ardupilot/ArduCopter/navigation.pde
2013-02-24 14:41:44 +09:00

967 lines
34 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// update_navigation - checks for new GPS updates and invokes navigation routines
// called at 50hz
static void update_navigation()
{
static uint32_t nav_last_update = 0; // the system time of the last time nav was run update
bool pos_updated = false;
bool log_output = false;
#if INERTIAL_NAV_XY == ENABLED
static uint8_t nav_counter = 0; // used to slow down the navigation to 10hz
// check for inertial nav updates
if( inertial_nav.position_ok() ) {
nav_counter++;
if( nav_counter >= 5) {
nav_counter = 0;
// calculate time since nav controllers last ran
dTnav = (float)(millis() - nav_last_update)/ 1000.0f;
nav_last_update = millis();
// prevent runnup in dTnav value
dTnav = min(dTnav, 1.0f);
// signal to run nav controllers
pos_updated = true;
// signal to create log entry
log_output = true;
}
}
#else
static uint32_t nav_last_gps_time = 0; // the time according to the gps
// check for new gps data
if( g_gps->fix && g_gps->time != nav_last_gps_time ) {
// used to calculate speed in X and Y, iterms
// ------------------------------------------
dTnav = (float)(millis() - nav_last_update)/ 1000.0f;
nav_last_update = millis();
// prevent runup from bad GPS
dTnav = min(dTnav, 1.0f);
// save GPS time
nav_last_gps_time = g_gps->time;
// signal to run nav controllers
pos_updated = true;
// signal to create log entry
log_output = true;
}
#endif
// setup to calculate new navigation values and run controllers if
// we've received a position update
if( pos_updated ) {
nav_updates.need_velpos = 1;
nav_updates.need_dist_bearing = 1;
nav_updates.need_nav_controllers = 1;
nav_updates.need_nav_pitch_roll = 1;
// update log
if (log_output && (g.log_bitmask & MASK_LOG_NTUN) && motors.armed()) {
Log_Write_Nav_Tuning();
}
}
// reduce nav outputs to zero if we have not seen a position update in 2 seconds
if( millis() - nav_last_update > 2000 ) {
// after 12 reads we guess we may have lost GPS signal, stop navigating
// we have lost GPS signal for a moment. Reduce our error to avoid flyaways
auto_roll >>= 1;
auto_pitch >>= 1;
}
}
/*
run navigation updates from nav_updates. Only run one at a time to
prevent too much cpu usage hurting the main loop
*/
static void run_nav_updates(void)
{
if (nav_updates.need_velpos) {
calc_velocity_and_position();
verify_altitude();
nav_updates.need_velpos = 0;
} else if (nav_updates.need_dist_bearing) {
calc_distance_and_bearing();
nav_updates.need_dist_bearing = 0;
} else if (nav_updates.need_nav_controllers) {
run_autopilot();
update_nav_mode();
nav_updates.need_nav_controllers = 0;
} else if (nav_updates.need_nav_pitch_roll) {
calc_nav_pitch_roll();
nav_updates.need_nav_pitch_roll = 0;
}
}
//*******************************************************************************************************
// calc_velocity_and_filtered_position - velocity in lon and lat directions calculated from GPS position
// and accelerometer data
// lon_speed expressed in cm/s. positive numbers mean moving east
// lat_speed expressed in cm/s. positive numbers when moving north
// Note: we use gps locations directly to calculate velocity instead of asking gps for velocity because
// this is more accurate below 1.5m/s
// Note: even though the positions are projected using a lead filter, the velocities are calculated
// from the unaltered gps locations. We do not want noise from our lead filter affecting velocity
//*******************************************************************************************************
static void calc_velocity_and_position(){
#if INERTIAL_NAV_XY == ENABLED
if( inertial_nav.position_ok() ) {
// pull velocity from interial nav library
lon_speed = inertial_nav.get_longitude_velocity();
lat_speed = inertial_nav.get_latitude_velocity();
// pull position from interial nav library
current_loc.lng = inertial_nav.get_longitude();
current_loc.lat = inertial_nav.get_latitude();
}
#else
static int32_t last_gps_longitude = 0;
static int32_t last_gps_latitude = 0;
// initialise last_longitude and last_latitude
if( last_gps_longitude == 0 && last_gps_latitude == 0 ) {
last_gps_longitude = g_gps->longitude;
last_gps_latitude = g_gps->latitude;
}
// this speed is ~ in cm because we are using 10^7 numbers from GPS
float tmp = 1.0f/dTnav;
// calculate velocity
lon_speed = (float)(g_gps->longitude - last_gps_longitude) * scaleLongDown * tmp;
lat_speed = (float)(g_gps->latitude - last_gps_latitude) * tmp;
// calculate position from gps + expected travel during gps_lag
current_loc.lng = xLeadFilter.get_position(g_gps->longitude, lon_speed, g_gps->get_lag());
current_loc.lat = yLeadFilter.get_position(g_gps->latitude, lat_speed, g_gps->get_lag());
// store gps lat and lon values for next iteration
last_gps_longitude = g_gps->longitude;
last_gps_latitude = g_gps->latitude;
#endif
}
//****************************************************************
// Function that will calculate the desired direction to fly and distance
//****************************************************************
static void calc_distance_and_bearing()
{
// waypoint distance (in cm) and bearaing from plane
if( waypoint_valid(next_WP) ) {
wp_distance = get_distance_cm(&current_loc, &next_WP);
wp_bearing = get_bearing_cd(&current_loc, &next_WP);
}else{
wp_distance = 0;
wp_bearing = 0;
}
// calculate home distance and bearing
if( ap.home_is_set ) {
home_distance = get_distance_cm(&current_loc, &home);
home_bearing = get_bearing_cd(&current_loc, &home);
// update super simple bearing (if required) because it relies on home_bearing
update_super_simple_bearing();
}else{
home_distance = 0;
home_bearing = 0;
}
// calculate bearing to target (used when yaw_mode = YAW_LOOK_AT_LOCATION)
if( waypoint_valid(yaw_look_at_WP) ) {
yaw_look_at_WP_bearing = get_bearing_cd(&current_loc, &yaw_look_at_WP);
}
}
static void calc_location_error(struct Location *next_loc)
{
/*
* Becuase we are using lat and lon to do our distance errors here's a quick chart:
* 100 = 1m
* 1000 = 11m = 36 feet
* 1800 = 19.80m = 60 feet
* 3000 = 33m
* 10000 = 111m
*/
// X Error
long_error = (float)(next_loc->lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 Go East
// Y Error
lat_error = next_loc->lat - current_loc.lat; // 500 - 0 = 500 Go North
}
// run_autopilot - highest level call to process mission commands
static void run_autopilot()
{
switch( control_mode ) {
case AUTO:
// majority of command logic is in commands_logic.pde
verify_commands();
break;
case GUIDED:
// switch to loiter once we've reached the target location and altitude
if(verify_nav_wp()) {
set_nav_mode(NAV_LOITER_ACTIVE);
}
case RTL:
verify_RTL();
break;
}
}
// set_nav_mode - update nav mode and initialise any variables as required
static bool set_nav_mode(uint8_t new_nav_mode)
{
// boolean to ensure proper initialisation of nav modes
bool nav_initialised = false;
// return immediately if no change
if( new_nav_mode == nav_mode ) {
return true;
}
switch( new_nav_mode ) {
case NAV_NONE:
nav_initialised = true;
break;
case NAV_CIRCLE:
// start circling around current location
set_next_WP(&current_loc);
circle_WP = next_WP;
circle_angle = 0;
nav_initialised = true;
break;
case NAV_LOITER:
// set target to current position
set_next_WP_latlon(current_loc.lat, current_loc.lng);
nav_initialised = true;
break;
case NAV_WP:
nav_initialised = true;
break;
case NAV_LOITER_INAV:
loiter_set_target(inertial_nav.get_latitude_diff(), inertial_nav.get_longitude_diff());
// To-Do: below allows user to move around set point but do we want to allow this when in Auto flight mode?
nav_initialised = set_roll_pitch_mode(ROLL_PITCH_LOITER_INAV);
break;
case NAV_WP_INAV:
// To-Do: below allows user to move around set point but do we want to allow this when in Auto flight mode?
nav_initialised = set_roll_pitch_mode(ROLL_PITCH_WP_INAV);
break;
}
// if initialisation has been successful update the yaw mode
if( nav_initialised ) {
nav_mode = new_nav_mode;
}
// return success or failure
return nav_initialised;
}
// update_nav_mode - run navigation controller based on nav_mode
static void update_nav_mode()
{
int16_t loiter_delta;
int16_t speed;
switch( nav_mode ) {
case NAV_NONE:
// do nothing
break;
case NAV_CIRCLE:
// check if we have missed the WP
loiter_delta = (wp_bearing - old_wp_bearing)/100;
// reset the old value
old_wp_bearing = wp_bearing;
// wrap values
if (loiter_delta > 180) loiter_delta -= 360;
if (loiter_delta < -180) loiter_delta += 360;
// sum the angle around the WP
loiter_sum += loiter_delta;
circle_angle += (circle_rate * dTnav);
//1 degree = 0.0174532925 radians
// wrap
if (circle_angle > 6.28318531f)
circle_angle -= 6.28318531f;
// update target location
// To-Do: ensure this target is updated for inertial navigation controller
set_next_WP_latlon(
circle_WP.lat + (g.circle_radius * 100 * sinf(1.57f - circle_angle)),
circle_WP.lng + (g.circle_radius * 100 * cosf(1.57f - circle_angle) * scaleLongUp));
// use error as the desired rate towards the target
// nav_lon, nav_lat is calculated
// if the target location is >4m use waypoint controller
if(wp_distance > 400) {
calc_nav_rate(get_desired_speed(g.waypoint_speed_max));
}else{
// calc the lat and long error to the target
calc_location_error(&next_WP);
// call loiter controller
calc_loiter(long_error, lat_error);
}
break;
case NAV_LOITER:
// check if user is overriding the loiter controller
if((abs(g.rc_2.control_in) + abs(g.rc_1.control_in)) > 500) {
if(wp_distance > 500){
ap.loiter_override = true;
}
}
// check if user has release sticks
if(ap.loiter_override) {
if(g.rc_2.control_in == 0 && g.rc_1.control_in == 0) {
ap.loiter_override = false;
// reset LOITER to current position
set_next_WP_latlon(current_loc.lat, current_loc.lng);
}
// We bring copy over our Iterms for wind control, but we don't navigate
nav_lon = g.pid_loiter_rate_lon.get_integrator();
nav_lat = g.pid_loiter_rate_lon.get_integrator();
nav_lon = constrain(nav_lon, -2000, 2000);
nav_lat = constrain(nav_lat, -2000, 2000);
}else{
// calc error to target
calc_location_error(&next_WP);
// use error as the desired rate towards the target
calc_loiter(long_error, lat_error);
}
break;
case NAV_WP:
// calc position error to target
calc_location_error(&next_WP);
// calc speed to target
speed = get_desired_speed(g.waypoint_speed_max);
// use error as the desired rate towards the target
calc_nav_rate(speed);
break;
case NAV_LOITER_INAV:
get_loiter_pos_lat_lon(loiter_lat_from_home_cm, loiter_lon_from_home_cm, 0.1f);
break;
case NAV_WP_INAV:
// move forward on the waypoint
// To-Do: slew up the speed to the max waypoint speed instead of immediately jumping to max
wpinav_advance_track_desired(g.waypoint_speed_max, 0.1f);
// run the navigation controller
get_wpinav_pos(0.1f);
break;
}
/*
// To-Do: check that we haven't broken toy mode
case TOY_A:
case TOY_M:
set_nav_mode(NAV_NONE);
update_nav_wp();
break;
}
*/
}
static bool check_missed_wp()
{
int32_t temp;
temp = wp_bearing - original_wp_bearing;
temp = wrap_180(temp);
return (labs(temp) > 9000); // we passed the waypoint by 90 degrees
}
////////////////////////////////////////////////////////////////
// Loiter controller (based on GPS position)
////////////////////////////////////////////////////////////////
#define NAV_ERR_MAX 600
#define NAV_RATE_ERR_MAX 250
static void calc_loiter(int16_t x_error, int16_t y_error)
{
int32_t p,i,d; // used to capture pid values for logging
int32_t output;
int32_t x_target_speed, y_target_speed;
// East / West
x_target_speed = g.pi_loiter_lon.get_p(x_error); // calculate desired speed from lon error
#if LOGGING_ENABLED == ENABLED
// log output if PID logging is on and we are tuning the yaw
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_LOITER_KP || g.radio_tuning == CH6_LOITER_KI) ) {
Log_Write_PID(CH6_LOITER_KP, x_error, x_target_speed, 0, 0, x_target_speed, tuning_value);
}
#endif
// calculate rate error
x_rate_error = x_target_speed - lon_speed; // calc the speed error
p = g.pid_loiter_rate_lon.get_p(x_rate_error);
i = g.pid_loiter_rate_lon.get_i(x_rate_error + x_error, dTnav);
d = g.pid_loiter_rate_lon.get_d(x_error, dTnav);
d = constrain(d, -2000, 2000);
// get rid of noise
if(abs(lon_speed) < 50) {
d = 0;
}
output = p + i + d;
nav_lon = constrain(output, -4500, 4500); // constrain max angle to 45 degrees
#if LOGGING_ENABLED == ENABLED
// log output if PID logging is on and we are tuning the yaw
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_LOITER_RATE_KP || g.radio_tuning == CH6_LOITER_RATE_KI || g.radio_tuning == CH6_LOITER_RATE_KD) ) {
Log_Write_PID(CH6_LOITER_RATE_KP, x_rate_error, p, i, d, nav_lon, tuning_value);
}
#endif
// North / South
y_target_speed = g.pi_loiter_lat.get_p(y_error); // calculate desired speed from lat error
#if LOGGING_ENABLED == ENABLED
// log output if PID logging is on and we are tuning the yaw
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_LOITER_KP || g.radio_tuning == CH6_LOITER_KI) ) {
Log_Write_PID(CH6_LOITER_KP+100, y_error, y_target_speed, 0, 0, y_target_speed, tuning_value);
}
#endif
// calculate rate error
y_rate_error = y_target_speed - lat_speed; // calc the speed error
p = g.pid_loiter_rate_lat.get_p(y_rate_error);
i = g.pid_loiter_rate_lat.get_i(y_rate_error + y_error, dTnav);
d = g.pid_loiter_rate_lat.get_d(y_error, dTnav);
d = constrain(d, -2000, 2000);
// get rid of noise
if(abs(lat_speed) < 50) {
d = 0;
}
output = p + i + d;
nav_lat = constrain(output, -4500, 4500); // constrain max angle to 45 degrees
#if LOGGING_ENABLED == ENABLED
// log output if PID logging is on and we are tuning the yaw
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_LOITER_RATE_KP || g.radio_tuning == CH6_LOITER_RATE_KI || g.radio_tuning == CH6_LOITER_RATE_KD) ) {
Log_Write_PID(CH6_LOITER_RATE_KP+100, y_rate_error, p, i, d, nav_lat, tuning_value);
}
#endif
// copy over I term to Nav_Rate
g.pid_nav_lon.set_integrator(g.pid_loiter_rate_lon.get_integrator());
g.pid_nav_lat.set_integrator(g.pid_loiter_rate_lat.get_integrator());
}
///////////////////////////////////////////////////////////
// Waypoint controller (based on GPS position)
///////////////////////////////////////////////////////////
static void calc_nav_rate(int16_t max_speed)
{
float temp, temp_x, temp_y;
// push us towards the original track
update_crosstrack();
int16_t cross_speed = crosstrack_error * -g.crosstrack_gain; // scale down crosstrack_error in cm
cross_speed = constrain(cross_speed, -150, 150);
// rotate by 90 to deal with trig functions
temp = (9000l - wp_bearing) * RADX100;
temp_x = cosf(temp);
temp_y = sinf(temp);
// rotate desired spped vector:
int32_t x_target_speed = max_speed * temp_x - cross_speed * temp_y;
int32_t y_target_speed = cross_speed * temp_x + max_speed * temp_y;
// East / West
// calculate rate error
x_rate_error = x_target_speed - lon_speed;
x_rate_error = constrain(x_rate_error, -500, 500);
nav_lon = g.pid_nav_lon.get_pid(x_rate_error, dTnav);
int32_t tilt = (x_target_speed * x_target_speed * (int32_t)g.tilt_comp) / 10000;
if(x_target_speed < 0) tilt = -tilt;
nav_lon += tilt;
// North / South
// calculate rate error
y_rate_error = y_target_speed - lat_speed;
y_rate_error = constrain(y_rate_error, -500, 500); // added a rate error limit to keep pitching down to a minimum
nav_lat = g.pid_nav_lat.get_pid(y_rate_error, dTnav);
tilt = (y_target_speed * y_target_speed * (int32_t)g.tilt_comp) / 10000;
if(y_target_speed < 0) tilt = -tilt;
nav_lat += tilt;
// copy over I term to Loiter_Rate
g.pid_loiter_rate_lon.set_integrator(g.pid_nav_lon.get_integrator());
g.pid_loiter_rate_lat.set_integrator(g.pid_nav_lat.get_integrator());
}
// this calculation rotates our World frame of reference to the copter's frame of reference
// We use the DCM's matrix to precalculate these trig values at 50hz
static void calc_nav_pitch_roll()
{
// To-Do: remove this hack dependent upon nav_mode
if( nav_mode != NAV_LOITER_INAV && nav_mode != NAV_WP_INAV ) {
// rotate the vector
auto_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * cos_yaw_x;
auto_pitch = (float)nav_lon * cos_yaw_x + (float)nav_lat * sin_yaw_y;
// flip pitch because forward is negative
auto_pitch = -auto_pitch;
// constrain maximum roll and pitch angles to 45 degrees
auto_roll = constrain(auto_roll, -4500, 4500);
auto_pitch = constrain(auto_pitch, -4500, 4500);
}
}
static int16_t get_desired_speed(int16_t max_speed)
{
/*
Based on Equation by Bill Premerlani & Robert Lefebvre
(sq(V2)-sq(V1))/2 = A(X2-X1)
derives to:
V1 = sqrt(sq(V2) - 2*A*(X2-X1))
*/
if(ap.fast_corner) {
// don't slow down
}else{
if(wp_distance < 20000){ // limit the size of numbers we're dealing with to avoid overflow
// go slower
int32_t temp = 2 * 100 * (int32_t)(wp_distance - g.waypoint_radius * 100);
int32_t s_min = WAYPOINT_SPEED_MIN;
temp += s_min * s_min;
if( temp < 0 ) temp = 0; // check to ensure we don't try to take the sqrt of a negative number
max_speed = sqrtf((float)temp);
max_speed = min(max_speed, g.waypoint_speed_max);
}
}
max_speed = min(max_speed, max_speed_old + (100 * dTnav));// limit going faster
max_speed = max(max_speed, WAYPOINT_SPEED_MIN); // don't go too slow
max_speed_old = max_speed;
return max_speed;
}
static void reset_desired_speed()
{
max_speed_old = 0;
}
static void update_crosstrack(void)
{
// Crosstrack Error
// ----------------
if (wp_distance >= (unsigned long)max((g.crosstrack_min_distance * 100),0) &&
abs(wrap_180(wp_bearing - original_wp_bearing)) < 4500) {
float temp = (wp_bearing - original_wp_bearing) * RADX100;
crosstrack_error = sinf(temp) * wp_distance; // Meters we are off track line
}else{
// fade out crosstrack
crosstrack_error >>= 1;
}
}
static void force_new_altitude(int32_t new_alt)
{
next_WP.alt = new_alt;
set_alt_change(REACHED_ALT);
}
static void set_new_altitude(int32_t new_alt)
{
// if no change exit immediately
if(new_alt == next_WP.alt) {
return;
}
// update new target altitude
next_WP.alt = new_alt;
if(next_WP.alt > (current_loc.alt + 80)) {
// we are below, going up
set_alt_change(ASCENDING);
}else if(next_WP.alt < (current_loc.alt - 80)) {
// we are above, going down
set_alt_change(DESCENDING);
}else{
// No Change
set_alt_change(REACHED_ALT);
}
}
static void verify_altitude()
{
if(alt_change_flag == ASCENDING) {
// we are below, going up
if(current_loc.alt > next_WP.alt - 50) {
set_alt_change(REACHED_ALT);
}
}else if (alt_change_flag == DESCENDING) {
// we are above, going down
if(current_loc.alt <= next_WP.alt + 50){
set_alt_change(REACHED_ALT);
}
}
}
// Keeps old data out of our calculation / logs
static void reset_nav_params(void)
{
// always start Circle mode at same angle
circle_angle = 0;
// We must be heading to a new WP, so XTrack must be 0
crosstrack_error = 0;
// Will be set by new command
wp_bearing = 0;
// Will be set by new command
wp_distance = 0;
// Will be set by new command, used by loiter
long_error = 0;
lat_error = 0;
nav_lon = 0;
nav_lat = 0;
nav_roll = 0;
nav_pitch = 0;
auto_roll = 0;
auto_pitch = 0;
}
static int32_t wrap_360(int32_t error)
{
if (error > 36000) error -= 36000;
if (error < 0) error += 36000;
return error;
}
static int32_t wrap_180(int32_t error)
{
if (error > 18000) error -= 36000;
if (error < -18000) error += 36000;
return error;
}
// get_yaw_slew - reduces rate of change of yaw to a maximum
// assumes it is called at 100hz so centi-degrees and update rate cancel each other out
static int32_t get_yaw_slew(int32_t current_yaw, int32_t desired_yaw, int16_t deg_per_sec)
{
return wrap_360(current_yaw + constrain(wrap_180(desired_yaw - current_yaw), -deg_per_sec, deg_per_sec));
}
// valid_waypoint - checks if a waypoint has been initialised or not
static bool waypoint_valid(Location &wp)
{
if( wp.lat != 0 || wp.lng != 0 ) {
return true;
}else{
return false;
}
}
////////////////////////////////////////////////////
// Loiter controller using inertial nav
////////////////////////////////////////////////////
// get_loiter_accel - loiter acceration controllers with desired accelerations provided in forward/right directions in cm/s/s
static void
get_loiter_accel(int16_t accel_req_forward, int16_t accel_req_right)
{
float z_accel_meas = -AP_INTERTIALNAV_GRAVITY * 100; // gravity in cm/s/s
// update angle targets that will be passed to stabilize controller
auto_roll = constrain((accel_req_right/(-z_accel_meas))*(18000/M_PI), -4500, 4500);
auto_pitch = constrain((-accel_req_forward/(-z_accel_meas*cos_roll_x))*(18000/M_PI), -4500, 4500);
}
// get_loiter_accel_lat_lon - loiter acceration controller with desired accelerations provided in lat/lon directions in cm/s/s
static void
get_loiter_accel_lat_lon(int16_t accel_lat, int16_t accel_lon)
{
float accel_forward;
float accel_right;
accel_forward = accel_lat*cos_yaw + accel_lon*sin_yaw;
accel_right = -accel_lat*sin_yaw + accel_lon*cos_yaw;
get_loiter_accel(accel_forward, accel_right);
}
// get_loiter_vel_lat_lon - loiter velocity controller with desired velocity provided in lat/lon directions in cm/s
#define MAX_LOITER_VEL_ACCEL 400 // should be 1.5 times larger than MAX_LOITER_POS_ACCEL
static void
get_loiter_vel_lat_lon(int16_t vel_lat, int16_t vel_lon, float dt)
{
float speed_error_lat = 0; // The velocity in cm/s.
float speed_error_lon = 0; // The velocity in cm/s.
float speed_lat = inertial_nav.get_latitude_velocity();
float speed_lon = inertial_nav.get_longitude_velocity();
int32_t accel_lat;
int32_t accel_lon;
int32_t accel_total;
int16_t lat_p,lat_i,lat_d;
int16_t lon_p,lon_i,lon_d;
// calculate vel error
speed_error_lat = vel_lat - speed_lat;
speed_error_lon = vel_lon - speed_lon;
lat_p = g.pid_loiter_rate_lat.get_p(speed_error_lat);
lat_i = g.pid_loiter_rate_lat.get_i(speed_error_lat, dt);
lat_d = g.pid_loiter_rate_lat.get_d(speed_error_lat, dt);
lon_p = g.pid_loiter_rate_lon.get_p(speed_error_lon);
lon_i = g.pid_loiter_rate_lon.get_i(speed_error_lon, dt);
lon_d = g.pid_loiter_rate_lon.get_d(speed_error_lon, dt);
accel_lat = (lat_p+lat_i+lat_d);
accel_lon = (lon_p+lon_i+lon_d);
accel_total = safe_sqrt(accel_lat*accel_lat + accel_lon*accel_lon);
if( accel_total > MAX_LOITER_VEL_ACCEL ) {
accel_lat = MAX_LOITER_VEL_ACCEL * accel_lat/accel_total;
accel_lon = MAX_LOITER_VEL_ACCEL * accel_lon/accel_total;
}
get_loiter_accel_lat_lon(accel_lat, accel_lon);
}
// get_loiter_pos_lat_lon - loiter position controller with desired position provided as distance from home in lat/lon directions in cm
#define MAX_LOITER_POS_VELOCITY 750 // should be 1.5 ~ 2.0 times the pilot input's max velocity
#define MAX_LOITER_POS_ACCEL 250
static void
get_loiter_pos_lat_lon(int32_t target_lat_from_home, int32_t target_lon_from_home, float dt)
{
float dist_error_lat;
int32_t desired_vel_lat;
float dist_error_lon;
int32_t desired_vel_lon;
int32_t dist_error_total;
int16_t vel_sqrt;
int32_t vel_total;
int16_t linear_distance; // the distace we swap between linear and sqrt.
// calculate distance error
dist_error_lat = target_lat_from_home - inertial_nav.get_latitude_diff();
dist_error_lon = target_lon_from_home - inertial_nav.get_longitude_diff();
linear_distance = MAX_LOITER_POS_ACCEL/(2*g.pi_loiter_lat.kP()*g.pi_loiter_lat.kP());
dist_error_total = safe_sqrt(dist_error_lat*dist_error_lat + dist_error_lon*dist_error_lon);
if( dist_error_total > 2*linear_distance ) {
vel_sqrt = constrain(safe_sqrt(2*MAX_LOITER_POS_ACCEL*(dist_error_total-linear_distance)),0,1000);
desired_vel_lat = vel_sqrt * dist_error_lat/dist_error_total;
desired_vel_lon = vel_sqrt * dist_error_lon/dist_error_total;
}else{
desired_vel_lat = g.pi_loiter_lat.get_p(dist_error_lat);
desired_vel_lon = g.pi_loiter_lon.get_p(dist_error_lon);
}
vel_total = safe_sqrt(desired_vel_lat*desired_vel_lat + desired_vel_lon*desired_vel_lon);
if( vel_total > MAX_LOITER_POS_VELOCITY ) {
desired_vel_lat = MAX_LOITER_POS_VELOCITY * desired_vel_lat/vel_total;
desired_vel_lon = MAX_LOITER_POS_VELOCITY * desired_vel_lon/vel_total;
}
get_loiter_vel_lat_lon(desired_vel_lat, desired_vel_lon, dt);
}
#define MAX_LOITER_POS_VEL_VELOCITY 1000
// loiter_set_pos_from_velocity - loiter velocity controller with desired velocity provided in front/right directions in cm/s
static void
loiter_set_pos_from_velocity(int16_t vel_forward_cms, int16_t vel_right_cms, float dt)
{
int32_t vel_lat;
int32_t vel_lon;
int32_t vel_total;
vel_lat = vel_forward_cms*cos_yaw - vel_right_cms*sin_yaw;
vel_lon = vel_forward_cms*sin_yaw + vel_right_cms*cos_yaw;
// constrain the velocity vector and scale if necessary
vel_total = safe_sqrt(vel_lat*vel_lat + vel_lon*vel_lon);
if( vel_total > MAX_LOITER_POS_VEL_VELOCITY ) {
vel_lat = MAX_LOITER_POS_VEL_VELOCITY * vel_lat/vel_total;
vel_lon = MAX_LOITER_POS_VEL_VELOCITY * vel_lon/vel_total;
}
// update loiter target position
loiter_lat_from_home_cm += vel_lat * dt;
loiter_lon_from_home_cm += vel_lon * dt;
// update next_WP location for reporting purposes
set_next_WP_latlon(
home.lat + loiter_lat_from_home_cm / LATLON_TO_CM,
home.lng + loiter_lat_from_home_cm / LATLON_TO_CM * scaleLongUp);
}
// loiter_set_target - set loiter's target position from home in cm
// To-Do: change this function to accept a target in lat/lon format (and remove setting of next_WP?)
static void
loiter_set_target(float lat_from_home_cm, float lon_from_home_cm)
{
loiter_lat_from_home_cm = lat_from_home_cm;
loiter_lon_from_home_cm = lon_from_home_cm;
// update next_WP location for reporting purposes
set_next_WP_latlon(
home.lat + loiter_lat_from_home_cm / LATLON_TO_CM,
home.lng + loiter_lat_from_home_cm / LATLON_TO_CM * scaleLongUp);
}
//////////////////////////////////////////////////////////
// waypoint inertial navigation controller
//////////////////////////////////////////////////////////
// Waypoint navigation is accomplished by moving the target location up to a maximum of 10m from the current location
// get_wpinav_pos - wpinav position controller with desired position held in wpinav_destination
static void
get_wpinav_pos(float dt)
{
// re-use loiter position controller
get_loiter_pos_lat_lon(wpinav_target.x, wpinav_target.y, dt);
}
// wpinav_set_destination - set destination using lat/lon coordinates
void wpinav_set_destination(const Location& destination)
{
wpinav_set_origin_and_destination(current_loc, destination);
}
// wpinav_set_origin_and_destination - set origin and destination using lat/lon coordinates
void wpinav_set_origin_and_destination(const Location& origin, const Location& destination)
{
wpinav_origin.x = (origin.lat-home.lat) * LATLON_TO_CM;
wpinav_origin.y = (origin.lng-home.lng) * LATLON_TO_CM * scaleLongDown;
wpinav_destination.x = (destination.lat-home.lat) * LATLON_TO_CM;
wpinav_destination.y = (destination.lng-home.lng) * LATLON_TO_CM * scaleLongDown;
wpinav_pos_delta = wpinav_destination - wpinav_origin;
wpinav_track_length = wpinav_pos_delta.length();
wpinav_track_desired = 0;
// set next_WP, prev_WP for reporting purposes
// To-Do: move calcs below to a function
set_next_WP_latlon(
home.lat + wpinav_destination.x / LATLON_TO_CM,
home.lng + wpinav_destination.y / LATLON_TO_CM * scaleLongUp);
}
#define WPINAV_MAX_POS_ERROR 2000.0f // maximum distance (in cm) that the desired track can stray from our current location.
void
wpinav_advance_track_desired(float velocity_cms, float dt)
{
float cross_track_dist;
float track_covered;
float track_desired_max;
float line_a, line_b, line_c, line_m;
// get current location
Vector2f curr(inertial_nav.get_latitude_diff(), inertial_nav.get_longitude_diff());
// check for zero length segment
if( wpinav_pos_delta.x == 0 && wpinav_pos_delta.y == 0) {
wpinav_target = wpinav_destination;
return;
}
if( wpinav_pos_delta.x == 0 ) {
// x is zero
cross_track_dist = fabs(curr.x - wpinav_destination.x);
track_covered = fabs(curr.y - wpinav_origin.y);
}else if(wpinav_pos_delta.y == 0) {
// y is zero
cross_track_dist = fabs(curr.y - wpinav_destination.y);
track_covered = fabs(curr.x - wpinav_origin.x);
}else{
// both x and y non zero
line_a = wpinav_pos_delta.y;
line_b = -wpinav_pos_delta.x;
line_c = wpinav_pos_delta.x * wpinav_origin.y - wpinav_pos_delta.y * wpinav_origin.x;
line_m = line_a / line_b;
cross_track_dist = abs(line_a * curr.x + line_b * curr.y + line_c ) / wpinav_track_length;
line_m = 1/line_m;
line_a = line_m;
line_b = -1;
line_c = curr.y - line_m * curr.x;
// calculate the distance to the closest point along the track and it's distance from the origin
track_covered = abs(line_a*wpinav_origin.x + line_b*wpinav_origin.y + line_c) / safe_sqrt(line_a*line_a+line_b*line_b);
}
// maximum distance along the track that we will allow (stops target point from getting too far from the current position)
track_desired_max = track_covered + safe_sqrt(WPINAV_MAX_POS_ERROR*WPINAV_MAX_POS_ERROR-cross_track_dist*cross_track_dist);
// advance the current target
wpinav_track_desired += velocity_cms * dt;
// constrain the target from moving too far
if( wpinav_track_desired > track_desired_max ) {
wpinav_track_desired = track_desired_max;
}
if( wpinav_track_desired > wpinav_track_length ) {
wpinav_track_desired = wpinav_track_length;
}
// recalculate the desired position
float track_length_pct = wpinav_track_desired/wpinav_track_length;
wpinav_target.x = wpinav_origin.x + wpinav_pos_delta.x * track_length_pct;
wpinav_target.y = wpinav_origin.y + wpinav_pos_delta.y * track_length_pct;
}