ardupilot/libraries/DataFlash/DataFlash_APM2.cpp

421 lines
12 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* DataFlash_APM2.cpp - DataFlash log library for AT45DB321D
* Code by Jordi Muñoz and Jose Julio. DIYDrones.com
* This code works only on ATMega2560. It uses Serial port 3 in SPI MSPI mdoe.
*
* Dataflash library for AT45DB321D flash memory
* Memory organization : 8192 pages of 512 bytes or 528 bytes
*
* Maximun write bandwidth : 512 bytes in 14ms
* This code is written so the master never has to wait to write the data on the eeprom
*
* Methods:
* Init() : Library initialization (SPI initialization)
* StartWrite(page) : Start a write session. page=start page.
* StartRead(page) : Start a read on (page)
* GetWritePage() : Returns the last page written to
* GetPage() : Returns the last page read
*
* Properties:
*
*/
#include <AP_HAL.h> // for removing conflict with optical flow sensor on SPI3 bus
#include "DataFlash_APM2.h"
extern const AP_HAL::HAL& hal;
/*
* #define ENABLE_FASTSERIAL_DEBUG
*
* #ifdef ENABLE_FASTSERIAL_DEBUG
# define serialDebug(fmt, args...) if (FastSerial::getInitialized(0)) do {Serial.printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__ , ##args); delay(0); } while(0)
##else
# define serialDebug(fmt, args...)
##endif
# //*/
#define DF_RESET 41 // RESET (PG0)
#define DF_CARDDETECT 33 // PC4
// AT45DB321D Commands (from Datasheet)
#define DF_TRANSFER_PAGE_TO_BUFFER_1 0x53
#define DF_TRANSFER_PAGE_TO_BUFFER_2 0x55
#define DF_STATUS_REGISTER_READ 0xD7
#define DF_READ_MANUFACTURER_AND_DEVICE_ID 0x9F
#define DF_PAGE_READ 0xD2
#define DF_BUFFER_1_READ 0xD4
#define DF_BUFFER_2_READ 0xD6
#define DF_BUFFER_1_WRITE 0x84
#define DF_BUFFER_2_WRITE 0x87
#define DF_BUFFER_1_TO_PAGE_WITH_ERASE 0x83
#define DF_BUFFER_2_TO_PAGE_WITH_ERASE 0x86
#define DF_PAGE_ERASE 0x81
#define DF_BLOCK_ERASE 0x50
#define DF_SECTOR_ERASE 0x7C
#define DF_CHIP_ERASE_0 0xC7
#define DF_CHIP_ERASE_1 0x94
#define DF_CHIP_ERASE_2 0x80
#define DF_CHIP_ERASE_3 0x9A
/*
try to take a semaphore safely from both in a timer and outside
*/
bool DataFlash_APM2::_sem_take(uint8_t timeout)
{
if (hal.scheduler->in_timerprocess()) {
return _spi_sem->take_nonblocking();
}
return _spi_sem->take(timeout);
}
// Public Methods //////////////////////////////////////////////////////////////
void DataFlash_APM2::Init(const struct LogStructure *structure, uint8_t num_types)
{
DataFlash_Class::Init(structure, num_types);
// init to zero
df_NumPages = 0;
hal.gpio->pinMode(DF_RESET, HAL_GPIO_OUTPUT);
hal.gpio->pinMode(DF_CARDDETECT, HAL_GPIO_INPUT);
// Reset the chip
hal.gpio->write(DF_RESET,0);
hal.scheduler->delay(1);
hal.gpio->write(DF_RESET,1);
_spi = hal.spi->device(AP_HAL::SPIDevice_Dataflash);
if (_spi == NULL) {
hal.scheduler->panic(
PSTR("PANIC: DataFlash SPIDeviceDriver not found"));
return;
}
_spi_sem = _spi->get_semaphore();
if (_spi_sem == NULL) {
hal.scheduler->panic(
PSTR("PANIC: DataFlash SPIDeviceDriver semaphore is null"));
return; /* never reached */
}
if (!_sem_take(5))
return;
// get page size: 512 or 528 (by default: 528)
df_PageSize=PageSize();
ReadManufacturerID();
_spi_sem->give();
// see page 22 of the spec for the density code
uint8_t density_code = (df_device >> 8) & 0x1F;
// note that we set df_NumPages to one lower than the highest, as
// the last page is reserved for a config page
if (density_code == 0x7) {
// 32 Mbit
df_NumPages = 8191;
} else if (density_code == 0x6) {
// 16 Mbit
df_NumPages = 4095;
}
//serialDebug("density_code %d pages %d, size %d\n", density_code, df_NumPages, df_PageSize);
}
// This function is mainly to test the device
void DataFlash_APM2::ReadManufacturerID()
{
// activate dataflash command decoder
_spi->cs_assert();
// Read manufacturer and ID command...
_spi->transfer(DF_READ_MANUFACTURER_AND_DEVICE_ID);
df_manufacturer = _spi->transfer(0xff);
df_device = _spi->transfer(0xff);
df_device = (df_device<<8) | _spi->transfer(0xff);
_spi->transfer(0xff);
// release SPI bus for use by other sensors
_spi->cs_release();
}
// This function return 1 if Card is inserted on SD slot
bool DataFlash_APM2::CardInserted()
{
//serialDebug("df_NumPages %d, detect:%d\n", df_NumPages, tmp);
//return (df_NumPages >= 4095 && digitalRead(DF_CARDDETECT) == 0);
return (df_NumPages >= 4095);
}
// Read the status register
uint8_t DataFlash_APM2::ReadStatusReg()
{
uint8_t tmp;
// activate dataflash command decoder
_spi->cs_assert();
// Read status command
_spi->transfer(DF_STATUS_REGISTER_READ);
tmp = _spi->transfer(0x00); // We only want to extract the READY/BUSY bit
// release SPI bus for use by other sensors
_spi->cs_release();
return tmp;
}
// Read the status of the DataFlash
inline
uint8_t DataFlash_APM2::ReadStatus()
{
return(ReadStatusReg()&0x80); // We only want to extract the READY/BUSY bit
}
inline
uint16_t DataFlash_APM2::PageSize()
{
return(528-((ReadStatusReg()&0x01)<<4)); // if first bit 1 trhen 512 else 528 bytes
}
// Wait until DataFlash is in ready state...
void DataFlash_APM2::WaitReady()
{
while(!ReadStatus()) ;
}
void DataFlash_APM2::PageToBuffer(uint8_t BufferNum, uint16_t PageAdr)
{
if (!_sem_take(1))
return;
// activate dataflash command decoder
_spi->cs_assert();
uint8_t cmd[4];
cmd[0] = BufferNum?DF_TRANSFER_PAGE_TO_BUFFER_2:DF_TRANSFER_PAGE_TO_BUFFER_1;
if(df_PageSize==512) {
cmd[1] = (uint8_t)(PageAdr >> 7);
cmd[2] = (uint8_t)(PageAdr << 1);
}else{
cmd[1] = (uint8_t)(PageAdr >> 6);
cmd[2] = (uint8_t)(PageAdr << 2);
}
cmd[3] = 0;
_spi->transfer(cmd, sizeof(cmd));
//initiate the transfer
_spi->cs_release();
_spi->cs_assert();
while(!ReadStatus()) ; //monitor the status register, wait until busy-flag is high
// release SPI bus for use by other sensors
_spi->cs_release();
_spi_sem->give();
}
void DataFlash_APM2::BufferToPage (uint8_t BufferNum, uint16_t PageAdr, uint8_t wait)
{
if (!_sem_take(1))
return;
// activate dataflash command decoder
_spi->cs_assert();
uint8_t cmd[4];
cmd[0] = BufferNum?DF_BUFFER_2_TO_PAGE_WITH_ERASE:DF_BUFFER_1_TO_PAGE_WITH_ERASE;
if(df_PageSize==512) {
cmd[1] = (uint8_t)(PageAdr >> 7);
cmd[2] = (uint8_t)(PageAdr << 1);
}else{
cmd[1] = (uint8_t)(PageAdr >> 6);
cmd[2] = (uint8_t)(PageAdr << 2);
}
cmd[3] = 0;
_spi->transfer(cmd, sizeof(cmd));
//initiate the transfer
_spi->cs_release();
// Check if we need to wait to write the buffer to memory or we can continue...
if (wait)
while(!ReadStatus()) ; //monitor the status register, wait until busy-flag is high
// release SPI bus for use by other sensors
_spi_sem->give();
}
void DataFlash_APM2::BlockWrite (uint8_t BufferNum, uint16_t IntPageAdr,
const void *pHeader, uint8_t hdr_size,
const void *pBuffer, uint16_t size)
{
if (!_sem_take(1))
return;
// activate dataflash command decoder
_spi->cs_assert();
uint8_t cmd[] = {
(uint8_t)(BufferNum?DF_BUFFER_2_WRITE:DF_BUFFER_1_WRITE),
0,
(uint8_t)(IntPageAdr>>8),
(uint8_t)(IntPageAdr)
};
_spi->transfer(cmd, sizeof(cmd));
// transfer header, if any
if (hdr_size != 0) {
_spi->transfer((const uint8_t *)pHeader, hdr_size);
}
// transfer data
_spi->transfer((const uint8_t *)pBuffer, size);
// release SPI bus for use by other sensors
_spi->cs_release();
_spi_sem->give();
}
bool DataFlash_APM2::BlockRead(uint8_t BufferNum, uint16_t IntPageAdr, void *pBuffer, uint16_t size)
{
if (!_sem_take(1))
return false;
// activate dataflash command decoder
_spi->cs_assert();
if (BufferNum==0)
_spi->transfer(DF_BUFFER_1_READ);
else
_spi->transfer(DF_BUFFER_2_READ);
_spi->transfer(0x00);
_spi->transfer((uint8_t)(IntPageAdr>>8)); //upper part of internal buffer address
_spi->transfer((uint8_t)(IntPageAdr)); //lower part of internal buffer address
_spi->transfer(0x00); //don't cares
uint8_t *pData = (uint8_t *)pBuffer;
while (size--) {
*pData++ = _spi->transfer(0x00);
}
// release SPI bus for use by other sensors
_spi->cs_release();
_spi_sem->give();
return true;
}
uint8_t DataFlash_APM2::BufferRead (uint8_t BufferNum, uint16_t IntPageAdr)
{
uint8_t tmp;
if (!BlockRead(BufferNum, IntPageAdr, &tmp, 1)) {
return 0;
}
return tmp;
}
// *** END OF INTERNAL FUNCTIONS ***
void DataFlash_APM2::PageErase (uint16_t PageAdr)
{
if (!_sem_take(1))
return;
// activate dataflash command decoder
_spi->cs_assert();
// Send page erase command
_spi->transfer(DF_PAGE_ERASE);
if(df_PageSize==512) {
_spi->transfer((uint8_t)(PageAdr >> 7));
_spi->transfer((uint8_t)(PageAdr << 1));
}else{
_spi->transfer((uint8_t)(PageAdr >> 6));
_spi->transfer((uint8_t)(PageAdr << 2));
}
_spi->transfer(0x00);
//initiate flash page erase
_spi->cs_release();
while(!ReadStatus()) ;
// release SPI bus for use by other sensors
_spi_sem->give();
}
// erase a block of 8 pages.
void DataFlash_APM2::BlockErase(uint16_t BlockAdr)
{
if (!_sem_take(1))
return;
// activate dataflash command decoder
_spi->cs_assert();
// Send block erase command
_spi->transfer(DF_BLOCK_ERASE);
if (df_PageSize==512) {
_spi->transfer((uint8_t)(BlockAdr >> 4));
_spi->transfer((uint8_t)(BlockAdr << 4));
} else {
_spi->transfer((uint8_t)(BlockAdr >> 3));
_spi->transfer((uint8_t)(BlockAdr << 5));
}
_spi->transfer(0x00);
//serialDebug("BL Erase, %d\n", BlockAdr);
//initiate flash page erase
_spi->cs_release();
while(!ReadStatus()) ;
// release SPI bus for use by other sensors
_spi_sem->give();
}
void DataFlash_APM2::ChipErase()
{
if (!_sem_take(1))
return;
//serialDebug("Chip Erase\n");
// activate dataflash command decoder
_spi->cs_assert();
// opcodes for chip erase
_spi->transfer(DF_CHIP_ERASE_0);
_spi->transfer(DF_CHIP_ERASE_1);
_spi->transfer(DF_CHIP_ERASE_2);
_spi->transfer(DF_CHIP_ERASE_3);
//initiate flash page erase
_spi->cs_release();
while(!ReadStatus()) {
hal.scheduler->delay(1);
}
// release SPI bus for use by other sensors
_spi_sem->give();
}