ardupilot/libraries/AP_Math/matrix3.cpp
Andrew Tridgell c9ec8b3f67 AP_Math: added O3 optimisation to core math libraries
this costs some flash space but speeds things up considerably
2015-10-20 14:36:53 +11:00

260 lines
8.6 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* matrix3.cpp
* Copyright (C) Andrew Tridgell 2012
*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma GCC optimize("O3")
#include "AP_Math.h"
// create a rotation matrix given some euler angles
// this is based on http://gentlenav.googlecode.com/files/EulerAngles.pdf
template <typename T>
void Matrix3<T>::from_euler(float roll, float pitch, float yaw)
{
float cp = cosf(pitch);
float sp = sinf(pitch);
float sr = sinf(roll);
float cr = cosf(roll);
float sy = sinf(yaw);
float cy = cosf(yaw);
a.x = cp * cy;
a.y = (sr * sp * cy) - (cr * sy);
a.z = (cr * sp * cy) + (sr * sy);
b.x = cp * sy;
b.y = (sr * sp * sy) + (cr * cy);
b.z = (cr * sp * sy) - (sr * cy);
c.x = -sp;
c.y = sr * cp;
c.z = cr * cp;
}
// calculate euler angles from a rotation matrix
// this is based on http://gentlenav.googlecode.com/files/EulerAngles.pdf
template <typename T>
void Matrix3<T>::to_euler(float *roll, float *pitch, float *yaw) const
{
if (pitch != NULL) {
*pitch = -safe_asin(c.x);
}
if (roll != NULL) {
*roll = atan2f(c.y, c.z);
}
if (yaw != NULL) {
*yaw = atan2f(b.x, a.x);
}
}
/*
calculate Euler angles (312 convention) for the matrix.
See http://www.atacolorado.com/eulersequences.doc
vector is returned in r, p, y order
*/
template <typename T>
Vector3<T> Matrix3<T>::to_euler312() const
{
return Vector3<T>(asinf(c.y),
atan2f(-c.x, c.z),
atan2f(-a.y, b.y));
}
/*
fill the matrix from Euler angles in radians in 312 convention
*/
template <typename T>
void Matrix3<T>::from_euler312(float roll, float pitch, float yaw)
{
float c3 = cosf(pitch);
float s3 = sinf(pitch);
float s2 = sinf(roll);
float c2 = cosf(roll);
float s1 = sinf(yaw);
float c1 = cosf(yaw);
a.x = c1 * c3 - s1 * s2 * s3;
b.y = c1 * c2;
c.z = c3 * c2;
a.y = -c2*s1;
a.z = s3*c1 + c3*s2*s1;
b.x = c3*s1 + s3*s2*c1;
b.z = s1*s3 - s2*c1*c3;
c.x = -s3*c2;
c.y = s2;
}
// apply an additional rotation from a body frame gyro vector
// to a rotation matrix.
template <typename T>
void Matrix3<T>::rotate(const Vector3<T> &g)
{
Matrix3<T> temp_matrix;
temp_matrix.a.x = a.y * g.z - a.z * g.y;
temp_matrix.a.y = a.z * g.x - a.x * g.z;
temp_matrix.a.z = a.x * g.y - a.y * g.x;
temp_matrix.b.x = b.y * g.z - b.z * g.y;
temp_matrix.b.y = b.z * g.x - b.x * g.z;
temp_matrix.b.z = b.x * g.y - b.y * g.x;
temp_matrix.c.x = c.y * g.z - c.z * g.y;
temp_matrix.c.y = c.z * g.x - c.x * g.z;
temp_matrix.c.z = c.x * g.y - c.y * g.x;
(*this) += temp_matrix;
}
// apply an additional rotation from a body frame gyro vector
// to a rotation matrix.
template <typename T>
void Matrix3<T>::rotateXY(const Vector3<T> &g)
{
Matrix3<T> temp_matrix;
temp_matrix.a.x = -a.z * g.y;
temp_matrix.a.y = a.z * g.x;
temp_matrix.a.z = a.x * g.y - a.y * g.x;
temp_matrix.b.x = -b.z * g.y;
temp_matrix.b.y = b.z * g.x;
temp_matrix.b.z = b.x * g.y - b.y * g.x;
temp_matrix.c.x = -c.z * g.y;
temp_matrix.c.y = c.z * g.x;
temp_matrix.c.z = c.x * g.y - c.y * g.x;
(*this) += temp_matrix;
}
// apply an additional inverse rotation to a rotation matrix but
// only use X, Y elements from rotation vector
template <typename T>
void Matrix3<T>::rotateXYinv(const Vector3<T> &g)
{
Matrix3<T> temp_matrix;
temp_matrix.a.x = a.z * g.y;
temp_matrix.a.y = - a.z * g.x;
temp_matrix.a.z = - a.x * g.y + a.y * g.x;
temp_matrix.b.x = b.z * g.y;
temp_matrix.b.y = - b.z * g.x;
temp_matrix.b.z = - b.x * g.y + b.y * g.x;
temp_matrix.c.x = c.z * g.y;
temp_matrix.c.y = - c.z * g.x;
temp_matrix.c.z = - c.x * g.y + c.y * g.x;
(*this) += temp_matrix;
}
/*
re-normalise a rotation matrix
*/
template <typename T>
void Matrix3<T>::normalize(void)
{
float error = a * b;
Vector3<T> t0 = a - (b * (0.5f * error));
Vector3<T> t1 = b - (a * (0.5f * error));
Vector3<T> t2 = t0 % t1;
a = t0 * (1.0f / t0.length());
b = t1 * (1.0f / t1.length());
c = t2 * (1.0f / t2.length());
}
// multiplication by a vector
template <typename T>
Vector3<T> Matrix3<T>::operator *(const Vector3<T> &v) const
{
return Vector3<T>(a.x * v.x + a.y * v.y + a.z * v.z,
b.x * v.x + b.y * v.y + b.z * v.z,
c.x * v.x + c.y * v.y + c.z * v.z);
}
// multiplication by a vector, extracting only the xy components
template <typename T>
Vector2<T> Matrix3<T>::mulXY(const Vector3<T> &v) const
{
return Vector2<T>(a.x * v.x + a.y * v.y + a.z * v.z,
b.x * v.x + b.y * v.y + b.z * v.z);
}
// multiplication of transpose by a vector
template <typename T>
Vector3<T> Matrix3<T>::mul_transpose(const Vector3<T> &v) const
{
return Vector3<T>(a.x * v.x + b.x * v.y + c.x * v.z,
a.y * v.x + b.y * v.y + c.y * v.z,
a.z * v.x + b.z * v.y + c.z * v.z);
}
// multiplication by another Matrix3<T>
template <typename T>
Matrix3<T> Matrix3<T>::operator *(const Matrix3<T> &m) const
{
Matrix3<T> temp (Vector3<T>(a.x * m.a.x + a.y * m.b.x + a.z * m.c.x,
a.x * m.a.y + a.y * m.b.y + a.z * m.c.y,
a.x * m.a.z + a.y * m.b.z + a.z * m.c.z),
Vector3<T>(b.x * m.a.x + b.y * m.b.x + b.z * m.c.x,
b.x * m.a.y + b.y * m.b.y + b.z * m.c.y,
b.x * m.a.z + b.y * m.b.z + b.z * m.c.z),
Vector3<T>(c.x * m.a.x + c.y * m.b.x + c.z * m.c.x,
c.x * m.a.y + c.y * m.b.y + c.z * m.c.y,
c.x * m.a.z + c.y * m.b.z + c.z * m.c.z));
return temp;
}
template <typename T>
Matrix3<T> Matrix3<T>::transposed(void) const
{
return Matrix3<T>(Vector3<T>(a.x, b.x, c.x),
Vector3<T>(a.y, b.y, c.y),
Vector3<T>(a.z, b.z, c.z));
}
template <typename T>
void Matrix3<T>::zero(void)
{
a.x = a.y = a.z = 0;
b.x = b.y = b.z = 0;
c.x = c.y = c.z = 0;
}
// only define for float
template void Matrix3<float>::zero(void);
template void Matrix3<float>::rotate(const Vector3<float> &g);
template void Matrix3<float>::rotateXY(const Vector3<float> &g);
template void Matrix3<float>::rotateXYinv(const Vector3<float> &g);
template void Matrix3<float>::normalize(void);
template void Matrix3<float>::from_euler(float roll, float pitch, float yaw);
template void Matrix3<float>::to_euler(float *roll, float *pitch, float *yaw) const;
template void Matrix3<float>::from_euler312(float roll, float pitch, float yaw);
template Vector3<float> Matrix3<float>::to_euler312(void) const;
template Vector3<float> Matrix3<float>::operator *(const Vector3<float> &v) const;
template Vector3<float> Matrix3<float>::mul_transpose(const Vector3<float> &v) const;
template Matrix3<float> Matrix3<float>::operator *(const Matrix3<float> &m) const;
template Matrix3<float> Matrix3<float>::transposed(void) const;
template Vector2<float> Matrix3<float>::mulXY(const Vector3<float> &v) const;
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_75
template void Matrix3<double>::zero(void);
template void Matrix3<double>::rotate(const Vector3<double> &g);
template void Matrix3<double>::rotateXY(const Vector3<double> &g);
template void Matrix3<double>::rotateXYinv(const Vector3<double> &g);
template void Matrix3<double>::from_euler(float roll, float pitch, float yaw);
template void Matrix3<double>::to_euler(float *roll, float *pitch, float *yaw) const;
template Vector3<double> Matrix3<double>::operator *(const Vector3<double> &v) const;
template Vector3<double> Matrix3<double>::mul_transpose(const Vector3<double> &v) const;
template Matrix3<double> Matrix3<double>::operator *(const Matrix3<double> &m) const;
template Matrix3<double> Matrix3<double>::transposed(void) const;
template Vector2<double> Matrix3<double>::mulXY(const Vector3<double> &v) const;
#endif