ardupilot/ArduCopter/ArduCopterMega.pde
Andrew Tridgell 1456a2a912 renamed top level directories
ArduCopterMega -> ArduCopter
added archives directory for old code
2011-09-09 11:27:41 +10:00

1520 lines
41 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
ArduCopter Version 2.0 Beta
Authors: Jason Short
Based on code and ideas from the Arducopter team: Jose Julio, Randy Mackay, Jani Hirvinen
Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier
This firmware is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Special Thanks for Contributors:
Hein Hollander :Octo Support
Dani Saez :V Ocoto Support
Max Levine :Tri Support, Graphics
Jose Julio :Stabilization Control laws
Randy MacKay :Heli Support
Jani Hiriven :Testing feedback
Andrew Tridgell :Mavlink Support
James Goppert :Mavlink Support
Doug Weibel :Libraries
Mike Smith :Libraries, Coding support
HappyKillmore :Mavlink GCS
Michael Oborne :Mavlink GCS
Jack Dunkle :Alpha testing
Christof Schmid :Alpha testing
Guntars :Arming safety suggestion
And much more so PLEASE PM me on DIYDRONES to add your contribution to the List
*/
////////////////////////////////////////////////////////////////////////////////
// Header includes
////////////////////////////////////////////////////////////////////////////////
// AVR runtime
#include <avr/io.h>
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
#include <math.h>
// Libraries
#include <FastSerial.h>
#include <AP_Common.h>
#include <APM_RC.h> // ArduPilot Mega RC Library
#include <AP_GPS.h> // ArduPilot GPS library
#include <Wire.h> // Arduino I2C lib
#include <SPI.h>
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
#include <APM_BMP085.h> // ArduPilot Mega BMP085 Library
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <AP_IMU.h> // ArduPilot Mega IMU Library
#include <AP_DCM.h> // ArduPilot Mega DCM Library
#include <APM_PI.h> // PI library
#include <RC_Channel.h> // RC Channel Library
#include <AP_RangeFinder.h> // Range finder library
#include <AP_OpticalFlow.h> // Optical Flow library
#include <ModeFilter.h>
#include <GCS_MAVLink.h> // MAVLink GCS definitions
#include <memcheck.h>
// Configuration
#include "defines.h"
#include "config.h"
// Local modules
#include "Parameters.h"
#include "GCS.h"
#include "HIL.h"
////////////////////////////////////////////////////////////////////////////////
// Serial ports
////////////////////////////////////////////////////////////////////////////////
//
// Note that FastSerial port buffers are allocated at ::begin time,
// so there is not much of a penalty to defining ports that we don't
// use.
//
FastSerialPort0(Serial); // FTDI/console
FastSerialPort1(Serial1); // GPS port
FastSerialPort3(Serial3); // Telemetry port
////////////////////////////////////////////////////////////////////////////////
// Parameters
////////////////////////////////////////////////////////////////////////////////
//
// Global parameters are all contained within the 'g' class.
//
static Parameters g;
////////////////////////////////////////////////////////////////////////////////
// prototypes
static void update_events(void);
////////////////////////////////////////////////////////////////////////////////
// Sensors
////////////////////////////////////////////////////////////////////////////////
//
// There are three basic options related to flight sensor selection.
//
// - Normal flight mode. Real sensors are used.
// - HIL Attitude mode. Most sensors are disabled, as the HIL
// protocol supplies attitude information directly.
// - HIL Sensors mode. Synthetic sensors are configured that
// supply data from the simulation.
//
// All GPS access should be through this pointer.
static GPS *g_gps;
// flight modes convenience array
static AP_Int8 *flight_modes = &g.flight_mode1;
#if HIL_MODE == HIL_MODE_DISABLED
// real sensors
AP_ADC_ADS7844 adc;
APM_BMP085_Class barometer;
AP_Compass_HMC5843 compass(Parameters::k_param_compass);
#ifdef OPTFLOW_ENABLED
AP_OpticalFlow_ADNS3080 optflow;
#endif
// real GPS selection
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO
AP_GPS_Auto g_gps_driver(&Serial1, &g_gps);
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA
AP_GPS_NMEA g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
AP_GPS_SIRF g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
AP_GPS_UBLOX g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
AP_GPS_MTK g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16
AP_GPS_MTK16 g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
AP_GPS_None g_gps_driver(NULL);
#else
#error Unrecognised GPS_PROTOCOL setting.
#endif // GPS PROTOCOL
#elif HIL_MODE == HIL_MODE_SENSORS
// sensor emulators
AP_ADC_HIL adc;
APM_BMP085_HIL_Class barometer;
AP_Compass_HIL compass;
AP_GPS_HIL g_gps_driver(NULL);
#elif HIL_MODE == HIL_MODE_ATTITUDE
AP_ADC_HIL adc;
AP_DCM_HIL dcm;
AP_GPS_HIL g_gps_driver(NULL);
AP_Compass_HIL compass; // never used
AP_IMU_Shim imu; // never used
#ifdef OPTFLOW_ENABLED
AP_OpticalFlow_ADNS3080 optflow;
#endif
static int32_t gps_base_alt;
#else
#error Unrecognised HIL_MODE setting.
#endif // HIL MODE
#if HIL_MODE != HIL_MODE_DISABLED
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK
GCS_MAVLINK hil(Parameters::k_param_streamrates_port0);
#elif HIL_PROTOCOL == HIL_PROTOCOL_XPLANE
HIL_XPLANE hil;
#endif // HIL PROTOCOL
#endif // HIL_MODE
// We may have a hil object instantiated just for mission planning
#if HIL_MODE == HIL_MODE_DISABLED && HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && HIL_PORT == 0
GCS_MAVLINK hil(Parameters::k_param_streamrates_port0);
#endif
#if HIL_MODE != HIL_MODE_ATTITUDE
#if HIL_MODE != HIL_MODE_SENSORS
// Normal
AP_IMU_Oilpan imu(&adc, Parameters::k_param_IMU_calibration);
#else
// hil imu
AP_IMU_Shim imu;
#endif
// normal dcm
AP_DCM dcm(&imu, g_gps);
#endif
////////////////////////////////////////////////////////////////////////////////
// GCS selection
////////////////////////////////////////////////////////////////////////////////
//
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK
GCS_MAVLINK gcs(Parameters::k_param_streamrates_port3);
#else
// If we are not using a GCS, we need a stub that does nothing.
GCS_Class gcs;
#endif
//#include <GCS_SIMPLE.h>
//GCS_SIMPLE gcs_simple(&Serial);
////////////////////////////////////////////////////////////////////////////////
// SONAR selection
////////////////////////////////////////////////////////////////////////////////
//
ModeFilter sonar_mode_filter;
#if SONAR_TYPE == MAX_SONAR_XL
AP_RangeFinder_MaxsonarXL sonar(&adc, &sonar_mode_filter);//(SONAR_PORT, &adc);
#else
#error Unrecognised SONAR_TYPE setting.
#endif
////////////////////////////////////////////////////////////////////////////////
// Global variables
////////////////////////////////////////////////////////////////////////////////
static const char *comma = ",";
static const char* flight_mode_strings[] = {
"STABILIZE",
"ACRO",
"SIMPLE",
"ALT_HOLD",
"AUTO",
"GUIDED",
"LOITER",
"RTL",
"CIRCLE"};
/* Radio values
Channel assignments
1 Ailerons (rudder if no ailerons)
2 Elevator
3 Throttle
4 Rudder (if we have ailerons)
5 Mode - 3 position switch
6 User assignable
7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second)
8 TBD
*/
// test
//Vector3f accels_rot;
//float accel_gain = 20;
// temp
int y_actual_speed;
int y_rate_error;
// calc the
int x_actual_speed;
int x_rate_error;
// Radio
// -----
static byte control_mode = STABILIZE;
static byte old_control_mode = STABILIZE;
static byte oldSwitchPosition; // for remembering the control mode switch
static int motor_out[8];
// Heli
// ----
#if FRAME_CONFIG == HELI_FRAME
static float heli_rollFactor[3], heli_pitchFactor[3]; // only required for 3 swashplate servos
static int heli_servo_min[3], heli_servo_max[3]; // same here. for yaw servo we use heli_servo4_min/max parameter directly
static int heli_servo_out[4];
#endif
// Failsafe
// --------
static boolean failsafe; // did our throttle dip below the failsafe value?
static boolean ch3_failsafe;
static boolean motor_armed;
static boolean motor_auto_armed; // if true,
// PIDs
// ----
//int max_stabilize_dampener; //
//int max_yaw_dampener; //
static Vector3f omega;
// LED output
// ----------
static boolean motor_light; // status of the Motor safety
static boolean GPS_light; // status of the GPS light
static byte led_mode = NORMAL_LEDS;
// GPS variables
// -------------
static const float t7 = 10000000.0; // used to scale GPS values for EEPROM storage
static float scaleLongUp = 1; // used to reverse longtitude scaling
static float scaleLongDown = 1; // used to reverse longtitude scaling
static byte ground_start_count = 10; // have we achieved first lock and set Home?
static bool did_ground_start = false; // have we ground started after first arming
// Location & Navigation
// ---------------------
static const float radius_of_earth = 6378100; // meters
static const float gravity = 9.81; // meters/ sec^2
static long nav_bearing; // deg * 100 : 0 to 360 current desired bearing to navigate
static long target_bearing; // deg * 100 : 0 to 360 location of the plane to the target
static bool xtrack_enabled = false;
static long crosstrack_bearing; // deg * 100 : 0 to 360 desired angle of plane to target
static int climb_rate; // m/s * 100 - For future implementation of controlled ascent/descent by rate
static byte wp_control; // used to control - navgation or loiter
static byte command_must_index; // current command memory location
static byte command_may_index; // current command memory location
static byte command_must_ID; // current command ID
static byte command_may_ID; // current command ID
static byte wp_verify_byte; // used for tracking state of navigating waypoints
static float cos_roll_x = 1;
static float cos_pitch_x = 1;
static float cos_yaw_x = 1;
static float sin_pitch_y, sin_yaw_y, sin_roll_y;
static long initial_simple_bearing; // used for Simple mode
// Acro
#if CH7_OPTION == DO_FLIP
static bool do_flip = false;
#endif
// Airspeed
// --------
static int airspeed; // m/s * 100
// Location Errors
// ---------------
static long bearing_error; // deg * 100 : 0 to 36000
static long altitude_error; // meters * 100 we are off in altitude
static long old_altitude;
static long yaw_error; // how off are we pointed
static long long_error, lat_error; // temp for debugging
// Battery Sensors
// ---------------
static float battery_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage of total battery, initialized above threshold for filter
static float battery_voltage1 = LOW_VOLTAGE * 1.05; // Battery Voltage of cell 1, initialized above threshold for filter
static float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2, initialized above threshold for filter
static float battery_voltage3 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3, initialized above threshold for filter
static float battery_voltage4 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3 + 4, initialized above threshold for filter
static float current_amps;
static float current_total;
static bool low_batt = false;
// Barometer Sensor variables
// --------------------------
static long abs_pressure;
static long ground_pressure;
static int ground_temperature;
// Altitude Sensor variables
// ----------------------
static int sonar_alt;
static int baro_alt;
//static int baro_alt_offset;
static byte altitude_sensor = BARO; // used to know which sensor is active, BARO or SONAR
static int altitude_rate;
// flight mode specific
// --------------------
static byte yaw_mode;
static byte roll_pitch_mode;
static byte throttle_mode;
static boolean takeoff_complete; // Flag for using take-off controls
static boolean land_complete;
//static int landing_distance; // meters;
static long old_alt; // used for managing altitude rates
static int velocity_land;
static byte yaw_tracking = MAV_ROI_WPNEXT; // no tracking, point at next wp, or at a target
// Loiter management
// -----------------
static long saved_target_bearing; // deg * 100
static unsigned long loiter_time; // millis : when we started LOITER mode
static unsigned long loiter_time_max; // millis : how long to stay in LOITER mode
// these are the values for navigation control functions
// ----------------------------------------------------
static long nav_roll; // deg * 100 : target roll angle
static long nav_pitch; // deg * 100 : target pitch angle
static long nav_yaw; // deg * 100 : target yaw angle
static long auto_yaw; // deg * 100 : target yaw angle
static long nav_lat; // for error calcs
static long nav_lon; // for error calcs
static int nav_throttle; // 0-1000 for throttle control
static long throttle_integrator; // used to integrate throttle output to predict battery life
static bool invalid_throttle; // used to control when we calculate nav_throttle
//static bool set_throttle_cruise_flag = false; // used to track the throttle crouse value
static long command_yaw_start; // what angle were we to begin with
static unsigned long command_yaw_start_time; // when did we start turning
static unsigned int command_yaw_time; // how long we are turning
static long command_yaw_end; // what angle are we trying to be
static long command_yaw_delta; // how many degrees will we turn
static int command_yaw_speed; // how fast to turn
static byte command_yaw_dir;
static byte command_yaw_relative;
static int auto_level_counter;
// Waypoints
// ---------
static long wp_distance; // meters - distance between plane and next waypoint
static long wp_totalDistance; // meters - distance between old and next waypoint
//static byte next_wp_index; // Current active command index
// repeating event control
// -----------------------
static byte event_id; // what to do - see defines
static unsigned long event_timer; // when the event was asked for in ms
static unsigned int event_delay; // how long to delay the next firing of event in millis
static int event_repeat; // how many times to fire : 0 = forever, 1 = do once, 2 = do twice
static int event_value; // per command value, such as PWM for servos
static int event_undo_value; // the value used to undo commands
//static byte repeat_forever;
static byte undo_event; // counter for timing the undo
// delay command
// --------------
static long condition_value; // used in condition commands (eg delay, change alt, etc.)
static long condition_start;
static int condition_rate;
// land command
// ------------
static long land_start; // when we intiated command in millis()
static long original_alt; // altitide reference for start of command
// 3D Location vectors
// -------------------
static struct Location home; // home location
static struct Location prev_WP; // last waypoint
static struct Location current_loc; // current location
static struct Location next_WP; // next waypoint
static struct Location target_WP; // where do we want to you towards?
static struct Location simple_WP; //
static struct Location next_command; // command preloaded
static struct Location guided_WP; // guided mode waypoint
static long target_altitude; // used for
static boolean home_is_set; // Flag for if we have g_gps lock and have set the home location
static struct Location optflow_offset; // optical flow base position
static boolean new_location; // flag to tell us if location has been updated
// IMU variables
// -------------
static float G_Dt = 0.02; // Integration time for the gyros (DCM algorithm)
// Performance monitoring
// ----------------------
static long perf_mon_timer;
//static float imu_health; // Metric based on accel gain deweighting
static int G_Dt_max; // Max main loop cycle time in milliseconds
static int gps_fix_count;
// GCS
// ---
//static char GCS_buffer[53];
//static char display_PID = -1; // Flag used by DebugTerminal to indicate that the next PID calculation with this index should be displayed
// System Timers
// --------------
static unsigned long fast_loopTimer; // Time in miliseconds of main control loop
static unsigned long fast_loopTimeStamp; // Time Stamp when fast loop was complete
static uint8_t delta_ms_fast_loop; // Delta Time in miliseconds
static int mainLoop_count;
static unsigned long medium_loopTimer; // Time in miliseconds of navigation control loop
static byte medium_loopCounter; // Counters for branching from main control loop to slower loops
static uint8_t delta_ms_medium_loop;
static unsigned long fiftyhz_loopTimer;
static uint8_t delta_ms_fiftyhz;
static byte slow_loopCounter;
static int superslow_loopCounter;
static byte alt_timer; // for limiting the execution of flight mode thingys
static byte simple_timer; // for limiting the execution of flight mode thingys
static unsigned long dTnav; // Delta Time in milliseconds for navigation computations
static unsigned long nav_loopTimer; // used to track the elapsed ime for GPS nav
static float load; // % MCU cycles used
static byte counter_one_herz;
static bool GPS_enabled = false;
static byte loop_step;
////////////////////////////////////////////////////////////////////////////////
// Top-level logic
////////////////////////////////////////////////////////////////////////////////
void setup() {
memcheck_init();
init_ardupilot();
}
void loop()
{
// We want this to execute fast
// ----------------------------
if (millis() - fast_loopTimer >= 5) {
//PORTK |= B00010000;
delta_ms_fast_loop = millis() - fast_loopTimer;
fast_loopTimer = millis();
load = float(fast_loopTimeStamp - fast_loopTimer) / delta_ms_fast_loop;
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator
mainLoop_count++;
//if (delta_ms_fast_loop > 6)
// Log_Write_Performance();
// Execute the fast loop
// ---------------------
fast_loop();
fast_loopTimeStamp = millis();
}
if (millis() - fiftyhz_loopTimer > 19) {
delta_ms_fiftyhz = millis() - fiftyhz_loopTimer;
fiftyhz_loopTimer = millis();
//PORTK |= B01000000;
// reads all of the necessary trig functions for cameras, throttle, etc.
update_trig();
medium_loop();
// Stuff to run at full 50hz, but after the loops
fifty_hz_loop();
counter_one_herz++;
if(counter_one_herz == 50){
super_slow_loop();
counter_one_herz = 0;
}
if (millis() - perf_mon_timer > 20000) {
if (mainLoop_count != 0) {
gcs.send_message(MSG_PERF_REPORT);
if (g.log_bitmask & MASK_LOG_PM)
Log_Write_Performance();
resetPerfData();
}
}
//PORTK &= B10111111;
}
//PORTK &= B11101111;
}
// PORTK |= B01000000;
// PORTK &= B10111111;
// Main loop
static void fast_loop()
{
// IMU DCM Algorithm
read_AHRS();
// This is the fast loop - we want it to execute at >= 100Hz
// ---------------------------------------------------------
if (delta_ms_fast_loop > G_Dt_max)
G_Dt_max = delta_ms_fast_loop;
// Read radio
// ----------
read_radio();
// try to send any deferred messages if the serial port now has
// some space available
gcs.send_message(MSG_RETRY_DEFERRED);
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && (HIL_MODE != HIL_MODE_DISABLED || HIL_PORT == 0)
hil.send_message(MSG_RETRY_DEFERRED);
#endif
// custom code/exceptions for flight modes
// ---------------------------------------
update_yaw_mode();
update_roll_pitch_mode();
update_throttle_mode();
// write out the servo PWM values
// ------------------------------
set_servos_4();
}
static void medium_loop()
{
// This is the start of the medium (10 Hz) loop pieces
// -----------------------------------------
switch(medium_loopCounter) {
// This case deals with the GPS and Compass
//-----------------------------------------
case 0:
loop_step = 1;
medium_loopCounter++;
if(GPS_enabled){
update_GPS();
}
//readCommands();
#if HIL_MODE != HIL_MODE_ATTITUDE
if(g.compass_enabled){
compass.read(); // Read magnetometer
compass.calculate(dcm.get_dcm_matrix()); // Calculate heading
compass.null_offsets(dcm.get_dcm_matrix());
}
#endif
// auto_trim, uses an auto_level algorithm
auto_trim();
break;
// This case performs some navigation computations
//------------------------------------------------
case 1:
loop_step = 2;
medium_loopCounter++;
// hack to stop navigation in Simple mode
if (control_mode == SIMPLE){
// clear GPS data
g_gps->new_data = false;
break;
}
// Auto control modes:
if(g_gps->new_data && g_gps->fix){
loop_step = 11;
// invalidate GPS data
g_gps->new_data = false;
// we are not tracking I term on navigation, so this isn't needed
dTnav = millis() - nav_loopTimer;
nav_loopTimer = millis();
// calculate the copter's desired bearing and WP distance
// ------------------------------------------------------
navigate();
// control mode specific updates to nav_bearing
// --------------------------------------------
update_navigation();
if (g.log_bitmask & MASK_LOG_NTUN)
Log_Write_Nav_Tuning();
}
break;
// command processing
//-------------------
case 2:
loop_step = 3;
medium_loopCounter++;
// Read altitude from sensors
// --------------------------
update_altitude();
// altitude smoothing
// ------------------
//calc_altitude_smoothing_error();
altitude_error = get_altitude_error();
//camera_stabilization();
// invalidate the throttle hold value
// ----------------------------------
invalid_throttle = true;
break;
// This case deals with sending high rate telemetry
//-------------------------------------------------
case 3:
loop_step = 4;
medium_loopCounter++;
// perform next command
// --------------------
if(control_mode == AUTO){
update_commands();
}
#if HIL_MODE != HIL_MODE_ATTITUDE
if (g.log_bitmask & MASK_LOG_ATTITUDE_MED)
Log_Write_Attitude();
if (g.log_bitmask & MASK_LOG_CTUN && motor_armed)
Log_Write_Control_Tuning();
#endif
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK
gcs.data_stream_send(5,45);
// send all requested output streams with rates requested
// between 5 and 45 Hz
#else
gcs.send_message(MSG_ATTITUDE); // Sends attitude data
#endif
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && (HIL_MODE != HIL_MODE_DISABLED || HIL_PORT == 0)
hil.data_stream_send(5,45);
#endif
if (g.log_bitmask & MASK_LOG_MOTORS)
Log_Write_Motors();
break;
// This case controls the slow loop
//---------------------------------
case 4:
loop_step = 5;
medium_loopCounter = 0;
delta_ms_medium_loop = millis() - medium_loopTimer;
medium_loopTimer = millis();
if (g.battery_monitoring != 0){
read_battery();
}
// Accel trims = hold > 2 seconds
// Throttle cruise = switch less than 1 second
// --------------------------------------------
read_trim_switch();
// Check for engine arming
// -----------------------
arm_motors();
slow_loop();
break;
default:
// this is just a catch all
// ------------------------
medium_loopCounter = 0;
break;
}
}
// stuff that happens at 50 hz
// ---------------------------
static void fifty_hz_loop()
{
// record throttle output
// ------------------------------
throttle_integrator += g.rc_3.servo_out;
// Read Sonar
// ----------
if(g.sonar_enabled){
sonar_alt = sonar.read();
}
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && HIL_MODE != HIL_MODE_DISABLED
// HIL for a copter needs very fast update of the servo values
hil.send_message(MSG_RADIO_OUT);
#endif
// use Yaw to find our bearing error
calc_bearing_error();
//if (throttle_slew < 0)
// throttle_slew++;
//else if (throttle_slew > 0)
// throttle_slew--;
camera_stabilization();
//throttle_slew = min((800 - g.rc_3.control_in), throttle_slew);
# if HIL_MODE == HIL_MODE_DISABLED
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST)
Log_Write_Attitude();
if (g.log_bitmask & MASK_LOG_RAW)
Log_Write_Raw();
#endif
#if HIL_MODE != HIL_MODE_DISABLED && HIL_PORT != GCS_PORT
// kick the HIL to process incoming sensor packets
hil.update();
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK
hil.data_stream_send(45,1000);
#else
hil.send_message(MSG_SERVO_OUT);
#endif
#elif HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && HIL_MODE == HIL_MODE_DISABLED && HIL_PORT == 0
// Case for hil object on port 0 just for mission planning
hil.update();
hil.data_stream_send(45,1000);
#endif
// kick the GCS to process uplink data
gcs.update();
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK
gcs.data_stream_send(45,1000);
#endif
#if FRAME_CONFIG == TRI_FRAME
// servo Yaw
g.rc_4.calc_pwm();
APM_RC.OutputCh(CH_7, g.rc_4.radio_out);
#endif
}
static void slow_loop()
{
// This is the slow (3 1/3 Hz) loop pieces
//----------------------------------------
switch (slow_loopCounter){
case 0:
loop_step = 6;
slow_loopCounter++;
superslow_loopCounter++;
if(superslow_loopCounter > 800){ // every 4 minutes
#if HIL_MODE != HIL_MODE_ATTITUDE
if(g.rc_3.control_in == 0 && g.compass_enabled){
compass.save_offsets();
superslow_loopCounter = 0;
}
#endif
}
break;
case 1:
loop_step = 7;
slow_loopCounter++;
// Read 3-position switch on radio
// -------------------------------
read_control_switch();
// Read main battery voltage if hooked up - does not read the 5v from radio
// ------------------------------------------------------------------------
//#if BATTERY_EVENT == 1
// read_battery();
//#endif
#if AUTO_RESET_LOITER == 1
if(control_mode == LOITER){
if((abs(g.rc_2.control_in) + abs(g.rc_1.control_in)) > 1500){
// reset LOITER to current position
//next_WP = current_loc;
}
}
#endif
break;
case 2:
loop_step = 8;
slow_loopCounter = 0;
update_events();
// blink if we are armed
update_lights();
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK
gcs.data_stream_send(1,5);
// send all requested output streams with rates requested
// between 1 and 5 Hz
#else
gcs.send_message(MSG_LOCATION);
gcs.send_message(MSG_CPU_LOAD, load*100);
#endif
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && (HIL_MODE != HIL_MODE_DISABLED || HIL_PORT == 0)
hil.data_stream_send(1,5);
#endif
#if CHANNEL_6_TUNING != CH6_NONE
tuning();
#endif
// filter out the baro offset.
//if(baro_alt_offset > 0) baro_alt_offset--;
//if(baro_alt_offset < 0) baro_alt_offset++;
#if MOTOR_LEDS == 1
update_motor_leds();
#endif
break;
default:
slow_loopCounter = 0;
break;
}
}
// 1Hz loop
static void super_slow_loop()
{
loop_step = 9;
if (g.log_bitmask & MASK_LOG_CUR)
Log_Write_Current();
gcs.send_message(MSG_HEARTBEAT);
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && (HIL_MODE != HIL_MODE_DISABLED || HIL_PORT == 0)
hil.send_message(MSG_HEARTBEAT);
#endif
}
static void update_GPS(void)
{
loop_step = 10;
g_gps->update();
update_GPS_light();
//current_loc.lng = 377697000; // Lon * 10 * *7
//current_loc.lat = -1224318000; // Lat * 10 * *7
//current_loc.alt = 100; // alt * 10 * *7
//return;
if (g_gps->new_data && g_gps->fix) {
// XXX We should be sending GPS data off one of the regular loops so that we send
// no-GPS-fix data too
#if GCS_PROTOCOL != GCS_PROTOCOL_MAVLINK
gcs.send_message(MSG_LOCATION);
#endif
// for performance
// ---------------
gps_fix_count++;
if(ground_start_count > 1){
ground_start_count--;
} else if (ground_start_count == 1) {
// We countdown N number of good GPS fixes
// so that the altitude is more accurate
// -------------------------------------
if (current_loc.lat == 0) {
SendDebugln("!! bad loc");
ground_start_count = 5;
}else{
//Serial.printf("init Home!");
// reset our nav loop timer
//nav_loopTimer = millis();
init_home();
// init altitude
// commented out because we aren't using absolute altitude
// current_loc.alt = home.alt;
ground_start_count = 0;
}
}
current_loc.lng = g_gps->longitude; // Lon * 10 * *7
current_loc.lat = g_gps->latitude; // Lat * 10 * *7
if (g.log_bitmask & MASK_LOG_GPS){
Log_Write_GPS();
}
}
}
#ifdef OPTFLOW_ENABLED
// blend gps and optical flow location
void update_location(void)
{
//static int count = 0;
// get GPS position
if(GPS_enabled){
update_GPS();
}
if( g.optflow_enabled ) {
int32_t temp_lat, temp_lng, diff_lat, diff_lng;
// get optical flow position
optflow.read();
optflow.get_position(dcm.roll, dcm.pitch, dcm.yaw, current_loc.alt-home.alt);
// write to log
if (g.log_bitmask & MASK_LOG_OPTFLOW){
Log_Write_Optflow();
}
temp_lat = optflow_offset.lat + optflow.lat;
temp_lng = optflow_offset.lng + optflow.lng;
// if we have good GPS values, don't let optical flow position stray too far
if( GPS_enabled && g_gps->fix ) {
// ensure current location is within 3m of gps location
diff_lat = g_gps->latitude - temp_lat;
diff_lng = g_gps->longitude - temp_lng;
if( diff_lat > 300 ) {
optflow_offset.lat += diff_lat - 300;
//Serial.println("lat inc!");
}
if( diff_lat < -300 ) {
optflow_offset.lat += diff_lat + 300;
//Serial.println("lat dec!");
}
if( diff_lng > 300 ) {
optflow_offset.lng += diff_lng - 300;
//Serial.println("lng inc!");
}
if( diff_lng < -300 ) {
optflow_offset.lng += diff_lng + 300;
//Serial.println("lng dec!");
}
}
// update the current position
current_loc.lat = optflow_offset.lat + optflow.lat;
current_loc.lng = optflow_offset.lng + optflow.lng;
/*count++;
if( count >= 20 ) {
count = 0;
Serial.println();
Serial.print("lat:");
Serial.print(current_loc.lat);
Serial.print("\tlng:");
Serial.print(current_loc.lng);
Serial.print("\tr:");
Serial.print(nav_roll);
Serial.print("\tp:");
Serial.print(nav_pitch);
Serial.println();
}*/
// indicate we have a new position for nav functions
new_location = true;
}else{
// get current position from gps
current_loc.lng = g_gps->longitude; // Lon * 10 * *7
current_loc.lat = g_gps->latitude; // Lat * 10 * *7
new_location = g_gps->new_data;
}
}
#endif
void update_yaw_mode(void)
{
switch(yaw_mode){
case YAW_ACRO:
g.rc_4.servo_out = get_rate_yaw(g.rc_4.control_in);
return;
break;
case YAW_HOLD:
// calcualte new nav_yaw offset
nav_yaw = get_nav_yaw_offset(g.rc_4.control_in, g.rc_3.control_in);
//Serial.printf("n:%d %ld, ",g.rc_4.control_in, nav_yaw);
break;
case YAW_LOOK_AT_HOME:
// copter will always point at home
if(home_is_set){
nav_yaw = point_at_home_yaw();
} else {
nav_yaw = 0;
}
break;
case YAW_AUTO:
nav_yaw += constrain(wrap_180(auto_yaw - nav_yaw), -20, 20);
nav_yaw = wrap_360(nav_yaw);
break;
}
// Yaw control
g.rc_4.servo_out = get_stabilize_yaw(nav_yaw);
//Serial.printf("4: %d\n",g.rc_4.servo_out);
}
void update_roll_pitch_mode(void)
{
#if CH7_OPTION == DO_FLIP
if (do_flip){
roll_flip();
return;
}
#endif
int control_roll = 0, control_pitch = 0;
switch(roll_pitch_mode){
case ROLL_PITCH_ACRO:
// Roll control
g.rc_1.servo_out = get_rate_roll(g.rc_1.control_in);
// Pitch control
g.rc_2.servo_out = get_rate_pitch(g.rc_2.control_in);
return;
break;
case ROLL_PITCH_STABLE:
control_roll = g.rc_1.control_in;
control_pitch = g.rc_2.control_in;
break;
case ROLL_PITCH_SIMPLE:
simple_timer++;
if(simple_timer > 5){
simple_timer = 0;
int delta = wrap_360(dcm.yaw_sensor - initial_simple_bearing)/100;
// pre-calc rotation (stored in real degrees)
// roll
float cos_x = sin(radians(90 - delta));
// pitch
float sin_y = cos(radians(90 - delta));
// Rotate input by the initial bearing
// roll
nav_roll = g.rc_1.control_in * cos_x + g.rc_2.control_in * sin_y;
// pitch
nav_pitch = -(g.rc_1.control_in * sin_y - g.rc_2.control_in * cos_x);
}
control_roll = nav_roll;
control_pitch = nav_pitch;
break;
case ROLL_PITCH_AUTO:
// mix in user control with Nav control
control_roll = g.rc_1.control_mix(nav_roll);
control_pitch = g.rc_2.control_mix(nav_pitch);
break;
}
// Roll control
g.rc_1.servo_out = get_stabilize_roll(control_roll);
// Pitch control
g.rc_2.servo_out = get_stabilize_pitch(control_pitch);
}
void update_throttle_mode(void)
{
switch(throttle_mode){
case THROTTLE_MANUAL:
g.rc_3.servo_out = get_throttle(g.rc_3.control_in);
break;
case THROTTLE_HOLD:
// allow interactive changing of atitude
adjust_altitude();
// fall through
case THROTTLE_AUTO:
if(invalid_throttle && motor_auto_armed == true){
// get the AP throttle
nav_throttle = get_nav_throttle(altitude_error, 200); //150 = target speed of 1.5m/s
// apply throttle control
g.rc_3.servo_out = get_throttle(nav_throttle);
// clear the new data flag
invalid_throttle = false;
}
break;
}
}
// called after a GPS read
static void update_navigation()
{
// wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS
// ------------------------------------------------------------------------
switch(control_mode){
case AUTO:
verify_commands();
// note: wp_control is handled by commands_logic
// calculates desired Yaw
update_auto_yaw();
// calculates the desired Roll and Pitch
update_nav_wp();
break;
case GUIDED:
case RTL:
if(wp_distance > 4){
// calculates desired Yaw
// XXX this is an experiment
#if FRAME_CONFIG == HELI_FRAME
update_auto_yaw();
#endif
wp_control = WP_MODE;
}else{
set_mode(LOITER);
xtrack_enabled = false;
}
// calculates the desired Roll and Pitch
update_nav_wp();
break;
// switch passthrough to LOITER
case LOITER:
wp_control = LOITER_MODE;
// calculates the desired Roll and Pitch
update_nav_wp();
break;
case CIRCLE:
yaw_tracking = MAV_ROI_WPNEXT;
// calculates desired Yaw
update_auto_yaw();
// calc the lat and long error to the target
calc_location_error();
// use error as the desired rate towards the target
// nav_lon, nav_lat is calculated
calc_nav_rate(long_error, lat_error, 200, 0); // move at 3m/s, minimum 2m/s
// rotate nav_lat and nav_long by nav_bearing so we circle the target
{
// rotate the desired direction based on the distance to
// create a vector field
int angle = get_loiter_angle();
// pre-calc rotation (stored in real degrees)
// roll
float cos_x = cos(radians(90 - angle));
// pitch
float sin_y = sin(radians(90 - angle));
// Rotate input by the initial bearing
// roll
long temp_roll = nav_lon * sin_y - nav_lat * cos_x;
// pitch
long temp_pitch = nav_lon * cos_x + nav_lat * sin_y;
// we used temp values to not change the equations
// in mid-rotation
nav_lon = temp_roll;
nav_lat = temp_pitch;
}
// rotate pitch and roll to the copter frame of reference
calc_nav_pitch_roll();
break;
}
}
static void read_AHRS(void)
{
// Perform IMU calculations and get attitude info
//-----------------------------------------------
#if HIL_MODE == HIL_MODE_SENSORS
// update hil before dcm update
hil.update();
#endif
dcm.update_DCM(G_Dt);
omega = dcm.get_gyro();
}
static void update_trig(void){
Vector2f yawvector;
Matrix3f temp = dcm.get_dcm_matrix();
yawvector.x = temp.a.x; // sin
yawvector.y = temp.b.x; // cos
yawvector.normalize();
cos_yaw_x = yawvector.y; // 0 x = north
sin_yaw_y = yawvector.x; // 1 y
sin_pitch_y = -temp.c.x;
cos_pitch_x = sqrt(1 - (temp.c.x * temp.c.x));
cos_roll_x = temp.c.z / cos_pitch_x;
sin_roll_y = temp.c.y / cos_pitch_x;
//flat:
// 0 ° = cp: 1.00, sp: 0.00, cr: 1.00, sr: 0.00, cy: 0.00, sy: 1.00,
// 90° = cp: 1.00, sp: 0.00, cr: 1.00, sr: 0.00, cy: 1.00, sy: 0.00,
// 180 = cp: 1.00, sp: 0.10, cr: 1.00, sr: -0.01, cy: 0.00, sy: -1.00,
// 270 = cp: 1.00, sp: 0.10, cr: 1.00, sr: -0.01, cy: -1.00, sy: 0.00,
//Vector3f accel_filt = imu.get_accel_filtered();
//accels_rot = dcm.get_dcm_matrix() * imu.get_accel_filtered();
}
// updated at 10hz
static void update_altitude()
{
altitude_sensor = BARO;
#if HIL_MODE == HIL_MODE_ATTITUDE
current_loc.alt = g_gps->altitude - gps_base_alt;
return;
#else
if(g.sonar_enabled){
// filter out offset
float scale;
// read barometer
baro_alt = read_barometer();
if(baro_alt < 1000){
#if SONAR_TILT_CORRECTION == 1
// correct alt for angle of the sonar
float temp = cos_pitch_x * cos_roll_x;
temp = max(temp, 0.707);
sonar_alt = (float)sonar_alt * temp;
#endif
scale = (sonar_alt - 400) / 200;
scale = constrain(scale, 0, 1);
current_loc.alt = ((float)sonar_alt * (1.0 - scale)) + ((float)baro_alt * scale) + home.alt;
}else{
current_loc.alt = baro_alt + home.alt;
}
}else{
baro_alt = read_barometer();
// no sonar altitude
current_loc.alt = baro_alt + home.alt;
}
altitude_rate = (current_loc.alt - old_altitude) * 10; // 10 hz timer
old_altitude = current_loc.alt;
#endif
}
static void
adjust_altitude()
{
alt_timer++;
if(alt_timer >= 2){
alt_timer = 0;
if(g.rc_3.control_in <= 200){
next_WP.alt -= 1; // 1 meter per second
next_WP.alt = max(next_WP.alt, (current_loc.alt - 400)); // don't go less than 4 meters below current location
next_WP.alt = max(next_WP.alt, 100); // don't go less than 1 meter
}else if (g.rc_3.control_in > 700){
next_WP.alt += 1; // 1 meter per second
next_WP.alt = min(next_WP.alt, (current_loc.alt + 400)); // don't go more than 4 meters below current location
}
}
}
static void tuning(){
//Outer Loop : Attitude
#if CHANNEL_6_TUNING == CH6_STABILIZE_KP
g.pi_stabilize_roll.kP((float)g.rc_6.control_in / 1000.0);
g.pi_stabilize_pitch.kP((float)g.rc_6.control_in / 1000.0);
#elif CHANNEL_6_TUNING == CH6_STABILIZE_KI
g.pi_stabilize_roll.kI((float)g.rc_6.control_in / 1000.0);
g.pi_stabilize_pitch.kI((float)g.rc_6.control_in / 1000.0);
#elif CHANNEL_6_TUNING == CH6_YAW_KP
g.pi_stabilize_yaw.kP((float)g.rc_6.control_in / 1000.0); // range from 0.0 ~ 5.0
#elif CHANNEL_6_TUNING == CH6_YAW_KI
g.pi_stabilize_yaw.kI((float)g.rc_6.control_in / 1000.0);
//Inner Loop : Rate
#elif CHANNEL_6_TUNING == CH6_RATE_KP
g.pi_rate_roll.kP((float)g.rc_6.control_in / 1000.0);
g.pi_rate_pitch.kP((float)g.rc_6.control_in / 1000.0);
#elif CHANNEL_6_TUNING == CH6_RATE_KI
g.pi_rate_roll.kI((float)g.rc_6.control_in / 1000.0);
g.pi_rate_pitch.kI((float)g.rc_6.control_in / 1000.0);
#elif CHANNEL_6_TUNING == CH6_YAW_RATE_KP
g.pi_rate_yaw.kP((float)g.rc_6.control_in / 1000.0);
#elif CHANNEL_6_TUNING == CH6_YAW_RATE_KI
g.pi_rate_yaw.kI((float)g.rc_6.control_in / 1000.0);
//Altitude Hold
#elif CHANNEL_6_TUNING == CH6_THROTTLE_KP
g.pi_throttle.kP((float)g.rc_6.control_in / 1000.0); // 0 to 1
#elif CHANNEL_6_TUNING == CH6_THROTTLE_KD
g.pi_throttle.kD((float)g.rc_6.control_in / 1000.0); // 0 to 1
//Extras
#elif CHANNEL_6_TUNING == CH6_TOP_BOTTOM_RATIO
g.top_bottom_ratio = (float)g.rc_6.control_in / 1000.0;
#elif CHANNEL_6_TUNING == CH6_TRAVERSE_SPEED
g.waypoint_speed_max = (float)g.rc_6.control_in / 1000.0;
#elif CHANNEL_6_TUNING == CH6_PMAX
g.pitch_max.set(g.rc_6.control_in * 2); // 0 to 2000
// Simple relay control
#elif CHANNEL_6_TUNING == CH6_RELAY
if(g.rc_6.control_in <= 600) relay_on();
if(g.rc_6.control_in >= 400) relay_off();
#endif
}
static void update_nav_wp()
{
// XXX Guided mode!!!
if(wp_control == LOITER_MODE){
// calc a pitch to the target
calc_location_error();
// use error as the desired rate towards the target
calc_nav_rate(long_error, lat_error, g.waypoint_speed_max, 0);
// rotate pitch and roll to the copter frame of reference
calc_nav_pitch_roll();
} else {
// for long journey's reset the wind resopnse
// it assumes we are standing still.
g.pi_loiter_lat.reset_I();
g.pi_loiter_lat.reset_I();
// calc the lat and long error to the target
calc_location_error();
// use error as the desired rate towards the target
calc_nav_rate(long_error, lat_error, g.waypoint_speed_max, 100);
// rotate pitch and roll to the copter frame of reference
calc_nav_pitch_roll();
}
}
static void update_auto_yaw()
{
// this tracks a location so the copter is always pointing towards it.
if(yaw_tracking == MAV_ROI_LOCATION){
auto_yaw = get_bearing(&current_loc, &target_WP);
}else if(yaw_tracking == MAV_ROI_WPNEXT){
auto_yaw = target_bearing;
}
}
static long point_at_home_yaw()
{
return get_bearing(&current_loc, &home);
}