ardupilot/libraries/AP_AHRS/AP_AHRS.h
2015-09-24 16:57:41 +09:00

508 lines
15 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#ifndef __AP_AHRS_H__
#define __AP_AHRS_H__
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AHRS (Attitude Heading Reference System) interface for ArduPilot
*
*/
#include <AP_Math/AP_Math.h>
#include <inttypes.h>
#include <AP_Compass/AP_Compass.h>
#include <AP_Airspeed/AP_Airspeed.h>
#include <AP_GPS/AP_GPS.h>
#include <AP_InertialSensor/AP_InertialSensor.h>
#include <AP_Baro/AP_Baro.h>
#include <AP_Param/AP_Param.h>
#include <AP_OpticalFlow/AP_OpticalFlow.h>
// Copter defaults to EKF on by default, all others off
#if APM_BUILD_TYPE(APM_BUILD_ArduCopter)
# define AHRS_EKF_USE_ALWAYS 1
#else
# define AHRS_EKF_USE_ALWAYS 0
#endif
#if APM_BUILD_TYPE(APM_BUILD_ArduPlane)
#define AHRS_EKF_USE_DEFAULT 1
#else
#define AHRS_EKF_USE_DEFAULT 0
#endif
#define AP_AHRS_TRIM_LIMIT 10.0f // maximum trim angle in degrees
#define AP_AHRS_RP_P_MIN 0.05f // minimum value for AHRS_RP_P parameter
#define AP_AHRS_YAW_P_MIN 0.05f // minimum value for AHRS_YAW_P parameter
enum AHRS_VehicleClass {
AHRS_VEHICLE_UNKNOWN,
AHRS_VEHICLE_GROUND,
AHRS_VEHICLE_COPTER,
AHRS_VEHICLE_FIXED_WING,
};
class AP_AHRS
{
public:
// Constructor
AP_AHRS(AP_InertialSensor &ins, AP_Baro &baro, AP_GPS &gps) :
roll(0.0f),
pitch(0.0f),
yaw(0.0f),
roll_sensor(0),
pitch_sensor(0),
yaw_sensor(0),
_vehicle_class(AHRS_VEHICLE_UNKNOWN),
_compass(NULL),
_optflow(NULL),
_airspeed(NULL),
_compass_last_update(0),
_ins(ins),
_baro(baro),
_gps(gps),
_cos_roll(1.0f),
_cos_pitch(1.0f),
_cos_yaw(1.0f),
_sin_roll(0.0f),
_sin_pitch(0.0f),
_sin_yaw(0.0f),
_active_accel_instance(0)
{
// load default values from var_info table
AP_Param::setup_object_defaults(this, var_info);
// base the ki values by the sensors maximum drift
// rate. The APM2 has gyros which are much less drift
// prone than the APM1, so we should have a lower ki,
// which will make us less prone to increasing omegaI
// incorrectly due to sensor noise
_gyro_drift_limit = ins.get_gyro_drift_rate();
// enable centrifugal correction by default
_flags.correct_centrifugal = true;
// initialise _home
_home.options = 0;
_home.alt = 0;
_home.lng = 0;
_home.lat = 0;
}
// empty virtual destructor
virtual ~AP_AHRS() {}
// init sets up INS board orientation
virtual void init() {
set_orientation();
};
// Accessors
void set_fly_forward(bool b) {
_flags.fly_forward = b;
}
bool get_fly_forward(void) const {
return _flags.fly_forward;
}
AHRS_VehicleClass get_vehicle_class(void) const {
return _vehicle_class;
}
void set_vehicle_class(AHRS_VehicleClass vclass) {
_vehicle_class = vclass;
}
void set_wind_estimation(bool b) {
_flags.wind_estimation = b;
}
void set_compass(Compass *compass) {
_compass = compass;
set_orientation();
}
const Compass* get_compass() const {
return _compass;
}
void set_optflow(const OpticalFlow *optflow) {
_optflow = optflow;
}
const OpticalFlow* get_optflow() const {
return _optflow;
}
// allow for runtime change of orientation
// this makes initial config easier
void set_orientation() {
_ins.set_board_orientation((enum Rotation)_board_orientation.get());
if (_compass != NULL) {
_compass->set_board_orientation((enum Rotation)_board_orientation.get());
}
}
void set_airspeed(AP_Airspeed *airspeed) {
_airspeed = airspeed;
}
const AP_Airspeed *get_airspeed(void) const {
return _airspeed;
}
const AP_GPS &get_gps() const {
return _gps;
}
const AP_InertialSensor &get_ins() const {
return _ins;
}
const AP_Baro &get_baro() const {
return _baro;
}
// accelerometer values in the earth frame in m/s/s
virtual const Vector3f &get_accel_ef(uint8_t i) const {
return _accel_ef[i];
}
virtual const Vector3f &get_accel_ef(void) const {
return get_accel_ef(_ins.get_primary_accel());
}
// blended accelerometer values in the earth frame in m/s/s
virtual const Vector3f &get_accel_ef_blended(void) const {
return _accel_ef_blended;
}
// get yaw rate in earth frame in radians/sec
float get_yaw_rate_earth(void) const {
return get_gyro() * get_dcm_matrix().c;
}
// Methods
virtual void update(void) = 0;
// report any reason for why the backend is refusing to initialise
virtual const char *prearm_failure_reason(void) const {
return nullptr;
}
// Euler angles (radians)
float roll;
float pitch;
float yaw;
// integer Euler angles (Degrees * 100)
int32_t roll_sensor;
int32_t pitch_sensor;
int32_t yaw_sensor;
// return a smoothed and corrected gyro vector
virtual const Vector3f &get_gyro(void) const = 0;
// return the current estimate of the gyro drift
virtual const Vector3f &get_gyro_drift(void) const = 0;
// reset the current gyro drift estimate
// should be called if gyro offsets are recalculated
virtual void reset_gyro_drift(void) = 0;
// reset the current attitude, used on new IMU calibration
virtual void reset(bool recover_eulers=false) = 0;
// reset the current attitude, used on new IMU calibration
virtual void reset_attitude(const float &roll, const float &pitch, const float &yaw) = 0;
// return the average size of the roll/pitch error estimate
// since last call
virtual float get_error_rp(void) const = 0;
// return the average size of the yaw error estimate
// since last call
virtual float get_error_yaw(void) const = 0;
// return a DCM rotation matrix representing our current
// attitude
virtual const Matrix3f &get_dcm_matrix(void) const = 0;
// get our current position estimate. Return true if a position is available,
// otherwise false. This call fills in lat, lng and alt
virtual bool get_position(struct Location &loc) const = 0;
// return a wind estimation vector, in m/s
virtual Vector3f wind_estimate(void) = 0;
// return an airspeed estimate if available. return true
// if we have an estimate
virtual bool airspeed_estimate(float *airspeed_ret) const;
// return a true airspeed estimate (navigation airspeed) if
// available. return true if we have an estimate
bool airspeed_estimate_true(float *airspeed_ret) const {
if (!airspeed_estimate(airspeed_ret)) {
return false;
}
*airspeed_ret *= get_EAS2TAS();
return true;
}
// get apparent to true airspeed ratio
float get_EAS2TAS(void) const {
if (_airspeed) {
return _airspeed->get_EAS2TAS();
}
return 1.0f;
}
// return true if airspeed comes from an airspeed sensor, as
// opposed to an IMU estimate
bool airspeed_sensor_enabled(void) const {
return _airspeed != NULL && _airspeed->use() && _airspeed->healthy();
}
// return a ground vector estimate in meters/second, in North/East order
virtual Vector2f groundspeed_vector(void);
// return a ground velocity in meters/second, North/East/Down
// order. This will only be accurate if have_inertial_nav() is
// true
virtual bool get_velocity_NED(Vector3f &vec) const {
return false;
}
// return a position relative to home in meters, North/East/Down
// order. This will only be accurate if have_inertial_nav() is
// true
virtual bool get_relative_position_NED(Vector3f &vec) const {
return false;
}
// return ground speed estimate in meters/second. Used by ground vehicles.
float groundspeed(void) const {
if (_gps.status() <= AP_GPS::NO_FIX) {
return 0.0f;
}
return _gps.ground_speed();
}
// return true if we will use compass for yaw
virtual bool use_compass(void) {
return _compass && _compass->use_for_yaw();
}
// return true if yaw has been initialised
bool yaw_initialised(void) const {
return _flags.have_initial_yaw;
}
// set the correct centrifugal flag
// allows arducopter to disable corrections when disarmed
void set_correct_centrifugal(bool setting) {
_flags.correct_centrifugal = setting;
}
// get the correct centrifugal flag
bool get_correct_centrifugal(void) const {
return _flags.correct_centrifugal;
}
// get trim
const Vector3f &get_trim() const {
return _trim.get();
}
// set trim
virtual void set_trim(Vector3f new_trim);
// add_trim - adjust the roll and pitch trim up to a total of 10 degrees
virtual void add_trim(float roll_in_radians, float pitch_in_radians, bool save_to_eeprom = true);
// helper trig value accessors
float cos_roll() const {
return _cos_roll;
}
float cos_pitch() const {
return _cos_pitch;
}
float cos_yaw() const {
return _cos_yaw;
}
float sin_roll() const {
return _sin_roll;
}
float sin_pitch() const {
return _sin_pitch;
}
float sin_yaw() const {
return _sin_yaw;
}
// for holding parameters
static const struct AP_Param::GroupInfo var_info[];
// return secondary attitude solution if available, as eulers in radians
virtual bool get_secondary_attitude(Vector3f &eulers) {
return false;
}
// return secondary position solution if available
virtual bool get_secondary_position(struct Location &loc) {
return false;
}
// get the home location. This is const to prevent any changes to
// home without telling AHRS about the change
const struct Location &get_home(void) const {
return _home;
}
// set the home location in 10e7 degrees. This should be called
// when the vehicle is at this position. It is assumed that the
// current barometer and GPS altitudes correspond to this altitude
virtual void set_home(const Location &loc) = 0;
// return true if the AHRS object supports inertial navigation,
// with very accurate position and velocity
virtual bool have_inertial_nav(void) const {
return false;
}
// return the active accelerometer instance
uint8_t get_active_accel_instance(void) const {
return _active_accel_instance;
}
// is the AHRS subsystem healthy?
virtual bool healthy(void) const = 0;
// true if the AHRS has completed initialisation
virtual bool initialised(void) const {
return true;
};
// return the amount of yaw angle change due to the last yaw angle reset in radians
// returns the time of the last yaw angle reset or 0 if no reset has ever occurred
virtual uint32_t getLastYawResetAngle(float &yawAng) {
return false;
};
// Resets the baro so that it reads zero at the current height
// Resets the EKF height to zero
// Adjusts the EKf origin height so that the EKF height + origin height is the same as before
// Returns true if the height datum reset has been performed
// If using a range finder for height no reset is performed and it returns false
virtual bool resetHeightDatum(void) {
return false;
}
// time that the AHRS has been up
virtual uint32_t uptime_ms(void) const = 0;
protected:
AHRS_VehicleClass _vehicle_class;
// settable parameters
// these are public for ArduCopter
AP_Float _kp_yaw;
AP_Float _kp;
AP_Float gps_gain;
AP_Float beta;
AP_Int8 _gps_use;
AP_Int8 _wind_max;
AP_Int8 _board_orientation;
AP_Int8 _gps_minsats;
AP_Int8 _gps_delay;
AP_Int8 _ekf_type;
// flags structure
struct ahrs_flags {
uint8_t have_initial_yaw : 1; // whether the yaw value has been intialised with a reference
uint8_t fly_forward : 1; // 1 if we can assume the aircraft will be flying forward on its X axis
uint8_t correct_centrifugal : 1; // 1 if we should correct for centrifugal forces (allows arducopter to turn this off when motors are disarmed)
uint8_t wind_estimation : 1; // 1 if we should do wind estimation
} _flags;
// update_trig - recalculates _cos_roll, _cos_pitch, etc based on latest attitude
// should be called after _dcm_matrix is updated
void update_trig(void);
// update roll_sensor, pitch_sensor and yaw_sensor
void update_cd_values(void);
// pointer to compass object, if available
Compass * _compass;
// pointer to OpticalFlow object, if available
const OpticalFlow *_optflow;
// pointer to airspeed object, if available
AP_Airspeed * _airspeed;
// time in microseconds of last compass update
uint32_t _compass_last_update;
// note: we use ref-to-pointer here so that our caller can change the GPS without our noticing
// IMU under us without our noticing.
AP_InertialSensor &_ins;
AP_Baro &_baro;
const AP_GPS &_gps;
// a vector to capture the difference between the controller and body frames
AP_Vector3f _trim;
// the limit of the gyro drift claimed by the sensors, in
// radians/s/s
float _gyro_drift_limit;
// accelerometer values in the earth frame in m/s/s
Vector3f _accel_ef[INS_MAX_INSTANCES];
Vector3f _accel_ef_blended;
// Declare filter states for HPF and LPF used by complementary
// filter in AP_AHRS::groundspeed_vector
Vector2f _lp; // ground vector low-pass filter
Vector2f _hp; // ground vector high-pass filter
Vector2f _lastGndVelADS; // previous HPF input
// reference position for NED positions
struct Location _home;
// helper trig variables
float _cos_roll, _cos_pitch, _cos_yaw;
float _sin_roll, _sin_pitch, _sin_yaw;
// which accelerometer instance is active
uint8_t _active_accel_instance;
};
#include "AP_AHRS_DCM.h"
#include "AP_AHRS_NavEKF.h"
#if AP_AHRS_NAVEKF_AVAILABLE
#define AP_AHRS_TYPE AP_AHRS_NavEKF
#else
#define AP_AHRS_TYPE AP_AHRS
#endif
#endif // __AP_AHRS_H__