BUFFER_LENGTH) {
gpsStoreIndex = 0;
}
storedGPS[gpsStoreIndex] = gpsDataNew;
gpsStoreIndex += 1;
}
// return newest un-used GPS data that has fallen behind the fusion time horizon
// if no un-used data is available behind the fusion horizon, return false
bool NavEKF2_core::RecallGPS()
{
gps_elements dataTemp;
gps_elements dataTempZero;
dataTempZero.time_ms = 0;
uint32_t temp_ms = 0;
for (uint8_t i=0; i<OBS_BUFFER_LENGTH; i++) {
dataTemp = storedGPS[i];
// find a measurement older than the fusion time horizon that we haven't checked before
if (dataTemp.time_ms != 0 && dataTemp.time_ms <= imuDataDelayed.time_ms) {
// zero the time stamp so we won't use it again
storedGPS[i]=dataTempZero;
// Find the most recent non-stale measurement that meets the time horizon criteria
if (((imuDataDelayed.time_ms - dataTemp.time_ms) < 500) && dataTemp.time_ms > temp_ms) {
gpsDataDelayed = dataTemp;
temp_ms = dataTemp.time_ms;
}
}
}
if (temp_ms != 0) {
return true;
} else {
return false;
}
}
bool NavEKF2_core::readDeltaAngle(uint8_t ins_index, Vector3f &dAng) {
const AP_InertialSensor &ins = _ahrs->get_ins();
if (ins_index < ins.get_gyro_count()) {
ins.get_delta_angle(ins_index,dAng);
return true;
}
return false;
}
// decay GPS horizontal position offset to close to zero at a rate of 1 m/s for copters and 5 m/s for planes
// limit radius to a maximum of 50m
void NavEKF2_core::decayGpsOffset()
{
float offsetDecaySpd;
if (assume_zero_sideslip()) {
offsetDecaySpd = 5.0f;
} else {
offsetDecaySpd = 1.0f;
}
float lapsedTime = 0.001f*float(imuSampleTime_ms - lastDecayTime_ms);
lastDecayTime_ms = imuSampleTime_ms;
float offsetRadius = pythagorous2(gpsPosGlitchOffsetNE.x, gpsPosGlitchOffsetNE.y);
// decay radius if larger than offset decay speed multiplied by lapsed time (plus a margin to prevent divide by zero)
if (offsetRadius > (offsetDecaySpd * lapsedTime + 0.1f)) {
// Calculate the GPS velocity offset required. This is necessary to prevent the position measurement being rejected for inconsistency when the radius is being pulled back in.
gpsVelGlitchOffset = -gpsPosGlitchOffsetNE*offsetDecaySpd/offsetRadius;
// calculate scale factor to be applied to both offset components
float scaleFactor = constrain_float((offsetRadius - offsetDecaySpd * lapsedTime), 0.0f, 50.0f) / offsetRadius;
gpsPosGlitchOffsetNE.x *= scaleFactor;
gpsPosGlitchOffsetNE.y *= scaleFactor;
} else {
gpsVelGlitchOffset.zero();
gpsPosGlitchOffsetNE.zero();
}
}
/********************************************************
* Height Measurements *
********************************************************/
// check for new altitude measurement data and update stored measurement if available
void NavEKF2_core::readHgtData()
{
// check to see if baro measurement has changed so we know if a new measurement has arrived
if (_baro.get_last_update() != lastHgtReceived_ms) {
// Don't use Baro height if operating in optical flow mode as we use range finder instead
if (frontend._fusionModeGPS == 3 && frontend._altSource == 1) {
if ((imuSampleTime_ms - rngValidMeaTime_ms) < 2000) {
// adjust range finder measurement to allow for effect of vehicle tilt and height of sensor
baroDataNew.hgt = max(rngMea * Tnb_flow.c.z, rngOnGnd);
// calculate offset to baro data that enables baro to be used as a backup
// filter offset to reduce effect of baro noise and other transient errors on estimate
baroHgtOffset = 0.1f * (_baro.get_altitude() + stateStruct.position.z) + 0.9f * baroHgtOffset;
} else if (isAiding && takeOffDetected) {
// we have lost range finder measurements and are in optical flow flight
// use baro measurement and correct for baro offset - failsafe use only as baro will drift
baroDataNew.hgt = max(_baro.get_altitude() - baroHgtOffset, rngOnGnd);
} else {
// If we are on ground and have no range finder reading, assume the nominal on-ground height
baroDataNew.hgt = rngOnGnd;
// calculate offset to baro data that enables baro to be used as a backup
// filter offset to reduce effect of baro noise and other transient errors on estimate
baroHgtOffset = 0.1f * (_baro.get_altitude() + stateStruct.position.z) + 0.9f * baroHgtOffset;
}
} else {
// Normal operation is to use baro measurement
baroDataNew.hgt = _baro.get_altitude();
}
// filtered baro data used to provide a reference for takeoff
// it is is reset to last height measurement on disarming in performArmingChecks()
if (!getTakeoffExpected()) {
const float gndHgtFiltTC = 0.5f;
const float dtBaro = frontend.hgtAvg_ms*1.0e-3f;
float alpha = constrain_float(dtBaro / (dtBaro+gndHgtFiltTC),0.0f,1.0f);
meaHgtAtTakeOff += (baroDataDelayed.hgt-meaHgtAtTakeOff)*alpha;
} else if (isAiding && getTakeoffExpected()) {
// If we are in takeoff mode, the height measurement is limited to be no less than the measurement at start of takeoff
// This prevents negative baro disturbances due to copter downwash corrupting the EKF altitude during initial ascent
baroDataNew.hgt = max(baroDataNew.hgt, meaHgtAtTakeOff);
}
// time stamp used to check for new measurement
lastHgtReceived_ms = _baro.get_last_update();
// estimate of time height measurement was taken, allowing for delays
baroDataNew.time_ms = lastHgtReceived_ms - frontend._hgtDelay_ms;
// Assign measurement to nearest fusion interval so that multiple measurements can be fused on the same frame
// This allows us to perform the covariance prediction over longer time steps which reduces numerical precision errors
baroDataNew.time_ms = roundToNearest(baroDataNew.time_ms, frontend.fusionTimeStep_ms);
// Prevent time delay exceeding age of oldest IMU data in the buffer
baroDataNew.time_ms = max(baroDataNew.time_ms,imuDataDelayed.time_ms);
// save baro measurement to buffer to be fused later
StoreBaro();
}
}
// store baro in a history array
void NavEKF2_core::StoreBaro()
{
if (baroStoreIndex >= OBS_BUFFER_LENGTH) {
baroStoreIndex = 0;
}
storedBaro[baroStoreIndex] = baroDataNew;
baroStoreIndex += 1;
}
// return newest un-used baro data that has fallen behind the fusion time horizon
// if no un-used data is available behind the fusion horizon, return false
bool NavEKF2_core::RecallBaro()
{
baro_elements dataTemp;
baro_elements dataTempZero;
dataTempZero.time_ms = 0;
uint32_t temp_ms = 0;
for (uint8_t i=0; i<OBS_BUFFER_LENGTH; i++) {
dataTemp = storedBaro[i];
// find a measurement older than the fusion time horizon that we haven't checked before
if (dataTemp.time_ms != 0 && dataTemp.time_ms <= imuDataDelayed.time_ms) {
// zero the time stamp so we won't use it again
storedBaro[i]=dataTempZero;
// Find the most recent non-stale measurement that meets the time horizon criteria
if (((imuDataDelayed.time_ms - dataTemp.time_ms) < 500) && dataTemp.time_ms > temp_ms) {
baroDataDelayed = dataTemp;
temp_ms = dataTemp.time_ms;
}
}
}
if (temp_ms != 0) {
return true;
} else {
return false;
}
}
/********************************************************
* Air Speed Measurements *
********************************************************/
// check for new airspeed data and update stored measurements if available
void NavEKF2_core::readAirSpdData()
{
// if airspeed reading is valid and is set by the user to be used and has been updated then
// we take a new reading, convert from EAS to TAS and set the flag letting other functions
// know a new measurement is available
const AP_Airspeed *aspeed = _ahrs->get_airspeed();
if (aspeed &&
aspeed->use() &&
aspeed->last_update_ms() != timeTasReceived_ms) {
tasDataNew.tas = aspeed->get_airspeed() * aspeed->get_EAS2TAS();
timeTasReceived_ms = aspeed->last_update_ms();
tasDataNew.time_ms = timeTasReceived_ms - frontend.tasDelay_ms;
// Assign measurement to nearest fusion interval so that multiple measurements can be fused on the same frame
// This allows us to perform the covariance prediction over longer time steps which reduces numerical precision errors
tasDataNew.time_ms = roundToNearest(tasDataNew.time_ms, frontend.fusionTimeStep_ms);
newDataTas = true;
StoreTAS();
RecallTAS();
} else {
newDataTas = false;
}
}
// Round to the nearest multiple of a integer
uint32_t NavEKF2_core::roundToNearest(uint32_t dividend, uint32_t divisor )
{
return ((uint32_t)round((float)dividend/float(divisor)))*divisor;
}
#endif // HAL_CPU_CLASS