mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-22 00:28:30 -04:00
edad43611d
this gives more time for the GCS to send its first heartbeat
213 lines
7.2 KiB
Plaintext
213 lines
7.2 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
//Function that will read the radio data, limit servos and trigger a failsafe
|
|
// ----------------------------------------------------------------------------
|
|
static uint8_t failsafeCounter = 0; // we wait a second to take over the throttle and send the plane circling
|
|
|
|
|
|
extern RC_Channel* rc_ch[8];
|
|
|
|
static void init_rc_in()
|
|
{
|
|
// set rc channel ranges
|
|
g.channel_roll.set_angle(SERVO_MAX);
|
|
g.channel_pitch.set_angle(SERVO_MAX);
|
|
g.channel_rudder.set_angle(SERVO_MAX);
|
|
g.channel_throttle.set_range(0, 100);
|
|
|
|
// set rc dead zones
|
|
g.channel_roll.set_dead_zone(60);
|
|
g.channel_pitch.set_dead_zone(60);
|
|
g.channel_rudder.set_dead_zone(60);
|
|
g.channel_throttle.set_dead_zone(6);
|
|
|
|
//g.channel_roll.dead_zone = 60;
|
|
//g.channel_pitch.dead_zone = 60;
|
|
//g.channel_rudder.dead_zone = 60;
|
|
//g.channel_throttle.dead_zone = 6;
|
|
|
|
rc_ch[CH_1] = &g.channel_roll;
|
|
rc_ch[CH_2] = &g.channel_pitch;
|
|
rc_ch[CH_3] = &g.channel_throttle;
|
|
rc_ch[CH_4] = &g.channel_rudder;
|
|
rc_ch[CH_5] = &g.rc_5;
|
|
rc_ch[CH_6] = &g.rc_6;
|
|
rc_ch[CH_7] = &g.rc_7;
|
|
rc_ch[CH_8] = &g.rc_8;
|
|
|
|
//set auxiliary ranges
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
|
|
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8, &g.rc_9, &g.rc_10, &g.rc_11);
|
|
#else
|
|
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8);
|
|
#endif
|
|
}
|
|
|
|
static void init_rc_out()
|
|
{
|
|
hal.rcout->enable_ch(CH_1);
|
|
hal.rcout->enable_ch(CH_2);
|
|
hal.rcout->enable_ch(CH_3);
|
|
hal.rcout->enable_ch(CH_4);
|
|
enable_aux_servos();
|
|
|
|
// Initialization of servo outputs
|
|
hal.rcout->write(CH_1, g.channel_roll.radio_trim);
|
|
hal.rcout->write(CH_2, g.channel_pitch.radio_trim);
|
|
hal.rcout->write(CH_3, g.channel_throttle.radio_min);
|
|
hal.rcout->write(CH_4, g.channel_rudder.radio_trim);
|
|
|
|
hal.rcout->write(CH_5, g.rc_5.radio_trim);
|
|
hal.rcout->write(CH_6, g.rc_6.radio_trim);
|
|
hal.rcout->write(CH_7, g.rc_7.radio_trim);
|
|
hal.rcout->write(CH_8, g.rc_8.radio_trim);
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
|
|
hal.rcout->write(CH_9, g.rc_9.radio_trim);
|
|
hal.rcout->write(CH_10, g.rc_10.radio_trim);
|
|
hal.rcout->write(CH_11, g.rc_11.radio_trim);
|
|
#endif
|
|
}
|
|
|
|
static void read_radio()
|
|
{
|
|
ch1_temp = hal.rcin->read(CH_ROLL);
|
|
ch2_temp = hal.rcin->read(CH_PITCH);
|
|
uint16_t pwm_roll, pwm_pitch;
|
|
|
|
if (g.mix_mode == 0) {
|
|
pwm_roll = ch1_temp;
|
|
pwm_pitch = ch2_temp;
|
|
}else{
|
|
pwm_roll = BOOL_TO_SIGN(g.reverse_elevons) * (BOOL_TO_SIGN(g.reverse_ch2_elevon) * int(ch2_temp - elevon2_trim) - BOOL_TO_SIGN(g.reverse_ch1_elevon) * int(ch1_temp - elevon1_trim)) / 2 + 1500;
|
|
pwm_pitch = (BOOL_TO_SIGN(g.reverse_ch2_elevon) * int(ch2_temp - elevon2_trim) + BOOL_TO_SIGN(g.reverse_ch1_elevon) * int(ch1_temp - elevon1_trim)) / 2 + 1500;
|
|
}
|
|
|
|
if (control_mode == TRAINING) {
|
|
// in training mode we don't want to use a deadzone, as we
|
|
// want manual pass through when not exceeding attitude limits
|
|
g.channel_roll.set_pwm_no_deadzone(pwm_roll);
|
|
g.channel_pitch.set_pwm_no_deadzone(pwm_pitch);
|
|
g.channel_throttle.set_pwm_no_deadzone(hal.rcin->read(CH_3));
|
|
g.channel_rudder.set_pwm_no_deadzone(hal.rcin->read(CH_4));
|
|
} else {
|
|
g.channel_roll.set_pwm(pwm_roll);
|
|
g.channel_pitch.set_pwm(pwm_pitch);
|
|
g.channel_throttle.set_pwm(hal.rcin->read(CH_3));
|
|
g.channel_rudder.set_pwm(hal.rcin->read(CH_4));
|
|
}
|
|
|
|
g.rc_5.set_pwm(hal.rcin->read(CH_5));
|
|
g.rc_6.set_pwm(hal.rcin->read(CH_6));
|
|
g.rc_7.set_pwm(hal.rcin->read(CH_7));
|
|
g.rc_8.set_pwm(hal.rcin->read(CH_8));
|
|
|
|
control_failsafe(g.channel_throttle.radio_in);
|
|
|
|
g.channel_throttle.servo_out = g.channel_throttle.control_in;
|
|
|
|
if (g.throttle_nudge && g.channel_throttle.servo_out > 50) {
|
|
float nudge = (g.channel_throttle.servo_out - 50) * 0.02;
|
|
if (alt_control_airspeed()) {
|
|
airspeed_nudge_cm = (g.flybywire_airspeed_max * 100 - g.airspeed_cruise_cm) * nudge;
|
|
} else {
|
|
throttle_nudge = (g.throttle_max - g.throttle_cruise) * nudge;
|
|
}
|
|
} else {
|
|
airspeed_nudge_cm = 0;
|
|
throttle_nudge = 0;
|
|
}
|
|
|
|
/*
|
|
* cliSerial->printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d \n"),
|
|
* (int)g.rc_1.control_in,
|
|
* (int)g.rc_2.control_in,
|
|
* (int)g.rc_3.control_in,
|
|
* (int)g.rc_4.control_in);
|
|
*/
|
|
}
|
|
|
|
static void control_failsafe(uint16_t pwm)
|
|
{
|
|
if(g.throttle_fs_enabled == 0)
|
|
return;
|
|
|
|
// Check for failsafe condition based on loss of GCS control
|
|
if (rc_override_active) {
|
|
if (millis() - last_heartbeat_ms > FAILSAFE_SHORT_TIME) {
|
|
ch3_failsafe = true;
|
|
} else {
|
|
ch3_failsafe = false;
|
|
}
|
|
|
|
//Check for failsafe and debounce funky reads
|
|
} else if (g.throttle_fs_enabled) {
|
|
if (pwm < (unsigned)g.throttle_fs_value) {
|
|
// we detect a failsafe from radio
|
|
// throttle has dropped below the mark
|
|
failsafeCounter++;
|
|
if (failsafeCounter == 9) {
|
|
gcs_send_text_fmt(PSTR("MSG FS ON %u"), (unsigned)pwm);
|
|
}else if(failsafeCounter == 10) {
|
|
ch3_failsafe = true;
|
|
}else if (failsafeCounter > 10) {
|
|
failsafeCounter = 11;
|
|
}
|
|
|
|
}else if(failsafeCounter > 0) {
|
|
// we are no longer in failsafe condition
|
|
// but we need to recover quickly
|
|
failsafeCounter--;
|
|
if (failsafeCounter > 3) {
|
|
failsafeCounter = 3;
|
|
}
|
|
if (failsafeCounter == 1) {
|
|
gcs_send_text_fmt(PSTR("MSG FS OFF %u"), (unsigned)pwm);
|
|
}else if(failsafeCounter == 0) {
|
|
ch3_failsafe = false;
|
|
}else if (failsafeCounter <0) {
|
|
failsafeCounter = -1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void trim_control_surfaces()
|
|
{
|
|
read_radio();
|
|
// Store control surface trim values
|
|
// ---------------------------------
|
|
if(g.mix_mode == 0) {
|
|
g.channel_roll.radio_trim = g.channel_roll.radio_in;
|
|
g.channel_pitch.radio_trim = g.channel_pitch.radio_in;
|
|
|
|
// the secondary aileron is trimmed only if it has a
|
|
// corresponding transmitter input channel, which k_aileron
|
|
// doesn't have
|
|
RC_Channel_aux::set_radio_trim(RC_Channel_aux::k_aileron_with_input);
|
|
} else{
|
|
elevon1_trim = ch1_temp;
|
|
elevon2_trim = ch2_temp;
|
|
//Recompute values here using new values for elevon1_trim and elevon2_trim
|
|
//We cannot use radio_in[CH_ROLL] and radio_in[CH_PITCH] values from read_radio() because the elevon trim values have changed
|
|
uint16_t center = 1500;
|
|
g.channel_roll.radio_trim = center;
|
|
g.channel_pitch.radio_trim = center;
|
|
}
|
|
g.channel_rudder.radio_trim = g.channel_rudder.radio_in;
|
|
|
|
// save to eeprom
|
|
g.channel_roll.save_eeprom();
|
|
g.channel_pitch.save_eeprom();
|
|
g.channel_rudder.save_eeprom();
|
|
}
|
|
|
|
static void trim_radio()
|
|
{
|
|
for (uint8_t y = 0; y < 30; y++) {
|
|
read_radio();
|
|
}
|
|
|
|
trim_control_surfaces();
|
|
}
|