mirror of https://github.com/ArduPilot/ardupilot
1469 lines
63 KiB
C++
1469 lines
63 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "AC_Avoid.h"
|
|
#include <AP_AHRS/AP_AHRS.h> // AHRS library
|
|
#include <AC_Fence/AC_Fence.h> // Failsafe fence library
|
|
#include <AP_Proximity/AP_Proximity.h>
|
|
#include <AP_Beacon/AP_Beacon.h>
|
|
#include <AP_Logger/AP_Logger.h>
|
|
#include <stdio.h>
|
|
|
|
#if APM_BUILD_TYPE(APM_BUILD_Rover)
|
|
# define AP_AVOID_BEHAVE_DEFAULT AC_Avoid::BehaviourType::BEHAVIOR_STOP
|
|
#else
|
|
# define AP_AVOID_BEHAVE_DEFAULT AC_Avoid::BehaviourType::BEHAVIOR_SLIDE
|
|
#endif
|
|
|
|
#if APM_BUILD_TYPE(APM_BUILD_ArduCopter)
|
|
# define AP_AVOID_ENABLE_Z 1
|
|
#endif
|
|
|
|
const AP_Param::GroupInfo AC_Avoid::var_info[] = {
|
|
|
|
// @Param: ENABLE
|
|
// @DisplayName: Avoidance control enable/disable
|
|
// @Description: Enabled/disable avoidance input sources
|
|
// @Bitmask: 0:UseFence,1:UseProximitySensor,2:UseBeaconFence
|
|
// @User: Standard
|
|
AP_GROUPINFO_FLAGS("ENABLE", 1, AC_Avoid, _enabled, AC_AVOID_DEFAULT, AP_PARAM_FLAG_ENABLE),
|
|
|
|
// @Param{Copter}: ANGLE_MAX
|
|
// @DisplayName: Avoidance max lean angle in non-GPS flight modes
|
|
// @Description: Max lean angle used to avoid obstacles while in non-GPS modes
|
|
// @Units: cdeg
|
|
// @Increment: 10
|
|
// @Range: 0 4500
|
|
// @User: Standard
|
|
AP_GROUPINFO_FRAME("ANGLE_MAX", 2, AC_Avoid, _angle_max, 1000, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_TRICOPTER),
|
|
|
|
// @Param{Copter}: DIST_MAX
|
|
// @DisplayName: Avoidance distance maximum in non-GPS flight modes
|
|
// @Description: Distance from object at which obstacle avoidance will begin in non-GPS modes
|
|
// @Units: m
|
|
// @Range: 1 30
|
|
// @User: Standard
|
|
AP_GROUPINFO_FRAME("DIST_MAX", 3, AC_Avoid, _dist_max, AC_AVOID_NONGPS_DIST_MAX_DEFAULT, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_TRICOPTER),
|
|
|
|
// @Param: MARGIN
|
|
// @DisplayName: Avoidance distance margin in GPS modes
|
|
// @Description: Vehicle will attempt to stay at least this distance (in meters) from objects while in GPS modes
|
|
// @Units: m
|
|
// @Range: 1 10
|
|
// @User: Standard
|
|
AP_GROUPINFO("MARGIN", 4, AC_Avoid, _margin, 2.0f),
|
|
|
|
// @Param{Copter}: BEHAVE
|
|
// @DisplayName: Avoidance behaviour
|
|
// @Description: Avoidance behaviour (slide or stop)
|
|
// @Values: 0:Slide,1:Stop
|
|
// @User: Standard
|
|
AP_GROUPINFO_FRAME("BEHAVE", 5, AC_Avoid, _behavior, AP_AVOID_BEHAVE_DEFAULT, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_TRICOPTER),
|
|
|
|
// @Param: BACKUP_SPD
|
|
// @DisplayName: Avoidance maximum backup speed
|
|
// @Description: Maximum speed that will be used to back away from obstacles in GPS modes (m/s). Set zero to disable
|
|
// @Units: m/s
|
|
// @Range: 0 2
|
|
// @User: Standard
|
|
AP_GROUPINFO("BACKUP_SPD", 6, AC_Avoid, _backup_speed_max, 0.75f),
|
|
|
|
// @Param{Copter}: ALT_MIN
|
|
// @DisplayName: Avoidance minimum altitude
|
|
// @Description: Minimum altitude above which proximity based avoidance will start working. This requires a valid downward facing rangefinder reading to work. Set zero to disable
|
|
// @Units: m
|
|
// @Range: 0 6
|
|
// @User: Standard
|
|
AP_GROUPINFO_FRAME("ALT_MIN", 7, AC_Avoid, _alt_min, 0.0f, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_TRICOPTER),
|
|
|
|
// @Param: ACCEL_MAX
|
|
// @DisplayName: Avoidance maximum acceleration
|
|
// @Description: Maximum acceleration with which obstacles will be avoided with. Set zero to disable acceleration limits
|
|
// @Units: m/s/s
|
|
// @Range: 0 9
|
|
// @User: Standard
|
|
AP_GROUPINFO("ACCEL_MAX", 8, AC_Avoid, _accel_max, 3.0f),
|
|
|
|
// @Param: BACKUP_DZ
|
|
// @DisplayName: Avoidance deadzone between stopping and backing away from obstacle
|
|
// @Description: Distance beyond AVOID_MARGIN parameter, after which vehicle will backaway from obstacles. Increase this parameter if you see vehicle going back and forth in front of obstacle.
|
|
// @Units: m
|
|
// @Range: 0 2
|
|
// @User: Standard
|
|
AP_GROUPINFO("BACKUP_DZ", 9, AC_Avoid, _backup_deadzone, 0.10f),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
/// Constructor
|
|
AC_Avoid::AC_Avoid()
|
|
{
|
|
_singleton = this;
|
|
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
}
|
|
|
|
/*
|
|
* This method limits velocity and calculates backaway velocity from various supported fences
|
|
* Also limits vertical velocity using adjust_velocity_z method
|
|
*/
|
|
void AC_Avoid::adjust_velocity_fence(float kP, float accel_cmss, Vector3f &desired_vel_cms, Vector3f &backup_vel, float kP_z, float accel_cmss_z, float dt)
|
|
{
|
|
// Only horizontal component needed for most fences, since fences are 2D
|
|
Vector2f desired_velocity_xy_cms{desired_vel_cms.x, desired_vel_cms.y};
|
|
|
|
// limit acceleration
|
|
const float accel_cmss_limited = MIN(accel_cmss, AC_AVOID_ACCEL_CMSS_MAX);
|
|
|
|
// maximum component of desired backup velocity in each quadrant
|
|
Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel;
|
|
|
|
if ((_enabled & AC_AVOID_STOP_AT_FENCE) > 0) {
|
|
// Store velocity needed to back away from fence
|
|
Vector2f backup_vel_fence;
|
|
|
|
adjust_velocity_circle_fence(kP, accel_cmss_limited, desired_velocity_xy_cms, backup_vel_fence, dt);
|
|
find_max_quadrant_velocity(backup_vel_fence, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel);
|
|
|
|
// backup_vel_fence is set to zero after each fence incase the velocity is unset from previous methods
|
|
backup_vel_fence.zero();
|
|
adjust_velocity_inclusion_and_exclusion_polygons(kP, accel_cmss_limited, desired_velocity_xy_cms, backup_vel_fence, dt);
|
|
find_max_quadrant_velocity(backup_vel_fence, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel);
|
|
|
|
backup_vel_fence.zero();
|
|
adjust_velocity_inclusion_circles(kP, accel_cmss_limited, desired_velocity_xy_cms, backup_vel_fence, dt);
|
|
find_max_quadrant_velocity(backup_vel_fence, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel);
|
|
|
|
backup_vel_fence.zero();
|
|
adjust_velocity_exclusion_circles(kP, accel_cmss_limited, desired_velocity_xy_cms, backup_vel_fence, dt);
|
|
find_max_quadrant_velocity(backup_vel_fence, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel);
|
|
}
|
|
|
|
if ((_enabled & AC_AVOID_STOP_AT_BEACON_FENCE) > 0) {
|
|
// Store velocity needed to back away from beacon fence
|
|
Vector2f backup_vel_beacon;
|
|
adjust_velocity_beacon_fence(kP, accel_cmss_limited, desired_velocity_xy_cms, backup_vel_beacon, dt);
|
|
find_max_quadrant_velocity(backup_vel_beacon, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel);
|
|
}
|
|
|
|
// check for vertical fence
|
|
float desired_velocity_z_cms = desired_vel_cms.z;
|
|
float desired_backup_vel_z = 0.0f;
|
|
adjust_velocity_z(kP_z, accel_cmss_z, desired_velocity_z_cms, desired_backup_vel_z, dt);
|
|
|
|
// Desired backup velocity is sum of maximum velocity component in each quadrant
|
|
const Vector2f desired_backup_vel_xy = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel;
|
|
backup_vel = Vector3f{desired_backup_vel_xy.x, desired_backup_vel_xy.y, desired_backup_vel_z};
|
|
desired_vel_cms = Vector3f{desired_velocity_xy_cms.x, desired_velocity_xy_cms.y, desired_velocity_z_cms};
|
|
}
|
|
|
|
/*
|
|
* Adjusts the desired velocity so that the vehicle can stop
|
|
* before the fence/object.
|
|
* kP, accel_cmss are for the horizontal axis
|
|
* kP_z, accel_cmss_z are for vertical axis
|
|
*/
|
|
void AC_Avoid::adjust_velocity(Vector3f &desired_vel_cms, bool &backing_up, float kP, float accel_cmss, float kP_z, float accel_cmss_z, float dt)
|
|
{
|
|
// exit immediately if disabled
|
|
if (_enabled == AC_AVOID_DISABLED) {
|
|
return;
|
|
}
|
|
|
|
// make a copy of input velocity, because desired_vel_cms might be changed
|
|
const Vector3f desired_vel_cms_original = desired_vel_cms;
|
|
|
|
// limit acceleration
|
|
const float accel_cmss_limited = MIN(accel_cmss, AC_AVOID_ACCEL_CMSS_MAX);
|
|
|
|
// maximum component of horizontal desired backup velocity in each quadrant
|
|
Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel;
|
|
float back_vel_up = 0.0f;
|
|
float back_vel_down = 0.0f;
|
|
|
|
// Avoidance in response to proximity sensor
|
|
if ((_enabled & AC_AVOID_USE_PROXIMITY_SENSOR) > 0 && _proximity_enabled && _proximity_alt_enabled) {
|
|
// Store velocity needed to back away from physical obstacles
|
|
Vector3f backup_vel_proximity;
|
|
adjust_velocity_proximity(kP, accel_cmss_limited, desired_vel_cms, backup_vel_proximity, kP_z,accel_cmss_z, dt);
|
|
find_max_quadrant_velocity_3D(backup_vel_proximity, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel, back_vel_up, back_vel_down);
|
|
}
|
|
|
|
// Avoidance in response to various fences
|
|
Vector3f backup_vel_fence;
|
|
adjust_velocity_fence(kP, accel_cmss, desired_vel_cms, backup_vel_fence, kP_z, accel_cmss_z, dt);
|
|
find_max_quadrant_velocity_3D(backup_vel_fence , quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel, back_vel_up, back_vel_down);
|
|
|
|
// Desired backup velocity is sum of maximum velocity component in each quadrant
|
|
const Vector2f desired_backup_vel_xy = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel;
|
|
const float desired_backup_vel_z = back_vel_down + back_vel_up;
|
|
Vector3f desired_backup_vel{desired_backup_vel_xy.x, desired_backup_vel_xy.y, desired_backup_vel_z};
|
|
|
|
const float max_back_spd_cms = _backup_speed_max * 100.0f;
|
|
if (!desired_backup_vel.is_zero() && is_positive(max_back_spd_cms)) {
|
|
backing_up = true;
|
|
// Constrain backing away speed
|
|
if (desired_backup_vel.length() > max_back_spd_cms) {
|
|
desired_backup_vel = desired_backup_vel.normalized() * max_back_spd_cms;
|
|
}
|
|
|
|
// let user take control if they are backing away at a greater speed than what we have calculated
|
|
// this has to be done for x,y,z seperately. For eg, user is doing fine in "x" direction but might need backing up in "y".
|
|
if (!is_zero(desired_backup_vel.x)) {
|
|
if (is_positive(desired_backup_vel.x)) {
|
|
desired_vel_cms.x = MAX(desired_vel_cms.x, desired_backup_vel.x);
|
|
} else {
|
|
desired_vel_cms.x = MIN(desired_vel_cms.x, desired_backup_vel.x);
|
|
}
|
|
}
|
|
if (!is_zero(desired_backup_vel.y)) {
|
|
if (is_positive(desired_backup_vel.y)) {
|
|
desired_vel_cms.y = MAX(desired_vel_cms.y, desired_backup_vel.y);
|
|
} else {
|
|
desired_vel_cms.y = MIN(desired_vel_cms.y, desired_backup_vel.y);
|
|
}
|
|
}
|
|
if (!is_zero(desired_backup_vel.z)) {
|
|
if (is_positive(desired_backup_vel.z)) {
|
|
desired_vel_cms.z = MAX(desired_vel_cms.z, desired_backup_vel.z);
|
|
} else {
|
|
desired_vel_cms.z = MIN(desired_vel_cms.z, desired_backup_vel.z);
|
|
}
|
|
}
|
|
}
|
|
// limit acceleration
|
|
limit_accel(desired_vel_cms_original, desired_vel_cms, dt);
|
|
|
|
if (desired_vel_cms_original != desired_vel_cms) {
|
|
_last_limit_time = AP_HAL::millis();
|
|
}
|
|
|
|
if (limits_active()) {
|
|
// log at not more than 10hz (adjust_velocity method can be potentially called at 400hz!)
|
|
uint32_t now = AP_HAL::millis();
|
|
if ((now - _last_log_ms) > 100) {
|
|
_last_log_ms = now;
|
|
Write_SimpleAvoidance(true, desired_vel_cms_original, desired_vel_cms, backing_up);
|
|
}
|
|
} else {
|
|
// avoidance isn't active anymore
|
|
// log once so that it registers in logs
|
|
if (_last_log_ms) {
|
|
Write_SimpleAvoidance(false, desired_vel_cms_original, desired_vel_cms, backing_up);
|
|
// this makes sure logging won't run again till it is active
|
|
_last_log_ms = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Limit acceleration so that change of velocity output by avoidance library is controlled
|
|
* This helps reduce jerks and sudden movements in the vehicle
|
|
*/
|
|
void AC_Avoid::limit_accel(const Vector3f &original_vel, Vector3f &modified_vel, float dt)
|
|
{
|
|
if (original_vel == modified_vel || is_zero(_accel_max) || !is_positive(dt)) {
|
|
// we can't limit accel if any of these conditions are true
|
|
return;
|
|
}
|
|
|
|
if (AP_HAL::millis() - _last_limit_time > AC_AVOID_ACCEL_TIMEOUT_MS) {
|
|
// reset this velocity because its been a long time since avoidance was active
|
|
_prev_avoid_vel = original_vel;
|
|
}
|
|
|
|
// acceleration demanded by avoidance
|
|
const Vector3f accel = (modified_vel - _prev_avoid_vel)/dt;
|
|
|
|
// max accel in cm
|
|
const float max_accel_cm = _accel_max * 100.0f;
|
|
|
|
if (accel.length() > max_accel_cm) {
|
|
// pull back on the acceleration
|
|
const Vector3f accel_direction = accel.normalized();
|
|
modified_vel = (accel_direction * max_accel_cm) * dt + _prev_avoid_vel;
|
|
}
|
|
|
|
_prev_avoid_vel = modified_vel;
|
|
return;
|
|
}
|
|
|
|
// This method is used in most Rover modes and not in Copter
|
|
// adjust desired horizontal speed so that the vehicle stops before the fence or object
|
|
// accel (maximum acceleration/deceleration) is in m/s/s
|
|
// heading is in radians
|
|
// speed is in m/s
|
|
// kP should be zero for linear response, non-zero for non-linear response
|
|
void AC_Avoid::adjust_speed(float kP, float accel, float heading, float &speed, float dt)
|
|
{
|
|
// convert heading and speed into velocity vector
|
|
Vector3f vel{
|
|
cosf(heading) * speed * 100.0f,
|
|
sinf(heading) * speed * 100.0f,
|
|
0.0f
|
|
};
|
|
|
|
bool backing_up = false;
|
|
adjust_velocity(vel, backing_up, kP, accel * 100.0f, 0, 0, dt);
|
|
const Vector2f vel_xy{vel.x, vel.y};
|
|
|
|
if (backing_up) {
|
|
// back up
|
|
if (fabsf(wrap_180(degrees(vel_xy.angle())) - degrees(heading)) > 90.0f) {
|
|
// Big difference between the direction of velocity vector and actual heading therefore we need to reverse the direction
|
|
speed = -vel_xy.length() * 0.01f;
|
|
} else {
|
|
speed = vel_xy.length() * 0.01f;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// No need to back up so adjust speed towards zero if needed
|
|
if (is_negative(speed)) {
|
|
speed = -vel_xy.length() * 0.01f;
|
|
} else {
|
|
speed = vel_xy.length() * 0.01f;
|
|
}
|
|
}
|
|
|
|
// adjust vertical climb rate so vehicle does not break the vertical fence
|
|
void AC_Avoid::adjust_velocity_z(float kP, float accel_cmss, float& climb_rate_cms, float& backup_speed, float dt)
|
|
{
|
|
#ifdef AP_AVOID_ENABLE_Z
|
|
|
|
// exit immediately if disabled
|
|
if (_enabled == AC_AVOID_DISABLED) {
|
|
return;
|
|
}
|
|
|
|
// do not adjust climb_rate if level or descending
|
|
if (climb_rate_cms <= 0.0f) {
|
|
return;
|
|
}
|
|
|
|
// limit acceleration
|
|
const float accel_cmss_limited = MIN(accel_cmss, AC_AVOID_ACCEL_CMSS_MAX);
|
|
|
|
bool limit_alt = false;
|
|
float alt_diff = 0.0f; // distance from altitude limit to vehicle in metres (positive means vehicle is below limit)
|
|
|
|
const AP_AHRS &_ahrs = AP::ahrs();
|
|
|
|
// calculate distance below fence
|
|
AC_Fence *fence = AP::fence();
|
|
if ((_enabled & AC_AVOID_STOP_AT_FENCE) > 0 && fence && (fence->get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) > 0) {
|
|
// calculate distance from vehicle to safe altitude
|
|
float veh_alt;
|
|
_ahrs.get_relative_position_D_home(veh_alt);
|
|
// _fence.get_safe_alt_max() is UP, veh_alt is DOWN:
|
|
alt_diff = fence->get_safe_alt_max() + veh_alt;
|
|
limit_alt = true;
|
|
}
|
|
|
|
// calculate distance to (e.g.) optical flow altitude limit
|
|
// AHRS values are always in metres
|
|
float alt_limit;
|
|
float curr_alt;
|
|
if (_ahrs.get_hgt_ctrl_limit(alt_limit) &&
|
|
_ahrs.get_relative_position_D_origin(curr_alt)) {
|
|
// alt_limit is UP, curr_alt is DOWN:
|
|
const float ctrl_alt_diff = alt_limit + curr_alt;
|
|
if (!limit_alt || ctrl_alt_diff < alt_diff) {
|
|
alt_diff = ctrl_alt_diff;
|
|
limit_alt = true;
|
|
}
|
|
}
|
|
|
|
#if HAL_PROXIMITY_ENABLED
|
|
// get distance from proximity sensor
|
|
float proximity_alt_diff;
|
|
AP_Proximity *proximity = AP::proximity();
|
|
if (proximity && proximity->get_upward_distance(proximity_alt_diff)) {
|
|
proximity_alt_diff -= _margin;
|
|
if (!limit_alt || proximity_alt_diff < alt_diff) {
|
|
alt_diff = proximity_alt_diff;
|
|
limit_alt = true;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// limit climb rate
|
|
if (limit_alt) {
|
|
// do not allow climbing if we've breached the safe altitude
|
|
if (alt_diff <= 0.0f) {
|
|
climb_rate_cms = MIN(climb_rate_cms, 0.0f);
|
|
// also calculate backup speed that will get us back to safe altitude
|
|
backup_speed = -1*(get_max_speed(kP, accel_cmss_limited, -alt_diff*100.0f, dt));
|
|
return;
|
|
}
|
|
|
|
// limit climb rate
|
|
const float max_speed = get_max_speed(kP, accel_cmss_limited, alt_diff*100.0f, dt);
|
|
climb_rate_cms = MIN(max_speed, climb_rate_cms);
|
|
}
|
|
# endif
|
|
}
|
|
|
|
// adjust roll-pitch to push vehicle away from objects
|
|
// roll and pitch value are in centi-degrees
|
|
void AC_Avoid::adjust_roll_pitch(float &roll, float &pitch, float veh_angle_max)
|
|
{
|
|
// exit immediately if proximity based avoidance is disabled
|
|
if ((_enabled & AC_AVOID_USE_PROXIMITY_SENSOR) == 0 || !_proximity_enabled) {
|
|
return;
|
|
}
|
|
|
|
// exit immediately if angle max is zero
|
|
if (_angle_max <= 0.0f || veh_angle_max <= 0.0f) {
|
|
return;
|
|
}
|
|
|
|
float roll_positive = 0.0f; // maximum positive roll value
|
|
float roll_negative = 0.0f; // minimum negative roll value
|
|
float pitch_positive = 0.0f; // maximum positive pitch value
|
|
float pitch_negative = 0.0f; // minimum negative pitch value
|
|
|
|
// get maximum positive and negative roll and pitch percentages from proximity sensor
|
|
get_proximity_roll_pitch_pct(roll_positive, roll_negative, pitch_positive, pitch_negative);
|
|
|
|
// add maximum positive and negative percentages together for roll and pitch, convert to centi-degrees
|
|
Vector2f rp_out((roll_positive + roll_negative) * 4500.0f, (pitch_positive + pitch_negative) * 4500.0f);
|
|
|
|
// apply avoidance angular limits
|
|
// the object avoidance lean angle is never more than 75% of the total angle-limit to allow the pilot to override
|
|
const float angle_limit = constrain_float(_angle_max, 0.0f, veh_angle_max * AC_AVOID_ANGLE_MAX_PERCENT);
|
|
float vec_len = rp_out.length();
|
|
if (vec_len > angle_limit) {
|
|
rp_out *= (angle_limit / vec_len);
|
|
}
|
|
|
|
// add passed in roll, pitch angles
|
|
rp_out.x += roll;
|
|
rp_out.y += pitch;
|
|
|
|
// apply total angular limits
|
|
vec_len = rp_out.length();
|
|
if (vec_len > veh_angle_max) {
|
|
rp_out *= (veh_angle_max / vec_len);
|
|
}
|
|
|
|
// return adjusted roll, pitch
|
|
roll = rp_out.x;
|
|
pitch = rp_out.y;
|
|
}
|
|
|
|
/*
|
|
* Note: This method is used to limit velocity horizontally only
|
|
* Limits the component of desired_vel_cms in the direction of the unit vector
|
|
* limit_direction to be at most the maximum speed permitted by the limit_distance_cm.
|
|
*
|
|
* Uses velocity adjustment idea from Randy's second email on this thread:
|
|
* https://groups.google.com/forum/#!searchin/drones-discuss/obstacle/drones-discuss/QwUXz__WuqY/qo3G8iTLSJAJ
|
|
*/
|
|
void AC_Avoid::limit_velocity_2D(float kP, float accel_cmss, Vector2f &desired_vel_cms, const Vector2f& limit_direction, float limit_distance_cm, float dt)
|
|
{
|
|
const float max_speed = get_max_speed(kP, accel_cmss, limit_distance_cm, dt);
|
|
// project onto limit direction
|
|
const float speed = desired_vel_cms * limit_direction;
|
|
if (speed > max_speed) {
|
|
// subtract difference between desired speed and maximum acceptable speed
|
|
desired_vel_cms += limit_direction*(max_speed - speed);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Note: This method is used to limit velocity horizontally and vertically given a 3D desired velocity vector
|
|
* Limits the component of desired_vel_cms in the direction of the obstacle_vector based on the passed value of "margin"
|
|
*/
|
|
void AC_Avoid::limit_velocity_3D(float kP, float accel_cmss, Vector3f &desired_vel_cms, const Vector3f& obstacle_vector, float margin_cm, float kP_z, float accel_cmss_z, float dt)
|
|
{
|
|
if (desired_vel_cms.is_zero()) {
|
|
// nothing to limit
|
|
return;
|
|
}
|
|
// create a margin_cm length vector in the direction of desired_vel_cms
|
|
// this will create larger margin towards the direction vehicle is traveling in
|
|
const Vector3f margin_vector = desired_vel_cms.normalized() * margin_cm;
|
|
const Vector2f limit_direction_xy{obstacle_vector.x, obstacle_vector.y};
|
|
|
|
if (!limit_direction_xy.is_zero()) {
|
|
const float distance_from_fence_xy = MAX((limit_direction_xy.length() - Vector2f{margin_vector.x, margin_vector.y}.length()), 0.0f);
|
|
Vector2f velocity_xy{desired_vel_cms.x, desired_vel_cms.y};
|
|
limit_velocity_2D(kP, accel_cmss, velocity_xy, limit_direction_xy.normalized(), distance_from_fence_xy, dt);
|
|
desired_vel_cms.x = velocity_xy.x;
|
|
desired_vel_cms.y = velocity_xy.y;
|
|
}
|
|
|
|
if (is_zero(desired_vel_cms.z) || is_zero(obstacle_vector.z)) {
|
|
// nothing to limit vertically if desired_vel_cms.z is zero
|
|
// if obstacle_vector.z is zero then the obstacle is probably horizontally located, and we can move vertically
|
|
return;
|
|
}
|
|
|
|
if (is_positive(desired_vel_cms.z) != is_positive(obstacle_vector.z)) {
|
|
// why limit velocity vertically when we are going the opposite direction
|
|
return;
|
|
}
|
|
|
|
// to check if Z velocity changes
|
|
const float velocity_z_original = desired_vel_cms.z;
|
|
const float z_speed = fabsf(desired_vel_cms.z);
|
|
|
|
// obstacle_vector.z and margin_vector.z should be in same direction as checked above
|
|
const float dist_z = MAX(fabsf(obstacle_vector.z) - fabsf(margin_vector.z), 0.0f);
|
|
if (is_zero(dist_z)) {
|
|
// eliminate any vertical velocity
|
|
desired_vel_cms.z = 0.0f;
|
|
} else {
|
|
const float max_z_speed = get_max_speed(kP_z, accel_cmss_z, dist_z, dt);
|
|
desired_vel_cms.z = MIN(max_z_speed, z_speed);
|
|
}
|
|
|
|
// make sure the direction of the Z velocity did not change
|
|
// we are only limiting speed here, not changing directions
|
|
// check if original z velocity is positive or negative
|
|
if (is_negative(velocity_z_original)) {
|
|
desired_vel_cms.z = desired_vel_cms.z * -1.0f;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute the back away horizontal velocity required to avoid breaching margin
|
|
* INPUT: This method requires the breach in margin distance (back_distance_cm), direction towards the breach (limit_direction)
|
|
* It then calculates the desired backup velocity and passes it on to "find_max_quadrant_velocity" method to distribute the velocity vectors into respective quadrants
|
|
* OUTPUT: The method then outputs four velocities (quad1/2/3/4_back_vel_cms), which correspond to the maximum horizontal desired backup velocity in each quadrant
|
|
*/
|
|
void AC_Avoid::calc_backup_velocity_2D(float kP, float accel_cmss, Vector2f &quad1_back_vel_cms, Vector2f &quad2_back_vel_cms, Vector2f &quad3_back_vel_cms, Vector2f &quad4_back_vel_cms, float back_distance_cm, Vector2f limit_direction, float dt)
|
|
{
|
|
if (limit_direction.is_zero()) {
|
|
// protect against divide by zero
|
|
return;
|
|
}
|
|
// speed required to move away the exact distance that we have breached the margin with
|
|
const float back_speed = get_max_speed(kP, 0.4f * accel_cmss, fabsf(back_distance_cm), dt);
|
|
|
|
// direction to the obstacle
|
|
limit_direction.normalize();
|
|
|
|
// move in the opposite direction with the required speed
|
|
Vector2f back_direction_vel = limit_direction * (-back_speed);
|
|
// divide the vector into quadrants, find maximum velocity component in each quadrant
|
|
find_max_quadrant_velocity(back_direction_vel, quad1_back_vel_cms, quad2_back_vel_cms, quad3_back_vel_cms, quad4_back_vel_cms);
|
|
}
|
|
|
|
/*
|
|
* Compute the back away velocity required to avoid breaching margin, including vertical component
|
|
* min_z_vel is <= 0, and stores the greatest velocity in the downwards direction
|
|
* max_z_vel is >= 0, and stores the greatest velocity in the upwards direction
|
|
* eventually max_z_vel + min_z_vel will give the final desired Z backaway velocity
|
|
*/
|
|
void AC_Avoid::calc_backup_velocity_3D(float kP, float accel_cmss, Vector2f &quad1_back_vel_cms, Vector2f &quad2_back_vel_cms, Vector2f &quad3_back_vel_cms, Vector2f &quad4_back_vel_cms, float back_distance_cms, Vector3f limit_direction, float kp_z, float accel_cmss_z, float back_distance_z, float& min_z_vel, float& max_z_vel, float dt)
|
|
{
|
|
// backup horizontally
|
|
if (is_positive(back_distance_cms)) {
|
|
Vector2f limit_direction_2d{limit_direction.x, limit_direction.y};
|
|
calc_backup_velocity_2D(kP, accel_cmss, quad1_back_vel_cms, quad2_back_vel_cms, quad3_back_vel_cms, quad4_back_vel_cms, back_distance_cms, limit_direction_2d, dt);
|
|
}
|
|
|
|
// backup vertically
|
|
if (!is_zero(back_distance_z)) {
|
|
float back_speed_z = get_max_speed(kp_z, 0.4f * accel_cmss_z, fabsf(back_distance_z), dt);
|
|
// Down is positive
|
|
if (is_positive(back_distance_z)) {
|
|
back_speed_z *= -1.0f;
|
|
}
|
|
|
|
// store the z backup speed into min or max z if possible
|
|
if (back_speed_z < min_z_vel) {
|
|
min_z_vel = back_speed_z;
|
|
}
|
|
if (back_speed_z > max_z_vel) {
|
|
max_z_vel = back_speed_z;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate maximum velocity vector that can be formed in each quadrant
|
|
* This method takes the desired backup velocity, and four other velocities corresponding to each quadrant
|
|
* The desired velocity is then fit into one of the 4 quadrant velocities as per the sign of its components
|
|
* This ensures that if we have multiple backup velocities, we can get the maximum of all of those velocities in each quadrant
|
|
*/
|
|
void AC_Avoid::find_max_quadrant_velocity(Vector2f &desired_vel, Vector2f &quad1_vel, Vector2f &quad2_vel, Vector2f &quad3_vel, Vector2f &quad4_vel)
|
|
{
|
|
if (desired_vel.is_zero()) {
|
|
return;
|
|
}
|
|
// first quadrant: +ve x, +ve y direction
|
|
if (is_positive(desired_vel.x) && is_positive(desired_vel.y)) {
|
|
quad1_vel = Vector2f{MAX(quad1_vel.x, desired_vel.x), MAX(quad1_vel.y,desired_vel.y)};
|
|
}
|
|
// second quadrant: -ve x, +ve y direction
|
|
if (is_negative(desired_vel.x) && is_positive(desired_vel.y)) {
|
|
quad2_vel = Vector2f{MIN(quad2_vel.x, desired_vel.x), MAX(quad2_vel.y,desired_vel.y)};
|
|
}
|
|
// third quadrant: -ve x, -ve y direction
|
|
if (is_negative(desired_vel.x) && is_negative(desired_vel.y)) {
|
|
quad3_vel = Vector2f{MIN(quad3_vel.x, desired_vel.x), MIN(quad3_vel.y,desired_vel.y)};
|
|
}
|
|
// fourth quadrant: +ve x, -ve y direction
|
|
if (is_positive(desired_vel.x) && is_negative(desired_vel.y)) {
|
|
quad4_vel = Vector2f{MAX(quad4_vel.x, desired_vel.x), MIN(quad4_vel.y,desired_vel.y)};
|
|
}
|
|
}
|
|
|
|
/*
|
|
Calculate maximum velocity vector that can be formed in each quadrant and separately store max & min of vertical components
|
|
*/
|
|
void AC_Avoid::find_max_quadrant_velocity_3D(Vector3f &desired_vel, Vector2f &quad1_vel, Vector2f &quad2_vel, Vector2f &quad3_vel, Vector2f &quad4_vel, float &max_z_vel, float &min_z_vel)
|
|
{
|
|
// split into horizontal and vertical components
|
|
Vector2f velocity_xy{desired_vel.x, desired_vel.y};
|
|
find_max_quadrant_velocity(velocity_xy, quad1_vel, quad2_vel, quad3_vel, quad4_vel);
|
|
|
|
// store maximum and minimum of z
|
|
if (is_positive(desired_vel.z) && (desired_vel.z > max_z_vel)) {
|
|
max_z_vel = desired_vel.z;
|
|
}
|
|
if (is_negative(desired_vel.z) && (desired_vel.z < min_z_vel)) {
|
|
min_z_vel = desired_vel.z;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Computes the speed such that the stopping distance
|
|
* of the vehicle will be exactly the input distance.
|
|
*/
|
|
float AC_Avoid::get_max_speed(float kP, float accel_cmss, float distance_cm, float dt) const
|
|
{
|
|
if (is_zero(kP)) {
|
|
return safe_sqrt(2.0f * distance_cm * accel_cmss);
|
|
} else {
|
|
return sqrt_controller(distance_cm, kP, accel_cmss, dt);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Adjusts the desired velocity for the circular fence.
|
|
*/
|
|
void AC_Avoid::adjust_velocity_circle_fence(float kP, float accel_cmss, Vector2f &desired_vel_cms, Vector2f &backup_vel, float dt)
|
|
{
|
|
AC_Fence *fence = AP::fence();
|
|
if (fence == nullptr) {
|
|
return;
|
|
}
|
|
|
|
AC_Fence &_fence = *fence;
|
|
|
|
// exit if circular fence is not enabled
|
|
if ((_fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) == 0) {
|
|
return;
|
|
}
|
|
|
|
// exit if the circular fence has already been breached
|
|
if ((_fence.get_breaches() & AC_FENCE_TYPE_CIRCLE) != 0) {
|
|
return;
|
|
}
|
|
|
|
// get desired speed
|
|
const float desired_speed = desired_vel_cms.length();
|
|
if (is_zero(desired_speed)) {
|
|
// no avoidance necessary when desired speed is zero
|
|
return;
|
|
}
|
|
|
|
const AP_AHRS &_ahrs = AP::ahrs();
|
|
|
|
// get position as a 2D offset from ahrs home
|
|
Vector2f position_xy;
|
|
if (!_ahrs.get_relative_position_NE_home(position_xy)) {
|
|
// we have no idea where we are....
|
|
return;
|
|
}
|
|
position_xy *= 100.0f; // m -> cm
|
|
|
|
// get the fence radius in cm
|
|
const float fence_radius = _fence.get_radius() * 100.0f;
|
|
// get the margin to the fence in cm
|
|
const float margin_cm = _fence.get_margin() * 100.0f;
|
|
|
|
if (margin_cm > fence_radius) {
|
|
return;
|
|
}
|
|
|
|
// get vehicle distance from home
|
|
const float dist_from_home = position_xy.length();
|
|
if (dist_from_home > fence_radius) {
|
|
// outside of circular fence, no velocity adjustments
|
|
return;
|
|
}
|
|
const float distance_to_boundary = fence_radius - dist_from_home;
|
|
|
|
// for backing away
|
|
Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel;
|
|
|
|
// back away if vehicle has breached margin
|
|
if (is_negative(distance_to_boundary - margin_cm)) {
|
|
calc_backup_velocity_2D(kP, accel_cmss, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel, margin_cm - distance_to_boundary, position_xy, dt);
|
|
}
|
|
// desired backup velocity is sum of maximum velocity component in each quadrant
|
|
backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel;
|
|
|
|
// vehicle is inside the circular fence
|
|
switch (_behavior) {
|
|
case BEHAVIOR_SLIDE: {
|
|
// implement sliding behaviour
|
|
const Vector2f stopping_point = position_xy + desired_vel_cms*(get_stopping_distance(kP, accel_cmss, desired_speed)/desired_speed);
|
|
const float stopping_point_dist_from_home = stopping_point.length();
|
|
if (stopping_point_dist_from_home <= fence_radius - margin_cm) {
|
|
// stopping before before fence so no need to adjust
|
|
return;
|
|
}
|
|
// unsafe desired velocity - will not be able to stop before reaching margin from fence
|
|
// Project stopping point radially onto fence boundary
|
|
// Adjusted velocity will point towards this projected point at a safe speed
|
|
const Vector2f target_offset = stopping_point * ((fence_radius - margin_cm) / stopping_point_dist_from_home);
|
|
const Vector2f target_direction = target_offset - position_xy;
|
|
const float distance_to_target = target_direction.length();
|
|
if (is_positive(distance_to_target)) {
|
|
const float max_speed = get_max_speed(kP, accel_cmss, distance_to_target, dt);
|
|
desired_vel_cms = target_direction * (MIN(desired_speed,max_speed) / distance_to_target);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case (BEHAVIOR_STOP): {
|
|
// implement stopping behaviour
|
|
// calculate stopping point plus a margin so we look forward far enough to intersect with circular fence
|
|
const Vector2f stopping_point_plus_margin = position_xy + desired_vel_cms*((2.0f + margin_cm + get_stopping_distance(kP, accel_cmss, desired_speed))/desired_speed);
|
|
const float stopping_point_plus_margin_dist_from_home = stopping_point_plus_margin.length();
|
|
if (dist_from_home >= fence_radius - margin_cm) {
|
|
// vehicle has already breached margin around fence
|
|
// if stopping point is even further from home (i.e. in wrong direction) then adjust speed to zero
|
|
// otherwise user is backing away from fence so do not apply limits
|
|
if (stopping_point_plus_margin_dist_from_home >= dist_from_home) {
|
|
desired_vel_cms.zero();
|
|
}
|
|
} else {
|
|
// shorten vector without adjusting its direction
|
|
Vector2f intersection;
|
|
if (Vector2f::circle_segment_intersection(position_xy, stopping_point_plus_margin, Vector2f(0.0f,0.0f), fence_radius - margin_cm, intersection)) {
|
|
const float distance_to_target = (intersection - position_xy).length();
|
|
const float max_speed = get_max_speed(kP, accel_cmss, distance_to_target, dt);
|
|
if (max_speed < desired_speed) {
|
|
desired_vel_cms *= MAX(max_speed, 0.0f) / desired_speed;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Adjusts the desired velocity for the exclusion polygons
|
|
*/
|
|
void AC_Avoid::adjust_velocity_inclusion_and_exclusion_polygons(float kP, float accel_cmss, Vector2f &desired_vel_cms, Vector2f &backup_vel, float dt)
|
|
{
|
|
const AC_Fence *fence = AP::fence();
|
|
if (fence == nullptr) {
|
|
return;
|
|
}
|
|
|
|
// exit if polygon fences are not enabled
|
|
if ((fence->get_enabled_fences() & AC_FENCE_TYPE_POLYGON) == 0) {
|
|
return;
|
|
}
|
|
|
|
// for backing away
|
|
Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel;
|
|
|
|
// iterate through inclusion polygons
|
|
const uint8_t num_inclusion_polygons = fence->polyfence().get_inclusion_polygon_count();
|
|
for (uint8_t i = 0; i < num_inclusion_polygons; i++) {
|
|
uint16_t num_points;
|
|
const Vector2f* boundary = fence->polyfence().get_inclusion_polygon(i, num_points);
|
|
Vector2f backup_vel_inc;
|
|
// adjust velocity
|
|
adjust_velocity_polygon(kP, accel_cmss, desired_vel_cms, backup_vel_inc, boundary, num_points, fence->get_margin(), dt, true);
|
|
find_max_quadrant_velocity(backup_vel_inc, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel);
|
|
}
|
|
|
|
// iterate through exclusion polygons
|
|
const uint8_t num_exclusion_polygons = fence->polyfence().get_exclusion_polygon_count();
|
|
for (uint8_t i = 0; i < num_exclusion_polygons; i++) {
|
|
uint16_t num_points;
|
|
const Vector2f* boundary = fence->polyfence().get_exclusion_polygon(i, num_points);
|
|
Vector2f backup_vel_exc;
|
|
// adjust velocity
|
|
adjust_velocity_polygon(kP, accel_cmss, desired_vel_cms, backup_vel_exc, boundary, num_points, fence->get_margin(), dt, false);
|
|
find_max_quadrant_velocity(backup_vel_exc, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel);
|
|
}
|
|
// desired backup velocity is sum of maximum velocity component in each quadrant
|
|
backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel;
|
|
}
|
|
|
|
/*
|
|
* Adjusts the desired velocity for the inclusion circles
|
|
*/
|
|
void AC_Avoid::adjust_velocity_inclusion_circles(float kP, float accel_cmss, Vector2f &desired_vel_cms, Vector2f &backup_vel, float dt)
|
|
{
|
|
const AC_Fence *fence = AP::fence();
|
|
if (fence == nullptr) {
|
|
return;
|
|
}
|
|
|
|
// return immediately if no inclusion circles
|
|
const uint8_t num_circles = fence->polyfence().get_inclusion_circle_count();
|
|
if (num_circles == 0) {
|
|
return;
|
|
}
|
|
|
|
// exit if polygon fences are not enabled
|
|
if ((fence->get_enabled_fences() & AC_FENCE_TYPE_POLYGON) == 0) {
|
|
return;
|
|
}
|
|
|
|
// get vehicle position
|
|
Vector2f position_NE;
|
|
if (!AP::ahrs().get_relative_position_NE_origin(position_NE)) {
|
|
// do not limit velocity if we don't have a position estimate
|
|
return;
|
|
}
|
|
position_NE = position_NE * 100.0f; // m to cm
|
|
|
|
// get the margin to the fence in cm
|
|
const float margin_cm = fence->get_margin() * 100.0f;
|
|
|
|
// get desired speed
|
|
const float desired_speed = desired_vel_cms.length();
|
|
|
|
// get stopping distance as an offset from the vehicle
|
|
Vector2f stopping_offset;
|
|
if (!is_zero(desired_speed)) {
|
|
switch (_behavior) {
|
|
case BEHAVIOR_SLIDE:
|
|
stopping_offset = desired_vel_cms*(get_stopping_distance(kP, accel_cmss, desired_speed)/desired_speed);
|
|
break;
|
|
case BEHAVIOR_STOP:
|
|
// calculate stopping point plus a margin so we look forward far enough to intersect with circular fence
|
|
stopping_offset = desired_vel_cms*((2.0f + margin_cm + get_stopping_distance(kP, accel_cmss, desired_speed))/desired_speed);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// for backing away
|
|
Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel;
|
|
|
|
// iterate through inclusion circles
|
|
for (uint8_t i = 0; i < num_circles; i++) {
|
|
Vector2f center_pos_cm;
|
|
float radius;
|
|
if (fence->polyfence().get_inclusion_circle(i, center_pos_cm, radius)) {
|
|
// get position relative to circle's center
|
|
const Vector2f position_NE_rel = (position_NE - center_pos_cm);
|
|
|
|
// if we are outside this circle do not limit velocity for this circle
|
|
const float dist_sq_cm = position_NE_rel.length_squared();
|
|
const float radius_cm = (radius * 100.0f);
|
|
if (dist_sq_cm > sq(radius_cm)) {
|
|
continue;
|
|
}
|
|
|
|
const float radius_with_margin = radius_cm - margin_cm;
|
|
if (is_negative(radius_with_margin)) {
|
|
return;
|
|
}
|
|
|
|
const float margin_breach = radius_with_margin - safe_sqrt(dist_sq_cm);
|
|
// back away if vehicle has breached margin
|
|
if (is_negative(margin_breach)) {
|
|
calc_backup_velocity_2D(kP, accel_cmss, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel, margin_breach, position_NE_rel, dt);
|
|
}
|
|
if (is_zero(desired_speed)) {
|
|
// no avoidance necessary when desired speed is zero
|
|
continue;
|
|
}
|
|
|
|
switch (_behavior) {
|
|
case BEHAVIOR_SLIDE: {
|
|
// implement sliding behaviour
|
|
const Vector2f stopping_point = position_NE_rel + stopping_offset;
|
|
const float stopping_point_dist = stopping_point.length();
|
|
if (is_zero(stopping_point_dist) || (stopping_point_dist <= (radius_cm - margin_cm))) {
|
|
// stopping before before fence so no need to adjust for this circle
|
|
continue;
|
|
}
|
|
// unsafe desired velocity - will not be able to stop before reaching margin from fence
|
|
// project stopping point radially onto fence boundary
|
|
// adjusted velocity will point towards this projected point at a safe speed
|
|
const Vector2f target_offset = stopping_point * ((radius_cm - margin_cm) / stopping_point_dist);
|
|
const Vector2f target_direction = target_offset - position_NE_rel;
|
|
const float distance_to_target = target_direction.length();
|
|
if (is_positive(distance_to_target)) {
|
|
const float max_speed = get_max_speed(kP, accel_cmss, distance_to_target, dt);
|
|
desired_vel_cms = target_direction * (MIN(desired_speed,max_speed) / distance_to_target);
|
|
}
|
|
}
|
|
break;
|
|
case BEHAVIOR_STOP: {
|
|
// implement stopping behaviour
|
|
const Vector2f stopping_point_plus_margin = position_NE_rel + stopping_offset;
|
|
const float dist_cm = safe_sqrt(dist_sq_cm);
|
|
if (dist_cm >= radius_cm - margin_cm) {
|
|
// vehicle has already breached margin around fence
|
|
// if stopping point is even further from center (i.e. in wrong direction) then adjust speed to zero
|
|
// otherwise user is backing away from fence so do not apply limits
|
|
if (stopping_point_plus_margin.length() >= dist_cm) {
|
|
desired_vel_cms.zero();
|
|
// desired backup velocity is sum of maximum velocity component in each quadrant
|
|
backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel;
|
|
return;
|
|
}
|
|
} else {
|
|
// shorten vector without adjusting its direction
|
|
Vector2f intersection;
|
|
if (Vector2f::circle_segment_intersection(position_NE_rel, stopping_point_plus_margin, Vector2f(0.0f,0.0f), radius_cm - margin_cm, intersection)) {
|
|
const float distance_to_target = (intersection - position_NE_rel).length();
|
|
const float max_speed = get_max_speed(kP, accel_cmss, distance_to_target, dt);
|
|
if (max_speed < desired_speed) {
|
|
desired_vel_cms *= MAX(max_speed, 0.0f) / desired_speed;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// desired backup velocity is sum of maximum velocity component in each quadrant
|
|
backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel;
|
|
}
|
|
|
|
/*
|
|
* Adjusts the desired velocity for the exclusion circles
|
|
*/
|
|
void AC_Avoid::adjust_velocity_exclusion_circles(float kP, float accel_cmss, Vector2f &desired_vel_cms, Vector2f &backup_vel, float dt)
|
|
{
|
|
const AC_Fence *fence = AP::fence();
|
|
if (fence == nullptr) {
|
|
return;
|
|
}
|
|
|
|
// return immediately if no inclusion circles
|
|
const uint8_t num_circles = fence->polyfence().get_exclusion_circle_count();
|
|
if (num_circles == 0) {
|
|
return;
|
|
}
|
|
|
|
// exit if polygon fences are not enabled
|
|
if ((fence->get_enabled_fences() & AC_FENCE_TYPE_POLYGON) == 0) {
|
|
return;
|
|
}
|
|
|
|
// get vehicle position
|
|
Vector2f position_NE;
|
|
if (!AP::ahrs().get_relative_position_NE_origin(position_NE)) {
|
|
// do not limit velocity if we don't have a position estimate
|
|
return;
|
|
}
|
|
position_NE = position_NE * 100.0f; // m to cm
|
|
|
|
// get the margin to the fence in cm
|
|
const float margin_cm = fence->get_margin() * 100.0f;
|
|
|
|
// for backing away
|
|
Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel;
|
|
|
|
// get desired speed
|
|
const float desired_speed = desired_vel_cms.length();
|
|
|
|
// calculate stopping distance as an offset from the vehicle (only used for BEHAVIOR_STOP)
|
|
// add a margin so we look forward far enough to intersect with circular fence
|
|
Vector2f stopping_offset;
|
|
if (!is_zero(desired_speed)) {
|
|
if ((AC_Avoid::BehaviourType)_behavior.get() == BEHAVIOR_STOP) {
|
|
stopping_offset = desired_vel_cms*((2.0f + margin_cm + get_stopping_distance(kP, accel_cmss, desired_speed))/desired_speed);
|
|
}
|
|
}
|
|
// iterate through exclusion circles
|
|
for (uint8_t i = 0; i < num_circles; i++) {
|
|
Vector2f center_pos_cm;
|
|
float radius;
|
|
if (fence->polyfence().get_exclusion_circle(i, center_pos_cm, radius)) {
|
|
// get position relative to circle's center
|
|
const Vector2f position_NE_rel = (position_NE - center_pos_cm);
|
|
|
|
// if we are inside this circle do not limit velocity for this circle
|
|
const float dist_sq_cm = position_NE_rel.length_squared();
|
|
const float radius_cm = (radius * 100.0f);
|
|
if (radius_cm < margin_cm) {
|
|
return;
|
|
}
|
|
if (dist_sq_cm < sq(radius_cm)) {
|
|
continue;
|
|
}
|
|
|
|
const Vector2f vector_to_center = center_pos_cm - position_NE;
|
|
const float dist_to_boundary = vector_to_center.length() - radius_cm;
|
|
// back away if vehicle has breached margin
|
|
if (is_negative(dist_to_boundary - margin_cm)) {
|
|
calc_backup_velocity_2D(kP, accel_cmss, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel, margin_cm - dist_to_boundary, vector_to_center, dt);
|
|
}
|
|
if (is_zero(desired_speed)) {
|
|
// no avoidance necessary when desired speed is zero
|
|
continue;
|
|
}
|
|
|
|
switch (_behavior) {
|
|
case BEHAVIOR_SLIDE: {
|
|
// vector from current position to circle's center
|
|
Vector2f limit_direction = vector_to_center;
|
|
if (limit_direction.is_zero()) {
|
|
// vehicle is exactly on circle center so do not limit velocity
|
|
continue;
|
|
}
|
|
// calculate distance to edge of circle
|
|
const float limit_distance_cm = limit_direction.length() - radius_cm;
|
|
if (!is_positive(limit_distance_cm)) {
|
|
// vehicle is within circle so do not limit velocity
|
|
continue;
|
|
}
|
|
// vehicle is outside the circle, adjust velocity to stay outside
|
|
limit_direction.normalize();
|
|
limit_velocity_2D(kP, accel_cmss, desired_vel_cms, limit_direction, MAX(limit_distance_cm - margin_cm, 0.0f), dt);
|
|
}
|
|
break;
|
|
case BEHAVIOR_STOP: {
|
|
// implement stopping behaviour
|
|
const Vector2f stopping_point_plus_margin = position_NE_rel + stopping_offset;
|
|
const float dist_cm = safe_sqrt(dist_sq_cm);
|
|
if (dist_cm < radius_cm + margin_cm) {
|
|
// vehicle has already breached margin around fence
|
|
// if stopping point is closer to center (i.e. in wrong direction) then adjust speed to zero
|
|
// otherwise user is backing away from fence so do not apply limits
|
|
if (stopping_point_plus_margin.length() <= dist_cm) {
|
|
desired_vel_cms.zero();
|
|
backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel;
|
|
return;
|
|
}
|
|
} else {
|
|
// shorten vector without adjusting its direction
|
|
Vector2f intersection;
|
|
if (Vector2f::circle_segment_intersection(position_NE_rel, stopping_point_plus_margin, Vector2f(0.0f,0.0f), radius_cm + margin_cm, intersection)) {
|
|
const float distance_to_target = (intersection - position_NE_rel).length();
|
|
const float max_speed = get_max_speed(kP, accel_cmss, distance_to_target, dt);
|
|
if (max_speed < desired_speed) {
|
|
desired_vel_cms *= MAX(max_speed, 0.0f) / desired_speed;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// desired backup velocity is sum of maximum velocity component in each quadrant
|
|
backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel;
|
|
}
|
|
|
|
/*
|
|
* Adjusts the desired velocity for the beacon fence.
|
|
*/
|
|
void AC_Avoid::adjust_velocity_beacon_fence(float kP, float accel_cmss, Vector2f &desired_vel_cms, Vector2f &backup_vel, float dt)
|
|
{
|
|
AP_Beacon *_beacon = AP::beacon();
|
|
|
|
// exit if the beacon is not present
|
|
if (_beacon == nullptr) {
|
|
return;
|
|
}
|
|
|
|
// get boundary from beacons
|
|
uint16_t num_points = 0;
|
|
const Vector2f* boundary = _beacon->get_boundary_points(num_points);
|
|
if ((boundary == nullptr) || (num_points == 0)) {
|
|
return;
|
|
}
|
|
|
|
// adjust velocity using beacon
|
|
float margin = 0;
|
|
if (AP::fence()) {
|
|
margin = AP::fence()->get_margin();
|
|
}
|
|
adjust_velocity_polygon(kP, accel_cmss, desired_vel_cms, backup_vel, boundary, num_points, margin, dt, true);
|
|
}
|
|
|
|
/*
|
|
* Adjusts the desired velocity based on output from the proximity sensor
|
|
*/
|
|
void AC_Avoid::adjust_velocity_proximity(float kP, float accel_cmss, Vector3f &desired_vel_cms, Vector3f &backup_vel, float kP_z, float accel_cmss_z, float dt)
|
|
{
|
|
#if HAL_PROXIMITY_ENABLED
|
|
// exit immediately if proximity sensor is not present
|
|
AP_Proximity *proximity = AP::proximity();
|
|
if (!proximity) {
|
|
return;
|
|
}
|
|
|
|
AP_Proximity &_proximity = *proximity;
|
|
// check for status of the sensor
|
|
if (_proximity.get_status() != AP_Proximity::Status::Good) {
|
|
return;
|
|
}
|
|
// get total number of obstacles
|
|
const uint8_t obstacle_num = _proximity.get_obstacle_count();
|
|
if (obstacle_num == 0) {
|
|
// no obstacles
|
|
return;
|
|
}
|
|
|
|
const AP_AHRS &_ahrs = AP::ahrs();
|
|
|
|
// for backing away
|
|
Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel;
|
|
float max_back_vel_z = 0.0f;
|
|
float min_back_vel_z = 0.0f;
|
|
|
|
// rotate velocity vector from earth frame to body-frame since obstacles are in body-frame
|
|
const Vector2f desired_vel_body_cms = _ahrs.earth_to_body2D(Vector2f{desired_vel_cms.x, desired_vel_cms.y});
|
|
|
|
// safe_vel will be adjusted to stay away from Proximity Obstacles
|
|
Vector3f safe_vel = Vector3f{desired_vel_body_cms.x, desired_vel_body_cms.y, desired_vel_cms.z};
|
|
const Vector3f safe_vel_orig = safe_vel;
|
|
|
|
// calc margin in cm
|
|
const float margin_cm = MAX(_margin * 100.0f, 0.0f);
|
|
Vector3f stopping_point_plus_margin;
|
|
if (!desired_vel_cms.is_zero()) {
|
|
// only used for "stop mode". Pre-calculating the stopping point here makes sure we do not need to repeat the calculations under iterations.
|
|
const float speed = safe_vel.length();
|
|
stopping_point_plus_margin = safe_vel * ((2.0f + margin_cm + get_stopping_distance(kP, accel_cmss, speed))/speed);
|
|
}
|
|
|
|
for (uint8_t i = 0; i<obstacle_num; i++) {
|
|
// get obstacle from proximity library
|
|
Vector3f vector_to_obstacle;
|
|
if (!_proximity.get_obstacle(i, vector_to_obstacle)) {
|
|
// this one is not valid
|
|
continue;
|
|
}
|
|
|
|
const float dist_to_boundary = vector_to_obstacle.length();
|
|
if (is_zero(dist_to_boundary)) {
|
|
continue;
|
|
}
|
|
|
|
// back away if vehicle has breached margin
|
|
if (is_negative(dist_to_boundary - margin_cm)) {
|
|
const float breach_dist = margin_cm - dist_to_boundary;
|
|
// add a deadzone so that the vehicle doesn't backup and go forward again and again
|
|
const float deadzone = MAX(0.0f, _backup_deadzone) * 100.0f;
|
|
if (breach_dist > deadzone) {
|
|
// this vector will help us decide how much we have to back away horizontally and vertically
|
|
const Vector3f margin_vector = vector_to_obstacle.normalized() * breach_dist;
|
|
const float xy_back_dist = norm(margin_vector.x, margin_vector.y);
|
|
const float z_back_dist = margin_vector.z;
|
|
calc_backup_velocity_3D(kP, accel_cmss, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel, xy_back_dist, vector_to_obstacle, kP_z, accel_cmss_z, z_back_dist, min_back_vel_z, max_back_vel_z, dt);
|
|
}
|
|
}
|
|
|
|
if (desired_vel_cms.is_zero()) {
|
|
// cannot limit velocity if there is nothing to limit
|
|
// backing up (if needed) has already been done
|
|
continue;
|
|
}
|
|
|
|
switch (_behavior) {
|
|
case BEHAVIOR_SLIDE: {
|
|
Vector3f limit_direction{vector_to_obstacle};
|
|
// distance to closest point
|
|
const float limit_distance_cm = limit_direction.length();
|
|
if (is_zero(limit_distance_cm)) {
|
|
// We are exactly on the edge, this should ideally never be possible
|
|
// i.e. do not adjust velocity.
|
|
continue;
|
|
}
|
|
// Adjust velocity to not violate margin.
|
|
limit_velocity_3D(kP, accel_cmss, safe_vel, limit_direction, margin_cm, kP_z, accel_cmss_z, dt);
|
|
|
|
break;
|
|
}
|
|
|
|
case BEHAVIOR_STOP: {
|
|
// vector from current position to obstacle
|
|
Vector3f limit_direction;
|
|
// find closest point with line segment
|
|
// also see if the vehicle will "roughly" intersect the boundary with the projected stopping point
|
|
const bool intersect = _proximity.closest_point_from_segment_to_obstacle(i, Vector3f{}, stopping_point_plus_margin, limit_direction);
|
|
if (intersect) {
|
|
// the vehicle is intersecting the plane formed by the boundary
|
|
// distance to the closest point from the stopping point
|
|
float limit_distance_cm = limit_direction.length();
|
|
if (is_zero(limit_distance_cm)) {
|
|
// We are exactly on the edge, this should ideally never be possible
|
|
// i.e. do not adjust velocity.
|
|
return;
|
|
}
|
|
if (limit_distance_cm <= margin_cm) {
|
|
// we are within the margin so stop vehicle
|
|
safe_vel.zero();
|
|
} else {
|
|
// vehicle inside the given edge, adjust velocity to not violate this edge
|
|
limit_velocity_3D(kP, accel_cmss, safe_vel, limit_direction, margin_cm, kP_z, accel_cmss_z, dt);
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// desired backup velocity is sum of maximum velocity component in each quadrant
|
|
const Vector2f desired_back_vel_cms_xy = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel;
|
|
const float desired_back_vel_cms_z = max_back_vel_z + min_back_vel_z;
|
|
|
|
if (safe_vel == safe_vel_orig && desired_back_vel_cms_xy.is_zero() && is_zero(desired_back_vel_cms_z)) {
|
|
// proximity avoidance did nothing, no point in doing the calculations below. Return early
|
|
backup_vel.zero();
|
|
return;
|
|
}
|
|
|
|
// set modified desired velocity vector and back away velocity vector
|
|
// vectors were in body-frame, rotate resulting vector back to earth-frame
|
|
const Vector2f safe_vel_2d = _ahrs.body_to_earth2D(Vector2f{safe_vel.x, safe_vel.y});
|
|
desired_vel_cms = Vector3f{safe_vel_2d.x, safe_vel_2d.y, safe_vel.z};
|
|
const Vector2f backup_vel_xy = _ahrs.body_to_earth2D(desired_back_vel_cms_xy);
|
|
backup_vel = Vector3f{backup_vel_xy.x, backup_vel_xy.y, desired_back_vel_cms_z};
|
|
#endif // HAL_PROXIMITY_ENABLED
|
|
}
|
|
|
|
/*
|
|
* Adjusts the desired velocity for the polygon fence.
|
|
*/
|
|
void AC_Avoid::adjust_velocity_polygon(float kP, float accel_cmss, Vector2f &desired_vel_cms, Vector2f &backup_vel, const Vector2f* boundary, uint16_t num_points, float margin, float dt, bool stay_inside)
|
|
{
|
|
// exit if there are no points
|
|
if (boundary == nullptr || num_points == 0) {
|
|
return;
|
|
}
|
|
|
|
const AP_AHRS &_ahrs = AP::ahrs();
|
|
|
|
// do not adjust velocity if vehicle is outside the polygon fence
|
|
Vector2f position_xy;
|
|
if (!_ahrs.get_relative_position_NE_origin(position_xy)) {
|
|
// boundary is in earth frame but we have no idea
|
|
// where we are
|
|
return;
|
|
}
|
|
position_xy = position_xy * 100.0f; // m to cm
|
|
|
|
|
|
// return if we have already breached polygon
|
|
const bool inside_polygon = !Polygon_outside(position_xy, boundary, num_points);
|
|
if (inside_polygon != stay_inside) {
|
|
return;
|
|
}
|
|
|
|
// Safe_vel will be adjusted to remain within fence.
|
|
// We need a separate vector in case adjustment fails,
|
|
// e.g. if we are exactly on the boundary.
|
|
Vector2f safe_vel(desired_vel_cms);
|
|
Vector2f desired_back_vel_cms;
|
|
|
|
// calc margin in cm
|
|
const float margin_cm = MAX(margin * 100.0f, 0.0f);
|
|
|
|
// for stopping
|
|
const float speed = safe_vel.length();
|
|
Vector2f stopping_point_plus_margin;
|
|
if (!desired_vel_cms.is_zero()) {
|
|
stopping_point_plus_margin = position_xy + safe_vel*((2.0f + margin_cm + get_stopping_distance(kP, accel_cmss, speed))/speed);
|
|
}
|
|
|
|
// for backing away
|
|
Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel;
|
|
|
|
for (uint16_t i=0; i<num_points; i++) {
|
|
uint16_t j = i+1;
|
|
if (j >= num_points) {
|
|
j = 0;
|
|
}
|
|
// end points of current edge
|
|
Vector2f start = boundary[j];
|
|
Vector2f end = boundary[i];
|
|
Vector2f vector_to_boundary = Vector2f::closest_point(position_xy, start, end) - position_xy;
|
|
// back away if vehicle has breached margin
|
|
if (is_negative(vector_to_boundary.length() - margin_cm)) {
|
|
calc_backup_velocity_2D(kP, accel_cmss, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel, margin_cm-vector_to_boundary.length(), vector_to_boundary, dt);
|
|
}
|
|
|
|
// exit immediately if no desired velocity
|
|
if (desired_vel_cms.is_zero()) {
|
|
continue;
|
|
}
|
|
|
|
switch (_behavior) {
|
|
case (BEHAVIOR_SLIDE): {
|
|
// vector from current position to closest point on current edge
|
|
Vector2f limit_direction = vector_to_boundary;
|
|
// distance to closest point
|
|
const float limit_distance_cm = limit_direction.length();
|
|
if (is_zero(limit_distance_cm)) {
|
|
// We are exactly on the edge - treat this as a fence breach.
|
|
// i.e. do not adjust velocity.
|
|
return;
|
|
}
|
|
// We are strictly inside the given edge.
|
|
// Adjust velocity to not violate this edge.
|
|
limit_direction /= limit_distance_cm;
|
|
limit_velocity_2D(kP, accel_cmss, safe_vel, limit_direction, MAX(limit_distance_cm - margin_cm, 0.0f), dt);
|
|
break;
|
|
}
|
|
|
|
case (BEHAVIOR_STOP): {
|
|
// find intersection with line segment
|
|
Vector2f intersection;
|
|
if (Vector2f::segment_intersection(position_xy, stopping_point_plus_margin, start, end, intersection)) {
|
|
// vector from current position to point on current edge
|
|
Vector2f limit_direction = intersection - position_xy;
|
|
const float limit_distance_cm = limit_direction.length();
|
|
if (is_zero(limit_distance_cm)) {
|
|
// We are exactly on the edge - treat this as a fence breach.
|
|
// i.e. do not adjust velocity.
|
|
return;
|
|
}
|
|
if (limit_distance_cm <= margin_cm) {
|
|
// we are within the margin so stop vehicle
|
|
safe_vel.zero();
|
|
} else {
|
|
// vehicle inside the given edge, adjust velocity to not violate this edge
|
|
limit_direction /= limit_distance_cm;
|
|
limit_velocity_2D(kP, accel_cmss, safe_vel, limit_direction, MAX(limit_distance_cm - margin_cm, 0.0f), dt);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// desired backup velocity is sum of maximum velocity component in each quadrant
|
|
desired_back_vel_cms = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel;
|
|
|
|
// set modified desired velocity vector or back away velocity vector
|
|
desired_vel_cms = safe_vel;
|
|
backup_vel = desired_back_vel_cms;
|
|
}
|
|
|
|
/*
|
|
* Computes distance required to stop, given current speed.
|
|
*
|
|
* Implementation copied from AC_PosControl.
|
|
*/
|
|
float AC_Avoid::get_stopping_distance(float kP, float accel_cmss, float speed_cms) const
|
|
{
|
|
// avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero
|
|
if (accel_cmss <= 0.0f || is_zero(speed_cms)) {
|
|
return 0.0f;
|
|
}
|
|
|
|
// handle linear deceleration
|
|
if (kP <= 0.0f) {
|
|
return 0.5f * sq(speed_cms) / accel_cmss;
|
|
}
|
|
|
|
// calculate distance within which we can stop
|
|
// accel_cmss/kP is the point at which velocity switches from linear to sqrt
|
|
if (speed_cms < accel_cmss/kP) {
|
|
return speed_cms/kP;
|
|
} else {
|
|
// accel_cmss/(2.0f*kP*kP) is the distance at which we switch from linear to sqrt response
|
|
return accel_cmss/(2.0f*kP*kP) + (speed_cms*speed_cms)/(2.0f*accel_cmss);
|
|
}
|
|
}
|
|
|
|
// convert distance (in meters) to a lean percentage (in 0~1 range) for use in manual flight modes
|
|
float AC_Avoid::distance_to_lean_pct(float dist_m)
|
|
{
|
|
// ignore objects beyond DIST_MAX
|
|
if (dist_m < 0.0f || dist_m >= _dist_max || _dist_max <= 0.0f) {
|
|
return 0.0f;
|
|
}
|
|
// inverted but linear response
|
|
return 1.0f - (dist_m / _dist_max);
|
|
}
|
|
|
|
// returns the maximum positive and negative roll and pitch percentages (in -1 ~ +1 range) based on the proximity sensor
|
|
void AC_Avoid::get_proximity_roll_pitch_pct(float &roll_positive, float &roll_negative, float &pitch_positive, float &pitch_negative)
|
|
{
|
|
#if HAL_PROXIMITY_ENABLED
|
|
AP_Proximity *proximity = AP::proximity();
|
|
if (proximity == nullptr) {
|
|
return;
|
|
}
|
|
AP_Proximity &_proximity = *proximity;
|
|
|
|
// exit immediately if proximity sensor is not present
|
|
if (_proximity.get_status() != AP_Proximity::Status::Good) {
|
|
return;
|
|
}
|
|
|
|
const uint8_t obj_count = _proximity.get_object_count();
|
|
|
|
// if no objects return
|
|
if (obj_count == 0) {
|
|
return;
|
|
}
|
|
|
|
// calculate maximum roll, pitch values from objects
|
|
for (uint8_t i=0; i<obj_count; i++) {
|
|
float ang_deg, dist_m;
|
|
if (_proximity.get_object_angle_and_distance(i, ang_deg, dist_m)) {
|
|
if (dist_m < _dist_max) {
|
|
// convert distance to lean angle (in 0 to 1 range)
|
|
const float lean_pct = distance_to_lean_pct(dist_m);
|
|
// convert angle to roll and pitch lean percentages
|
|
const float angle_rad = radians(ang_deg);
|
|
const float roll_pct = -sinf(angle_rad) * lean_pct;
|
|
const float pitch_pct = cosf(angle_rad) * lean_pct;
|
|
// update roll, pitch maximums
|
|
if (roll_pct > 0.0f) {
|
|
roll_positive = MAX(roll_positive, roll_pct);
|
|
} else if (roll_pct < 0.0f) {
|
|
roll_negative = MIN(roll_negative, roll_pct);
|
|
}
|
|
if (pitch_pct > 0.0f) {
|
|
pitch_positive = MAX(pitch_positive, pitch_pct);
|
|
} else if (pitch_pct < 0.0f) {
|
|
pitch_negative = MIN(pitch_negative, pitch_pct);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // HAL_PROXIMITY_ENABLED
|
|
}
|
|
|
|
// singleton instance
|
|
AC_Avoid *AC_Avoid::_singleton;
|
|
|
|
namespace AP {
|
|
|
|
AC_Avoid *ac_avoid()
|
|
{
|
|
return AC_Avoid::get_singleton();
|
|
}
|
|
|
|
}
|