ardupilot/libraries/AP_Mission/AP_Mission.h
2014-03-19 12:09:56 +09:00

243 lines
10 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/// @file AP_Mission.h
/// @brief Handles the MAVLINK command mission stack. Reads and writes mission to storage.
/*
* The AP_Mission library:
* - responsible for managing a list of commands made up of "nav", "do" and "conditional" commands
* - reads and writes the mission commands to storage.
* - provides easy acces to current, previous and upcoming waypoints
* - calls main program's command execution and verify functions.
* - accounts for the DO_JUMP command
*
*/
#ifndef AP_Mission_h
#define AP_Mission_h
#include <GCS_MAVLink.h>
#include <AP_Math.h>
#include <AP_Common.h>
#include <AP_Param.h>
#include <AP_AHRS.h>
#include <AP_HAL.h>
// definitions
#define AP_MISSION_EEPROM_MAX_ADDR 4096 // parameters get the first 1536 bytes of EEPROM, remainder is for waypoints
#define AP_MISSION_EEPROM_START_BYTE 0x600 // where in memory home WP is stored, all mission commands appear afterthis
#define AP_MISSION_EEPROM_COMMAND_SIZE 15 // size in bytes of all mission commands
#define AP_MISSION_FENCEPOINTS_MAX 6 // we reserve space for 6 fence points at the end of EEPROM although this is not currently implemented
#define AP_MISSION_FENCEPOINTS_SIZE sizeof(Vector2l) // each fence points size in eeprom
#define AP_MISSION_FENCE_START_BYTE (AP_MISSION_EEPROM_MAX_ADDR-(AP_MISSION_FENCEPOINTS_MAX*AP_MISSION_FENCEPOINTS_SIZE)) // space reserved for fence points
#define AP_MISSION_MAX_COMMANDS ((AP_MISSION_FENCE_START_BYTE - AP_MISSION_EEPROM_START_BYTE) / AP_MISSION_EEPROM_COMMAND_SIZE) - 1 // -1 to be safe
#define AP_MISSION_MAX_NUM_DO_JUMP_COMMANDS 3 // only allow up to 3 do-jump commands (due to RAM limitations on the APM2)
#define AP_MISSION_CMD_ID_NONE 0 // mavlink cmd id of zero means invalid or missing command
#define AP_MISSION_CMD_INDEX_NONE 255 // command index of 255 means invalid or missing command
#define AP_MISSION_JUMP_TIMES_MAX 255 // maximum number of times a jump can be executed. Used when jump tracking fails (i.e. when too many jumps in mission)
/// @class AP_Mission
/// @brief Object managing Mission
class AP_Mission {
public:
// jump command structure
struct Jump_Command {
uint8_t id; // mavlink command id. To-Do: this can be removed once it is also removed from Location structure
uint8_t target; // DO_JUMP target command id
uint8_t num_times; // DO_JUMP num times to repeat
};
union Content {
// jump structure
Jump_Command jump;
// location
Location location; // Waypoint location
uint8_t bytes[AP_MISSION_EEPROM_COMMAND_SIZE];
};
// command structure
struct Mission_Command {
uint8_t index; // this commands position in the command list
uint8_t id; // mavlink command id
Content content;
};
// main program function pointers
typedef bool (*mission_cmd_fn_t)(const Mission_Command& cmd);
typedef void (*mission_complete_fn_t)(void);
// mission state enumeration
enum mission_state {
MISSION_STOPPED=0,
MISSION_RUNNING=1,
MISSION_COMPLETE=2
};
/// constructor
AP_Mission(mission_cmd_fn_t cmd_start_fn, mission_cmd_fn_t cmd_verify_fn, mission_complete_fn_t mission_complete_fn) :
_cmd_start_fn(cmd_start_fn),
_cmd_verify_fn(cmd_verify_fn),
_mission_complete_fn(mission_complete_fn)
{
// load parameter defaults
AP_Param::setup_object_defaults(this, var_info);
// clear commands
_nav_cmd.index = AP_MISSION_CMD_INDEX_NONE;
_do_cmd.index = AP_MISSION_CMD_INDEX_NONE;
// initialise other internal variables
_flags.state = MISSION_STOPPED;
_flags.nav_cmd_loaded = false;
_flags.do_cmd_loaded = false;
}
///
/// mission methods
///
/// status - returns the status of the mission (i.e. Mission_Started, Mission_Complete, Mission_Stopped
mission_state state() const { return _flags.state; }
/// num_commands - returns total number of commands in the mission
uint8_t num_commands() const { return _cmd_total; }
/// update - ensures the command queues are loaded with the next command and calls main programs command_init and command_verify functions to progress the mission
/// should be called at 10hz or higher
void update();
/// start - resets current commands to point to the beginning of the mission
/// To-Do: should we validate the mission first and return true/false?
void start();
/// stop - stops mission execution. subsequent calls to update() will have no effect until the mission is started or resumed
void stop();
/// resume - continues the mission execution from where we last left off
/// previous running commands will be re-initialised
void resume();
/// clear - clears out mission
/// returns true if mission was running so it could not be cleared
bool clear();
/// valid - validate the mission has no errors
/// currently only checks that the number of do-commands does not exceed the AP_MISSION_MAX_NUM_DO_JUMP_COMMANDS
bool valid();
///
/// command methods
///
/// get_active_nav_cmd - returns the current "navigation" command
const Mission_Command& get_current_nav_cmd() const { return _nav_cmd; }
/// get_next_nav_cmd - gets next "navigation" command found at or after start_index
/// returns true if found, false if not found (i.e. reached end of mission command list)
/// accounts for do_jump commands
bool get_next_nav_cmd(uint8_t start_index, Mission_Command& cmd);
/// set_current_nav_cmd - sets the current "navigation" command to the command number
/// returns true if successful, false on failure (i.e. if the index does not refer to a navigation command)
/// current do and conditional commands will also be modified
bool set_current_nav_cmd(uint8_t index);
/// get_active_do_cmd - returns active "do" command
const Mission_Command& get_current_do_cmd() const { return _do_cmd; }
/// add_cmd - adds a command to the end of the command list and writes to storage
/// returns true if successfully added, false on failure
/// cmd.index is updated with it's new position in the mission
bool add_cmd(Mission_Command& cmd);
/// load_cmd_from_storage - load command from storage
/// true is return if successful
bool read_cmd_from_storage(uint8_t index, Mission_Command& cmd) const;
/// write_cmd_to_storage - write a command to storage
/// cmd.index is used to calculate the storage location
/// true is returned if successful
bool write_cmd_to_storage(uint8_t index, Mission_Command& cmd);
// user settable parameters
static const struct AP_Param::GroupInfo var_info[];
private:
struct Mission_Flags {
mission_state state;
uint8_t nav_cmd_loaded : 1; // true if a "navigation" command has been loaded into _nav_cmd
uint8_t do_cmd_loaded : 1; // true if a "do"/"conditional" command has been loaded into _do_cmd
} _flags;
///
/// private methods
///
/// complete - mission is marked complete and clean-up performed including calling the mission_complete_fn
void complete();
/// advance_current_nav_cmd - moves current nav command forward
/// do command will also be loaded
/// accounts for do-jump commands
// will call complete method if it reaches end of mission command list
void advance_current_nav_cmd();
/// advance_current_do_cmd - moves current do command forward
/// accounts for do-jump commands
/// returns true if successfully advanced (can it ever be unsuccessful?)
void advance_current_do_cmd();
/// is_nav_cmd - returns true if the command's id is a "navigation" command, false if "do" or "conditional" command
bool is_nav_cmd(const Mission_Command& cmd) const;
/// get_next_cmd - gets next command found at or after start_index
/// returns true if found, false if not found (i.e. mission complete)
/// accounts for do_jump commands
/// increment_jump_num_times_if_found should be set to true if advancing the active navigation command
bool get_next_cmd(uint8_t start_index, Mission_Command& cmd, bool increment_jump_num_times_if_found);
/// get_next_do_cmd - gets next "do" or "conditional" command after start_index
/// returns true if found, false if not found
/// stops and returns false if it hits another navigation command before it finds the first do or conditional command
/// accounts for do_jump commands but never increments the jump's num_times_run (get_next_nav_cmd is responsible for this)
bool get_next_do_cmd(uint8_t start_index, Mission_Command& cmd);
///
/// jump handling methods
///
// init_jump_tracking - initialise jump_tracking variables
void init_jump_tracking();
/// get_jump_times_run - returns number of times the jump command has been run
uint8_t get_jump_times_run(const Mission_Command& cmd);
/// increment_jump_times_run - increments the recorded number of times the jump command has been run
void increment_jump_times_run(Mission_Command& cmd);
// parameters
AP_Int16 _cmd_total; // total number of commands in the mission
// pointer to main program functions
mission_cmd_fn_t _cmd_start_fn; // pointer to function which will be called when a new command is started
mission_cmd_fn_t _cmd_verify_fn; // pointer to function which will be called repeatedly to ensure a command is progressing
mission_complete_fn_t _mission_complete_fn; // pointer to function which will be called when mission completes
// internal variables
struct Mission_Command _nav_cmd; // current "navigation" command. It's position in the command list is held in _nav_cmd.index
struct Mission_Command _do_cmd; // current "do" command. It's position in the command list is held in _do_cmd.index
// jump related variables
struct jump_tracking_struct {
uint8_t index; // index of do-jump commands in mission
uint8_t num_times_run; // number of times
} _jump_tracking[AP_MISSION_MAX_NUM_DO_JUMP_COMMANDS];
};
#endif