ardupilot/libraries/AP_InertialSensor/AP_InertialSensor_PX4.cpp
Gustavo Jose de Sousa a0b1337646 AP_InertialSensor: PX4: publish sample rate
By publishing the sample rate, the vibration and clipping are magically
calculated.
2015-09-07 11:14:42 +10:00

464 lines
15 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
#include "AP_InertialSensor_PX4.h"
const extern AP_HAL::HAL& hal;
#include <DataFlash/DataFlash.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <drivers/drv_accel.h>
#include <drivers/drv_gyro.h>
#include <drivers/drv_hrt.h>
#include <stdio.h>
AP_InertialSensor_PX4::AP_InertialSensor_PX4(AP_InertialSensor &imu) :
AP_InertialSensor_Backend(imu),
_last_get_sample_timestamp(0),
_last_sample_timestamp(0),
_last_gyro_filter_hz(-1),
_last_accel_filter_hz(-1)
{
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
_delta_angle_accumulator[i].zero();
_delta_velocity_accumulator[i].zero();
_delta_velocity_dt[i] = 0.0f;
}
}
/*
detect the sensor
*/
AP_InertialSensor_Backend *AP_InertialSensor_PX4::detect(AP_InertialSensor &_imu)
{
AP_InertialSensor_PX4 *sensor = new AP_InertialSensor_PX4(_imu);
if (sensor == NULL) {
return NULL;
}
if (!sensor->_init_sensor()) {
delete sensor;
return NULL;
}
return sensor;
}
/*
calculate the right queue depth for a device with the given sensor
sample rate
*/
uint8_t AP_InertialSensor_PX4::_queue_depth(uint16_t sensor_sample_rate) const
{
uint16_t requested_sample_rate = get_sample_rate_hz();
uint8_t min_depth = (sensor_sample_rate+requested_sample_rate-1)/requested_sample_rate;
// add 5ms more worth of queue to account for possible timing jitter
uint8_t ret = min_depth + (5 * sensor_sample_rate) / 1000;
return ret;
}
bool AP_InertialSensor_PX4::_init_sensor(void)
{
// assumes max 3 instances
_accel_fd[0] = open(ACCEL_BASE_DEVICE_PATH "0", O_RDONLY);
_accel_fd[1] = open(ACCEL_BASE_DEVICE_PATH "1", O_RDONLY);
_accel_fd[2] = open(ACCEL_BASE_DEVICE_PATH "2", O_RDONLY);
_gyro_fd[0] = open(GYRO_BASE_DEVICE_PATH "0", O_RDONLY);
_gyro_fd[1] = open(GYRO_BASE_DEVICE_PATH "1", O_RDONLY);
_gyro_fd[2] = open(GYRO_BASE_DEVICE_PATH "2", O_RDONLY);
_num_accel_instances = 0;
_num_gyro_instances = 0;
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
if (_accel_fd[i] >= 0) {
_num_accel_instances = i+1;
_accel_instance[i] = _imu.register_accel();
}
if (_gyro_fd[i] >= 0) {
_num_gyro_instances = i+1;
_gyro_instance[i] = _imu.register_gyro();
}
}
if (_num_accel_instances == 0) {
return false;
}
if (_num_gyro_instances == 0) {
return false;
}
for (uint8_t i=0; i<_num_gyro_instances; i++) {
int fd = _gyro_fd[i];
int devid = (ioctl(fd, DEVIOCGDEVICEID, 0) & 0x00FF0000)>>16;
// software LPF off
ioctl(fd, GYROIOCSLOWPASS, 0);
// 2000dps range
ioctl(fd, GYROIOCSRANGE, 2000);
switch(devid) {
case DRV_GYR_DEVTYPE_MPU6000:
case DRV_GYR_DEVTYPE_MPU9250:
// hardware LPF off
ioctl(fd, GYROIOCSHWLOWPASS, 256);
// khz sampling
ioctl(fd, GYROIOCSSAMPLERATE, 1000);
// set queue depth
ioctl(fd, SENSORIOCSQUEUEDEPTH, _queue_depth(1000));
break;
case DRV_GYR_DEVTYPE_L3GD20:
// hardware LPF as high as possible
ioctl(fd, GYROIOCSHWLOWPASS, 100);
// ~khz sampling
ioctl(fd, GYROIOCSSAMPLERATE, 800);
// 10ms queue depth
ioctl(fd, SENSORIOCSQUEUEDEPTH, _queue_depth(800));
break;
default:
break;
}
// calculate gyro sample time
int samplerate = ioctl(fd, GYROIOCGSAMPLERATE, 0);
if (samplerate < 100 || samplerate > 10000) {
hal.scheduler->panic("Invalid gyro sample rate");
}
_gyro_sample_time[i] = 1.0f / samplerate;
}
for (uint8_t i=0; i<_num_accel_instances; i++) {
int fd = _accel_fd[i];
int devid = (ioctl(fd, DEVIOCGDEVICEID, 0) & 0x00FF0000)>>16;
// software LPF off
ioctl(fd, ACCELIOCSLOWPASS, 0);
// 16g range
ioctl(fd, ACCELIOCSRANGE, 16);
switch(devid) {
case DRV_ACC_DEVTYPE_MPU6000:
case DRV_ACC_DEVTYPE_MPU9250:
// hardware LPF off
ioctl(fd, ACCELIOCSHWLOWPASS, 256);
// khz sampling
ioctl(fd, ACCELIOCSSAMPLERATE, 1000);
// 10ms queue depth
ioctl(fd, SENSORIOCSQUEUEDEPTH, _queue_depth(1000));
break;
case DRV_ACC_DEVTYPE_LSM303D:
// hardware LPF to ~1/10th sample rate for antialiasing
ioctl(fd, ACCELIOCSHWLOWPASS, 194);
// ~khz sampling
ioctl(fd, ACCELIOCSSAMPLERATE, 1600);
ioctl(fd,SENSORIOCSPOLLRATE, 1600);
// 10ms queue depth
ioctl(fd, SENSORIOCSQUEUEDEPTH, _queue_depth(1600));
break;
default:
break;
}
// calculate accel sample time
int samplerate = ioctl(fd, ACCELIOCGSAMPLERATE, 0);
if (samplerate < 100 || samplerate > 10000) {
hal.scheduler->panic("Invalid accel sample rate");
}
_set_accel_sample_rate(_accel_instance[i], (uint32_t) samplerate);
_accel_sample_time[i] = 1.0f / samplerate;
}
_set_accel_filter_frequency(_accel_filter_cutoff());
_set_gyro_filter_frequency(_gyro_filter_cutoff());
#if CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
_product_id = AP_PRODUCT_ID_VRBRAIN;
#else
#if defined(CONFIG_ARCH_BOARD_PX4FMU_V2)
_product_id = AP_PRODUCT_ID_PX4_V2;
#else
_product_id = AP_PRODUCT_ID_PX4;
#endif
#endif
return true;
}
/*
set the accel filter frequency
*/
void AP_InertialSensor_PX4::_set_accel_filter_frequency(uint8_t filter_hz)
{
for (uint8_t i=0; i<_num_accel_instances; i++) {
float samplerate = _accel_sample_rate(_accel_instance[i]);
_accel_filter[i].set_cutoff_frequency(samplerate, filter_hz);
}
}
/*
set the gyro filter frequency
*/
void AP_InertialSensor_PX4::_set_gyro_filter_frequency(uint8_t filter_hz)
{
for (uint8_t i=0; i<_num_gyro_instances; i++) {
float samplerate = 1.0f / _gyro_sample_time[i];
_gyro_filter[i].set_cutoff_frequency(samplerate, filter_hz);
}
}
bool AP_InertialSensor_PX4::update(void)
{
// get the latest sample from the sensor drivers
_get_sample();
for (uint8_t k=0; k<_num_accel_instances; k++) {
Vector3f accel = _accel_in[k];
// calling _publish_accel sets the sensor healthy,
// so we only want to do this if we have new data from it
if (_last_accel_timestamp[k] != _last_accel_update_timestamp[k]) {
_publish_accel(_accel_instance[k], accel);
_publish_delta_velocity(_accel_instance[k], _delta_velocity_accumulator[k], _delta_velocity_dt[k]);
_last_accel_update_timestamp[k] = _last_accel_timestamp[k];
}
}
for (uint8_t k=0; k<_num_gyro_instances; k++) {
Vector3f gyro = _gyro_in[k];
// calling _publish_accel sets the sensor healthy,
// so we only want to do this if we have new data from it
if (_last_gyro_timestamp[k] != _last_gyro_update_timestamp[k]) {
_publish_gyro(_gyro_instance[k], gyro);
_publish_delta_angle(_gyro_instance[k], _delta_angle_accumulator[k]);
_last_gyro_update_timestamp[k] = _last_gyro_timestamp[k];
}
}
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
_delta_angle_accumulator[i].zero();
_delta_velocity_accumulator[i].zero();
_delta_velocity_dt[i] = 0.0f;
}
if (_last_accel_filter_hz != _accel_filter_cutoff()) {
_set_accel_filter_frequency(_accel_filter_cutoff());
_last_accel_filter_hz = _accel_filter_cutoff();
}
if (_last_gyro_filter_hz != _gyro_filter_cutoff()) {
_set_gyro_filter_frequency(_gyro_filter_cutoff());
_last_gyro_filter_hz = _gyro_filter_cutoff();
}
return true;
}
void AP_InertialSensor_PX4::_new_accel_sample(uint8_t i, accel_report &accel_report)
{
Vector3f accel = Vector3f(accel_report.x, accel_report.y, accel_report.z);
uint8_t frontend_instance = _accel_instance[i];
// apply corrections
_rotate_and_correct_accel(frontend_instance, accel);
_notify_new_accel_raw_sample(frontend_instance, accel);
// apply filter for control path
_accel_in[i] = _accel_filter[i].apply(accel);
// get time since last sample
float dt = _accel_sample_time[i];
// compute delta velocity
Vector3f delVel = Vector3f(accel.x, accel.y, accel.z) * dt;
// integrate delta velocity accumulator
_delta_velocity_accumulator[i] += delVel;
_delta_velocity_dt[i] += dt;
// save last timestamp
_last_accel_timestamp[i] = accel_report.timestamp;
// report error count
_set_accel_error_count(frontend_instance, accel_report.error_count);
// publish a temperature (for logging purposed only)
_publish_temperature(frontend_instance, accel_report.temperature);
#ifdef AP_INERTIALSENSOR_PX4_DEBUG
_accel_dt_max[i] = max(_accel_dt_max[i],dt);
_accel_meas_count[i] ++;
if(_accel_meas_count[i] >= 10000) {
uint32_t tnow = hal.scheduler->micros();
::printf("a%d %.2f Hz max %.8f s\n", frontend_instance, 10000.0f/((tnow-_accel_meas_count_start_us[i])*1.0e-6f),_accel_dt_max[i]);
_accel_meas_count_start_us[i] = tnow;
_accel_meas_count[i] = 0;
_accel_dt_max[i] = 0;
}
#endif // AP_INERTIALSENSOR_PX4_DEBUG
}
void AP_InertialSensor_PX4::_new_gyro_sample(uint8_t i, gyro_report &gyro_report)
{
Vector3f gyro = Vector3f(gyro_report.x, gyro_report.y, gyro_report.z);
uint8_t frontend_instance = _gyro_instance[i];
// apply corrections
_rotate_and_correct_gyro(frontend_instance, gyro);
// apply filter for control path
_gyro_in[i] = _gyro_filter[i].apply(gyro);
// get time since last sample
float dt = _gyro_sample_time[i];
// compute delta angle
Vector3f delAng = (gyro+_last_gyro[i]) * 0.5f * dt;
/* compute coning correction
* see page 26 of:
* Tian et al (2010) Three-loop Integration of GPS and Strapdown INS with Coning and Sculling Compensation
* Available: http://www.sage.unsw.edu.au/snap/publications/tian_etal2010b.pdf
* see also examples/coning.py
*/
Vector3f delConing = ((_delta_angle_accumulator[i]+_last_delAng[i]*(1.0f/6.0f)) % delAng) * 0.5f;
// integrate delta angle accumulator
// the angles and coning corrections are accumulated separately in the
// referenced paper, but in simulation little difference was found between
// integrating together and integrating separately (see examples/coning.py)
_delta_angle_accumulator[i] += delAng + delConing;
// save previous delta angle for coning correction
_last_delAng[i] = delAng;
_last_gyro[i] = gyro;
// save last timestamp
_last_gyro_timestamp[i] = gyro_report.timestamp;
// report error count
_set_gyro_error_count(_gyro_instance[i], gyro_report.error_count);
#ifdef AP_INERTIALSENSOR_PX4_DEBUG
_gyro_dt_max[i] = max(_gyro_dt_max[i],dt);
_gyro_meas_count[i] ++;
if(_gyro_meas_count[i] >= 10000) {
uint32_t tnow = hal.scheduler->micros();
::printf("g%d %.2f Hz max %.8f s\n", frontend_instance, 10000.0f/((tnow-_gyro_meas_count_start_us[i])*1.0e-6f), _gyro_dt_max[i]);
_gyro_meas_count_start_us[i] = tnow;
_gyro_meas_count[i] = 0;
_gyro_dt_max[i] = 0;
}
#endif // AP_INERTIALSENSOR_PX4_DEBUG
}
void AP_InertialSensor_PX4::_get_sample()
{
for (uint8_t i=0; i<max(_num_accel_instances,_num_gyro_instances);i++) {
struct accel_report accel_report;
struct gyro_report gyro_report;
bool gyro_valid = _get_gyro_sample(i,gyro_report);
bool accel_valid = _get_accel_sample(i,accel_report);
while(gyro_valid || accel_valid) {
// interleave accel and gyro samples by time - this will allow sculling corrections later
// check the next gyro measurement to see if it needs to be integrated first
if(gyro_valid && accel_valid && gyro_report.timestamp <= accel_report.timestamp) {
_new_gyro_sample(i,gyro_report);
gyro_valid = _get_gyro_sample(i,gyro_report);
continue;
}
// if not, try to integrate an accelerometer sample
if(accel_valid) {
_new_accel_sample(i,accel_report);
accel_valid = _get_accel_sample(i,accel_report);
continue;
}
// if not, we've only got gyro samples left in the buffer
if(gyro_valid) {
_new_gyro_sample(i,gyro_report);
gyro_valid = _get_gyro_sample(i,gyro_report);
}
}
}
_last_get_sample_timestamp = hal.scheduler->micros64();
}
bool AP_InertialSensor_PX4::_get_accel_sample(uint8_t i, struct accel_report &accel_report)
{
if (i<_num_accel_instances &&
_accel_fd[i] != -1 &&
::read(_accel_fd[i], &accel_report, sizeof(accel_report)) == sizeof(accel_report) &&
accel_report.timestamp != _last_accel_timestamp[i]) {
DataFlash_Class *dataflash = get_dataflash();
if (dataflash != NULL) {
struct log_ACCEL pkt = {
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_ACC1_MSG+i)),
time_us : hal.scheduler->micros64(),
sample_us : accel_report.timestamp,
AccX : accel_report.x,
AccY : accel_report.y,
AccZ : accel_report.z
};
dataflash->WriteBlock(&pkt, sizeof(pkt));
}
return true;
}
return false;
}
bool AP_InertialSensor_PX4::_get_gyro_sample(uint8_t i, struct gyro_report &gyro_report)
{
if (i<_num_gyro_instances &&
_gyro_fd[i] != -1 &&
::read(_gyro_fd[i], &gyro_report, sizeof(gyro_report)) == sizeof(gyro_report) &&
gyro_report.timestamp != _last_gyro_timestamp[i]) {
DataFlash_Class *dataflash = get_dataflash();
if (dataflash != NULL) {
struct log_GYRO pkt = {
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_GYR1_MSG+i)),
time_us : hal.scheduler->micros64(),
sample_us : gyro_report.timestamp,
GyrX : gyro_report.x,
GyrY : gyro_report.y,
GyrZ : gyro_report.z
};
dataflash->WriteBlock(&pkt, sizeof(pkt));
}
return true;
}
return false;
}
bool AP_InertialSensor_PX4::gyro_sample_available(void)
{
_get_sample();
for (uint8_t i=0; i<_num_gyro_instances; i++) {
if (_last_gyro_timestamp[i] != _last_gyro_update_timestamp[i]) {
return true;
}
}
return false;
}
bool AP_InertialSensor_PX4::accel_sample_available(void)
{
_get_sample();
for (uint8_t i=0; i<_num_accel_instances; i++) {
if (_last_accel_timestamp[i] != _last_accel_update_timestamp[i]) {
return true;
}
}
return false;
}
#endif // CONFIG_HAL_BOARD