ardupilot/libraries/AP_HAL_Linux/Heat_Pwm.cpp
Julien BERAUD ffbb892a01 AP_HAL_Linux: add support for a pwm heater
It uses a heating resistor controlled by a pwm.
By changing the duty cycle of the pwm, we can control the temperature.
A simple PI algorithm is used in order to get to the correct temperature
fast enough and without too much overshoot
It is implemented as a member of the Util class in order not to make to much
modification to the current codebase
2015-10-06 15:21:39 +11:00

140 lines
3.6 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <linux/limits.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include "Heat_Pwm.h"
extern const AP_HAL::HAL& hal;
#define HEAT_PWM_DUTY "duty_ns"
#define HEAT_PWM_PERIOD "period_ns"
#define HEAT_PWM_RUN "run"
using namespace Linux;
/*
* Constructor :
* argument : pwm_sysfs_path is the path to the pwm directory,
* i.e /sys/class/pwm/pwm_6 on the bebop
*/
LinuxHeatPwm::LinuxHeatPwm(const char* pwm_sysfs_path, float Kp, float Ki, uint32_t period_ns, float target) :
_Kp(Kp),
_Ki(Ki),
_period_ns(period_ns),
_target(target)
{
char *duty_path;
char *period_path;
char *run_path;
if (asprintf(&duty_path, "%s/%s", pwm_sysfs_path, HEAT_PWM_DUTY) == -1) {
hal.scheduler->panic("HeatPwm not enough memory\n");
}
_duty_fd = open(duty_path, O_RDWR);
if (_duty_fd == -1) {
perror("opening duty");
hal.scheduler->panic("Error Initializing Pwm heat\n");
}
free(duty_path);
if (asprintf(&period_path, "%s/%s", pwm_sysfs_path, HEAT_PWM_PERIOD) == -1) {
hal.scheduler->panic("HeatPwm not enough memory\n");
}
_period_fd = open(period_path, O_RDWR);
if (_period_fd == -1) {
perror("opening period");
hal.scheduler->panic("Error Initializing Pwm heat\n");
}
free(period_path);
if (asprintf(&run_path, "%s/%s", pwm_sysfs_path, HEAT_PWM_RUN) == -1) {
hal.scheduler->panic("HeatPwm not enough memory\n");
}
_run_fd = open(run_path, O_RDWR);
if (_run_fd == -1) {
perror("opening run");
hal.scheduler->panic("Error Initializing Pwm heat\n");
}
free(run_path);
_set_period(_period_ns);
_set_duty(0);
_set_run();
}
void LinuxHeatPwm::set_imu_temp(float current)
{
float error, output;
if (hal.scheduler->millis() - _last_temp_update < 5) {
return;
}
/* minimal PI algo without dt */
error = _target - current;
/* Don't accumulate errors if the integrated error is superior
* to the max duty cycle(pwm_period)
*/
if ((fabsf(_sum_error) * _Ki < _period_ns)) {
_sum_error = _sum_error + error;
}
output = _Kp*error + _Ki * _sum_error;
if (output > _period_ns) {
output = _period_ns;
} else if (output < 0) {
output = 0;
}
_set_duty(output);
_last_temp_update = hal.scheduler->millis();
}
void LinuxHeatPwm::_set_duty(uint32_t duty)
{
if (dprintf(_duty_fd, "0x%x", duty) < 0) {
perror("pwm set_duty");
}
}
void LinuxHeatPwm::_set_period(uint32_t period)
{
if (dprintf(_period_fd, "0x%x", period) < 0) {
perror("pwm set_period");
}
}
void LinuxHeatPwm::_set_run()
{
if (dprintf(_run_fd, "1") < 0) {
perror("pwm set_run");
}
}
#endif