mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-03 22:48:29 -04:00
869 lines
23 KiB
C++
869 lines
23 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* NavEKF based AHRS (Attitude Heading Reference System) interface for
|
|
* ArduPilot
|
|
*
|
|
*/
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include "AP_AHRS.h"
|
|
#include <AP_Vehicle/AP_Vehicle.h>
|
|
#include <GCS_MAVLink/GCS.h>
|
|
|
|
#if AP_AHRS_NAVEKF_AVAILABLE
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// return the smoothed gyro vector corrected for drift
|
|
const Vector3f &AP_AHRS_NavEKF::get_gyro(void) const
|
|
{
|
|
if (!active_EKF_type()) {
|
|
return AP_AHRS_DCM::get_gyro();
|
|
}
|
|
return _gyro_estimate;
|
|
}
|
|
|
|
const Matrix3f &AP_AHRS_NavEKF::get_dcm_matrix(void) const
|
|
{
|
|
if (!active_EKF_type()) {
|
|
return AP_AHRS_DCM::get_dcm_matrix();
|
|
}
|
|
return _dcm_matrix;
|
|
}
|
|
|
|
const Vector3f &AP_AHRS_NavEKF::get_gyro_drift(void) const
|
|
{
|
|
if (!active_EKF_type()) {
|
|
return AP_AHRS_DCM::get_gyro_drift();
|
|
}
|
|
return _gyro_bias;
|
|
}
|
|
|
|
// reset the current gyro drift estimate
|
|
// should be called if gyro offsets are recalculated
|
|
void AP_AHRS_NavEKF::reset_gyro_drift(void)
|
|
{
|
|
// update DCM
|
|
AP_AHRS_DCM::reset_gyro_drift();
|
|
|
|
// reset the EKF gyro bias states
|
|
EKF1.resetGyroBias();
|
|
EKF2.resetGyroBias();
|
|
}
|
|
|
|
void AP_AHRS_NavEKF::update(void)
|
|
{
|
|
update_DCM();
|
|
update_EKF1();
|
|
update_EKF2();
|
|
}
|
|
|
|
void AP_AHRS_NavEKF::update_DCM(void)
|
|
{
|
|
// we need to restore the old DCM attitude values as these are
|
|
// used internally in DCM to calculate error values for gyro drift
|
|
// correction
|
|
roll = _dcm_attitude.x;
|
|
pitch = _dcm_attitude.y;
|
|
yaw = _dcm_attitude.z;
|
|
update_cd_values();
|
|
|
|
AP_AHRS_DCM::update();
|
|
|
|
// keep DCM attitude available for get_secondary_attitude()
|
|
_dcm_attitude(roll, pitch, yaw);
|
|
}
|
|
|
|
void AP_AHRS_NavEKF::update_EKF1(void)
|
|
{
|
|
if (!ekf1_started) {
|
|
// wait 1 second for DCM to output a valid tilt error estimate
|
|
if (start_time_ms == 0) {
|
|
start_time_ms = hal.scheduler->millis();
|
|
}
|
|
if (hal.scheduler->millis() - start_time_ms > startup_delay_ms) {
|
|
ekf1_started = EKF1.InitialiseFilterDynamic();
|
|
}
|
|
}
|
|
if (ekf1_started) {
|
|
EKF1.UpdateFilter();
|
|
EKF1.getRotationBodyToNED(_dcm_matrix);
|
|
if (active_EKF_type() == EKF_TYPE1) {
|
|
Vector3f eulers;
|
|
EKF1.getEulerAngles(eulers);
|
|
roll = eulers.x;
|
|
pitch = eulers.y;
|
|
yaw = eulers.z;
|
|
|
|
update_cd_values();
|
|
update_trig();
|
|
|
|
// keep _gyro_bias for get_gyro_drift()
|
|
EKF1.getGyroBias(_gyro_bias);
|
|
_gyro_bias = -_gyro_bias;
|
|
|
|
// calculate corrected gryo estimate for get_gyro()
|
|
_gyro_estimate.zero();
|
|
uint8_t healthy_count = 0;
|
|
for (uint8_t i=0; i<_ins.get_gyro_count(); i++) {
|
|
if (_ins.get_gyro_health(i) && healthy_count < 2) {
|
|
_gyro_estimate += _ins.get_gyro(i);
|
|
healthy_count++;
|
|
}
|
|
}
|
|
if (healthy_count > 1) {
|
|
_gyro_estimate /= healthy_count;
|
|
}
|
|
_gyro_estimate += _gyro_bias;
|
|
|
|
float abias1, abias2;
|
|
EKF1.getAccelZBias(abias1, abias2);
|
|
|
|
// update _accel_ef_ekf
|
|
for (uint8_t i=0; i<_ins.get_accel_count(); i++) {
|
|
Vector3f accel = _ins.get_accel(i);
|
|
if (i==0) {
|
|
accel.z -= abias1;
|
|
} else if (i==1) {
|
|
accel.z -= abias2;
|
|
}
|
|
if (_ins.get_accel_health(i)) {
|
|
_accel_ef_ekf[i] = _dcm_matrix * accel;
|
|
}
|
|
}
|
|
|
|
if(_ins.use_accel(0) && _ins.use_accel(1)) {
|
|
float IMU1_weighting;
|
|
EKF1.getIMU1Weighting(IMU1_weighting);
|
|
_accel_ef_ekf_blended = _accel_ef_ekf[0] * IMU1_weighting + _accel_ef_ekf[1] * (1.0f-IMU1_weighting);
|
|
} else {
|
|
_accel_ef_ekf_blended = _accel_ef_ekf[_ins.get_primary_accel()];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void AP_AHRS_NavEKF::update_EKF2(void)
|
|
{
|
|
if (!ekf2_started) {
|
|
// wait 1 second for DCM to output a valid tilt error estimate
|
|
if (start_time_ms == 0) {
|
|
start_time_ms = hal.scheduler->millis();
|
|
}
|
|
if (hal.scheduler->millis() - start_time_ms > startup_delay_ms) {
|
|
ekf2_started = EKF2.InitialiseFilter();
|
|
}
|
|
}
|
|
if (ekf2_started) {
|
|
EKF2.UpdateFilter();
|
|
EKF2.getRotationBodyToNED(_dcm_matrix);
|
|
if (active_EKF_type() == EKF_TYPE2) {
|
|
Vector3f eulers;
|
|
EKF2.getEulerAngles(eulers);
|
|
roll = eulers.x;
|
|
pitch = eulers.y;
|
|
yaw = eulers.z;
|
|
|
|
update_cd_values();
|
|
update_trig();
|
|
|
|
// keep _gyro_bias for get_gyro_drift()
|
|
EKF2.getGyroBias(_gyro_bias);
|
|
_gyro_bias = -_gyro_bias;
|
|
|
|
// calculate corrected gryo estimate for get_gyro()
|
|
_gyro_estimate.zero();
|
|
uint8_t healthy_count = 0;
|
|
for (uint8_t i=0; i<_ins.get_gyro_count(); i++) {
|
|
if (_ins.get_gyro_health(i) && healthy_count < 2) {
|
|
_gyro_estimate += _ins.get_gyro(i);
|
|
healthy_count++;
|
|
}
|
|
}
|
|
if (healthy_count > 1) {
|
|
_gyro_estimate /= healthy_count;
|
|
}
|
|
_gyro_estimate += _gyro_bias;
|
|
|
|
float abias;
|
|
EKF2.getAccelZBias(abias);
|
|
|
|
// This EKF uses the primary IMU
|
|
// Eventually we will run a separate instance of the EKF for each IMU and do the selection and blending of EKF outputs upstream
|
|
// update _accel_ef_ekf
|
|
for (uint8_t i=0; i<_ins.get_accel_count(); i++) {
|
|
Vector3f accel = _ins.get_accel(i);
|
|
if (i==_ins.get_primary_accel()) {
|
|
accel.z -= abias;
|
|
}
|
|
if (_ins.get_accel_health(i)) {
|
|
_accel_ef_ekf[i] = _dcm_matrix * accel;
|
|
}
|
|
}
|
|
_accel_ef_ekf_blended = _accel_ef_ekf[_ins.get_primary_accel()];
|
|
}
|
|
}
|
|
}
|
|
|
|
// accelerometer values in the earth frame in m/s/s
|
|
const Vector3f &AP_AHRS_NavEKF::get_accel_ef(uint8_t i) const
|
|
{
|
|
if (active_EKF_type() == EKF_TYPE_NONE) {
|
|
return AP_AHRS_DCM::get_accel_ef(i);
|
|
}
|
|
return _accel_ef_ekf[i];
|
|
}
|
|
|
|
// blended accelerometer values in the earth frame in m/s/s
|
|
const Vector3f &AP_AHRS_NavEKF::get_accel_ef_blended(void) const
|
|
{
|
|
if (active_EKF_type() == EKF_TYPE_NONE) {
|
|
return AP_AHRS_DCM::get_accel_ef_blended();
|
|
}
|
|
return _accel_ef_ekf_blended;
|
|
}
|
|
|
|
void AP_AHRS_NavEKF::reset(bool recover_eulers)
|
|
{
|
|
AP_AHRS_DCM::reset(recover_eulers);
|
|
if (ekf1_started) {
|
|
ekf1_started = EKF1.InitialiseFilterBootstrap();
|
|
}
|
|
if (ekf2_started) {
|
|
ekf2_started = EKF2.InitialiseFilter();
|
|
}
|
|
}
|
|
|
|
// reset the current attitude, used on new IMU calibration
|
|
void AP_AHRS_NavEKF::reset_attitude(const float &_roll, const float &_pitch, const float &_yaw)
|
|
{
|
|
AP_AHRS_DCM::reset_attitude(_roll, _pitch, _yaw);
|
|
if (ekf1_started) {
|
|
ekf1_started = EKF1.InitialiseFilterBootstrap();
|
|
}
|
|
if (ekf2_started) {
|
|
ekf2_started = EKF2.InitialiseFilter();
|
|
}
|
|
}
|
|
|
|
// dead-reckoning support
|
|
bool AP_AHRS_NavEKF::get_position(struct Location &loc) const
|
|
{
|
|
Vector3f ned_pos;
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE1:
|
|
if (EKF1.getLLH(loc) && EKF1.getPosNED(ned_pos)) {
|
|
// fixup altitude using relative position from AHRS home, not
|
|
// EKF origin
|
|
loc.alt = get_home().alt - ned_pos.z*100;
|
|
return true;
|
|
}
|
|
break;
|
|
case EKF_TYPE2:
|
|
if (EKF2.getLLH(loc) && EKF2.getPosNED(ned_pos)) {
|
|
// fixup altitude using relative position from AHRS home, not
|
|
// EKF origin
|
|
loc.alt = get_home().alt - ned_pos.z*100;
|
|
return true;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return AP_AHRS_DCM::get_position(loc);
|
|
}
|
|
|
|
// status reporting of estimated errors
|
|
float AP_AHRS_NavEKF::get_error_rp(void) const
|
|
{
|
|
return AP_AHRS_DCM::get_error_rp();
|
|
}
|
|
|
|
float AP_AHRS_NavEKF::get_error_yaw(void) const
|
|
{
|
|
return AP_AHRS_DCM::get_error_yaw();
|
|
}
|
|
|
|
// return a wind estimation vector, in m/s
|
|
Vector3f AP_AHRS_NavEKF::wind_estimate(void)
|
|
{
|
|
Vector3f wind;
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
wind = AP_AHRS_DCM::wind_estimate();
|
|
break;
|
|
|
|
case EKF_TYPE1:
|
|
EKF1.getWind(wind);
|
|
break;
|
|
|
|
case EKF_TYPE2:
|
|
EKF2.getWind(wind);
|
|
break;
|
|
}
|
|
return wind;
|
|
}
|
|
|
|
// return an airspeed estimate if available. return true
|
|
// if we have an estimate
|
|
bool AP_AHRS_NavEKF::airspeed_estimate(float *airspeed_ret) const
|
|
{
|
|
return AP_AHRS_DCM::airspeed_estimate(airspeed_ret);
|
|
}
|
|
|
|
// true if compass is being used
|
|
bool AP_AHRS_NavEKF::use_compass(void)
|
|
{
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
break;
|
|
case EKF_TYPE1:
|
|
return EKF1.use_compass();
|
|
case EKF_TYPE2:
|
|
return EKF2.use_compass();
|
|
}
|
|
return AP_AHRS_DCM::use_compass();
|
|
}
|
|
|
|
|
|
// return secondary attitude solution if available, as eulers in radians
|
|
bool AP_AHRS_NavEKF::get_secondary_attitude(Vector3f &eulers)
|
|
{
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
// EKF is secondary
|
|
EKF1.getEulerAngles(eulers);
|
|
return ekf1_started;
|
|
|
|
case EKF_TYPE1:
|
|
case EKF_TYPE2:
|
|
default:
|
|
// DCM is secondary
|
|
eulers = _dcm_attitude;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// return secondary position solution if available
|
|
bool AP_AHRS_NavEKF::get_secondary_position(struct Location &loc)
|
|
{
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
// EKF is secondary
|
|
EKF1.getLLH(loc);
|
|
return ekf1_started;
|
|
|
|
case EKF_TYPE1:
|
|
case EKF_TYPE2:
|
|
default:
|
|
// return DCM position
|
|
AP_AHRS_DCM::get_position(loc);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// EKF has a better ground speed vector estimate
|
|
Vector2f AP_AHRS_NavEKF::groundspeed_vector(void)
|
|
{
|
|
Vector3f vec;
|
|
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
return AP_AHRS_DCM::groundspeed_vector();
|
|
|
|
case EKF_TYPE1:
|
|
default:
|
|
EKF1.getVelNED(vec);
|
|
return Vector2f(vec.x, vec.y);
|
|
|
|
case EKF_TYPE2:
|
|
EKF2.getVelNED(vec);
|
|
return Vector2f(vec.x, vec.y);
|
|
}
|
|
}
|
|
|
|
void AP_AHRS_NavEKF::set_home(const Location &loc)
|
|
{
|
|
AP_AHRS_DCM::set_home(loc);
|
|
}
|
|
|
|
// return true if inertial navigation is active
|
|
bool AP_AHRS_NavEKF::have_inertial_nav(void) const
|
|
{
|
|
return active_EKF_type() != EKF_TYPE_NONE;
|
|
}
|
|
|
|
// return a ground velocity in meters/second, North/East/Down
|
|
// order. Must only be called if have_inertial_nav() is true
|
|
bool AP_AHRS_NavEKF::get_velocity_NED(Vector3f &vec) const
|
|
{
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
return false;
|
|
|
|
case EKF_TYPE1:
|
|
default:
|
|
EKF1.getVelNED(vec);
|
|
return true;
|
|
|
|
case EKF_TYPE2:
|
|
EKF2.getVelNED(vec);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Get a derivative of the vertical position which is kinematically consistent with the vertical position is required by some control loops.
|
|
// This is different to the vertical velocity from the EKF which is not always consistent with the verical position due to the various errors that are being corrected for.
|
|
bool AP_AHRS_NavEKF::get_vert_pos_rate(float &velocity)
|
|
{
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
return false;
|
|
|
|
case EKF_TYPE1:
|
|
default:
|
|
velocity = EKF1.getPosDownDerivative();
|
|
return true;
|
|
|
|
case EKF_TYPE2:
|
|
velocity = EKF2.getPosDownDerivative();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// get latest height above ground level estimate in metres and a validity flag
|
|
bool AP_AHRS_NavEKF::get_hagl(float &height) const
|
|
{
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
return false;
|
|
|
|
case EKF_TYPE1:
|
|
default:
|
|
return EKF1.getHAGL(height);
|
|
|
|
case EKF_TYPE2:
|
|
return EKF2.getHAGL(height);
|
|
}
|
|
}
|
|
|
|
// return a relative ground position in meters/second, North/East/Down
|
|
// order. Must only be called if have_inertial_nav() is true
|
|
bool AP_AHRS_NavEKF::get_relative_position_NED(Vector3f &vec) const
|
|
{
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
return false;
|
|
|
|
case EKF_TYPE1:
|
|
default:
|
|
return EKF1.getPosNED(vec);
|
|
|
|
case EKF_TYPE2:
|
|
return EKF2.getPosNED(vec);
|
|
}
|
|
}
|
|
|
|
/*
|
|
canonicalise _ekf_type, forcing it to be 0, 1 or 2
|
|
*/
|
|
uint8_t AP_AHRS_NavEKF::ekf_type(void) const
|
|
{
|
|
uint8_t type = _ekf_type;
|
|
#if AHRS_EKF_USE_ALWAYS
|
|
// on copters always use an EKF
|
|
if (type == 0) {
|
|
type = 1;
|
|
}
|
|
#endif
|
|
|
|
// check for invalid type
|
|
if (type > 2) {
|
|
type = 1;
|
|
}
|
|
return type;
|
|
}
|
|
|
|
AP_AHRS_NavEKF::EKF_TYPE AP_AHRS_NavEKF::active_EKF_type(void) const
|
|
{
|
|
EKF_TYPE ret = EKF_TYPE_NONE;
|
|
|
|
switch (ekf_type()) {
|
|
case 0:
|
|
return EKF_TYPE_NONE;
|
|
|
|
case 1: {
|
|
// do we have an EKF yet?
|
|
if (!ekf1_started) {
|
|
return EKF_TYPE_NONE;
|
|
}
|
|
#if AHRS_EKF_USE_ALWAYS
|
|
uint8_t ekf_faults;
|
|
EKF1.getFilterFaults(ekf_faults);
|
|
if (ekf_faults == 0) {
|
|
ret = EKF_TYPE1;
|
|
}
|
|
#else
|
|
if (EKF1.healthy()) {
|
|
ret = EKF_TYPE1;
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
case 2: {
|
|
// do we have an EKF2 yet?
|
|
if (!ekf2_started) {
|
|
return EKF_TYPE_NONE;
|
|
}
|
|
#if AHRS_EKF_USE_ALWAYS
|
|
uint8_t ekf2_faults;
|
|
EKF2.getFilterFaults(ekf2_faults);
|
|
if (ekf2_faults == 0) {
|
|
ret = EKF_TYPE2;
|
|
}
|
|
#else
|
|
if (EKF2.healthy()) {
|
|
ret = EKF_TYPE2;
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ret != EKF_TYPE_NONE &&
|
|
(_vehicle_class == AHRS_VEHICLE_FIXED_WING ||
|
|
_vehicle_class == AHRS_VEHICLE_GROUND)) {
|
|
nav_filter_status filt_state;
|
|
if (ret == EKF_TYPE1) {
|
|
EKF1.getFilterStatus(filt_state);
|
|
} else {
|
|
EKF2.getFilterStatus(filt_state);
|
|
}
|
|
if (hal.util->get_soft_armed() && !filt_state.flags.using_gps && _gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
|
|
// if the EKF is not fusing GPS and we have a 3D lock, then
|
|
// plane and rover would prefer to use the GPS position from
|
|
// DCM. This is a safety net while some issues with the EKF
|
|
// get sorted out
|
|
return EKF_TYPE_NONE;
|
|
}
|
|
if (hal.util->get_soft_armed() && filt_state.flags.const_pos_mode) {
|
|
return EKF_TYPE_NONE;
|
|
}
|
|
if (!filt_state.flags.attitude ||
|
|
!filt_state.flags.horiz_vel ||
|
|
!filt_state.flags.vert_vel ||
|
|
!filt_state.flags.horiz_pos_abs ||
|
|
!filt_state.flags.vert_pos) {
|
|
return EKF_TYPE_NONE;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
check if the AHRS subsystem is healthy
|
|
*/
|
|
bool AP_AHRS_NavEKF::healthy(void) const
|
|
{
|
|
// If EKF is started we switch away if it reports unhealthy. This could be due to bad
|
|
// sensor data. If EKF reversion is inhibited, we only switch across if the EKF encounters
|
|
// an internal processing error, but not for bad sensor data.
|
|
switch (ekf_type()) {
|
|
case 0:
|
|
return AP_AHRS_DCM::healthy();
|
|
|
|
case 1: {
|
|
bool ret = ekf1_started && EKF1.healthy();
|
|
if (!ret) {
|
|
return false;
|
|
}
|
|
if ((_vehicle_class == AHRS_VEHICLE_FIXED_WING ||
|
|
_vehicle_class == AHRS_VEHICLE_GROUND) &&
|
|
active_EKF_type() != EKF_TYPE1) {
|
|
// on fixed wing we want to be using EKF to be considered
|
|
// healthy if EKF is enabled
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
case 2: {
|
|
bool ret = ekf2_started && EKF2.healthy();
|
|
if (!ret) {
|
|
return false;
|
|
}
|
|
if ((_vehicle_class == AHRS_VEHICLE_FIXED_WING ||
|
|
_vehicle_class == AHRS_VEHICLE_GROUND) &&
|
|
active_EKF_type() != EKF_TYPE2) {
|
|
// on fixed wing we want to be using EKF to be considered
|
|
// healthy if EKF is enabled
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return AP_AHRS_DCM::healthy();
|
|
}
|
|
|
|
void AP_AHRS_NavEKF::set_ekf_use(bool setting)
|
|
{
|
|
_ekf_type.set(setting?1:0);
|
|
}
|
|
|
|
// true if the AHRS has completed initialisation
|
|
bool AP_AHRS_NavEKF::initialised(void) const
|
|
{
|
|
switch (ekf_type()) {
|
|
case 0:
|
|
return true;
|
|
|
|
case 1:
|
|
default:
|
|
// initialisation complete 10sec after ekf has started
|
|
return (ekf1_started && (hal.scheduler->millis() - start_time_ms > AP_AHRS_NAVEKF_SETTLE_TIME_MS));
|
|
|
|
case 2:
|
|
// initialisation complete 10sec after ekf has started
|
|
return (ekf2_started && (hal.scheduler->millis() - start_time_ms > AP_AHRS_NAVEKF_SETTLE_TIME_MS));
|
|
}
|
|
};
|
|
|
|
// get_filter_status : returns filter status as a series of flags
|
|
bool AP_AHRS_NavEKF::get_filter_status(nav_filter_status &status) const
|
|
{
|
|
switch (ekf_type()) {
|
|
case EKF_TYPE_NONE:
|
|
return false;
|
|
|
|
case EKF_TYPE1:
|
|
default:
|
|
EKF1.getFilterStatus(status);
|
|
return true;
|
|
|
|
case EKF_TYPE2:
|
|
EKF2.getFilterStatus(status);
|
|
return true;
|
|
}
|
|
|
|
}
|
|
|
|
// write optical flow data to EKF
|
|
void AP_AHRS_NavEKF::writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas)
|
|
{
|
|
EKF1.writeOptFlowMeas(rawFlowQuality, rawFlowRates, rawGyroRates, msecFlowMeas);
|
|
EKF2.writeOptFlowMeas(rawFlowQuality, rawFlowRates, rawGyroRates, msecFlowMeas);
|
|
}
|
|
|
|
// inhibit GPS useage
|
|
uint8_t AP_AHRS_NavEKF::setInhibitGPS(void)
|
|
{
|
|
switch (ekf_type()) {
|
|
case 0:
|
|
case 1:
|
|
default:
|
|
return EKF1.setInhibitGPS();
|
|
|
|
case 2:
|
|
return EKF2.setInhibitGPS();
|
|
}
|
|
}
|
|
|
|
// get speed limit
|
|
void AP_AHRS_NavEKF::getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler)
|
|
{
|
|
switch (ekf_type()) {
|
|
case 0:
|
|
case 1:
|
|
default:
|
|
EKF1.getEkfControlLimits(ekfGndSpdLimit,ekfNavVelGainScaler);
|
|
break;
|
|
|
|
case 2:
|
|
EKF2.getEkfControlLimits(ekfGndSpdLimit,ekfNavVelGainScaler);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// get compass offset estimates
|
|
// true if offsets are valid
|
|
bool AP_AHRS_NavEKF::getMagOffsets(Vector3f &magOffsets)
|
|
{
|
|
switch (ekf_type()) {
|
|
case 0:
|
|
case 1:
|
|
default:
|
|
return EKF1.getMagOffsets(magOffsets);
|
|
|
|
case 2:
|
|
return EKF2.getMagOffsets(magOffsets);
|
|
}
|
|
}
|
|
|
|
// report any reason for why the backend is refusing to initialise
|
|
const char *AP_AHRS_NavEKF::prearm_failure_reason(void) const
|
|
{
|
|
switch (ekf_type()) {
|
|
case 0:
|
|
return nullptr;
|
|
case 1:
|
|
return EKF1.prearm_failure_reason();
|
|
case 2:
|
|
// not implemented yet
|
|
return nullptr;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// return the amount of yaw angle change due to the last yaw angle reset in radians
|
|
// returns the time of the last yaw angle reset or 0 if no reset has ever occurred
|
|
uint32_t AP_AHRS_NavEKF::getLastYawResetAngle(float &yawAng)
|
|
{
|
|
switch (ekf_type()) {
|
|
case 1:
|
|
return EKF1.getLastYawResetAngle(yawAng);
|
|
case 2:
|
|
return EKF2.getLastYawResetAngle(yawAng);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Resets the baro so that it reads zero at the current height
|
|
// Resets the EKF height to zero
|
|
// Adjusts the EKf origin height so that the EKF height + origin height is the same as before
|
|
// Returns true if the height datum reset has been performed
|
|
// If using a range finder for height no reset is performed and it returns false
|
|
bool AP_AHRS_NavEKF::resetHeightDatum(void)
|
|
{
|
|
switch (ekf_type()) {
|
|
case 1:
|
|
EKF2.resetHeightDatum();
|
|
return EKF1.resetHeightDatum();
|
|
case 2:
|
|
EKF1.resetHeightDatum();
|
|
return EKF2.resetHeightDatum();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// send a EKF_STATUS_REPORT for current EKF
|
|
void AP_AHRS_NavEKF::send_ekf_status_report(mavlink_channel_t chan)
|
|
{
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE1:
|
|
default:
|
|
return EKF1.send_status_report(chan);
|
|
|
|
case EKF_TYPE2:
|
|
return EKF2.send_status_report(chan);
|
|
}
|
|
}
|
|
|
|
// passes a reference to the location of the inertial navigation origin
|
|
// in WGS-84 coordinates
|
|
// returns a boolean true when the inertial navigation origin has been set
|
|
bool AP_AHRS_NavEKF::get_origin(Location &ret) const
|
|
{
|
|
switch (ekf_type()) {
|
|
case EKF_TYPE_NONE:
|
|
return false;
|
|
|
|
case EKF_TYPE1:
|
|
default:
|
|
if (!EKF1.getOriginLLH(ret)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
|
|
case EKF_TYPE2:
|
|
if (!EKF2.getOriginLLH(ret)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// get_hgt_ctrl_limit - get maximum height to be observed by the control loops in metres and a validity flag
|
|
// this is used to limit height during optical flow navigation
|
|
// it will return invalid when no limiting is required
|
|
bool AP_AHRS_NavEKF::get_hgt_ctrl_limit(float& limit) const
|
|
{
|
|
switch (ekf_type()) {
|
|
case EKF_TYPE_NONE:
|
|
// We are not using an EKF so no limiting applies
|
|
return false;
|
|
|
|
case EKF_TYPE1:
|
|
default:
|
|
return EKF1.getHeightControlLimit(limit);
|
|
return true;
|
|
|
|
case EKF_TYPE2:
|
|
return EKF2.getHeightControlLimit(limit);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// get_location - updates the provided location with the latest calculated location
|
|
// returns true on success (i.e. the EKF knows it's latest position), false on failure
|
|
bool AP_AHRS_NavEKF::get_location(struct Location &loc) const
|
|
{
|
|
switch (ekf_type()) {
|
|
case EKF_TYPE_NONE:
|
|
// We are not using an EKF so no data
|
|
return false;
|
|
|
|
case EKF_TYPE1:
|
|
default:
|
|
return EKF1.getLLH(loc);
|
|
|
|
case EKF_TYPE2:
|
|
return EKF2.getLLH(loc);
|
|
}
|
|
}
|
|
|
|
// get_variances - provides the innovations normalised using the innovation variance where a value of 0
|
|
// indicates prefect consistency between the measurement and the EKF solution and a value of of 1 is the maximum
|
|
// inconsistency that will be accpeted by the filter
|
|
// boolean false is returned if variances are not available
|
|
bool AP_AHRS_NavEKF::get_variances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const
|
|
{
|
|
switch (ekf_type()) {
|
|
case EKF_TYPE_NONE:
|
|
// We are not using an EKF so no data
|
|
return false;
|
|
|
|
case EKF_TYPE1:
|
|
default:
|
|
// use EKF to get variance
|
|
EKF1.getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset);
|
|
return true;
|
|
|
|
case EKF_TYPE2:
|
|
// use EKF to get variance
|
|
EKF2.getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
#endif // AP_AHRS_NAVEKF_AVAILABLE
|
|
|