ardupilot/ArduCopter/test.pde

1406 lines
45 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if CLI_ENABLED == ENABLED
// These are function definitions so the Menu can be constructed before the functions
// are defined below. Order matters to the compiler.
static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv);
static int8_t test_radio(uint8_t argc, const Menu::arg *argv);
//static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv);
//static int8_t test_stabilize(uint8_t argc, const Menu::arg *argv);
static int8_t test_gps(uint8_t argc, const Menu::arg *argv);
//static int8_t test_tri(uint8_t argc, const Menu::arg *argv);
//static int8_t test_adc(uint8_t argc, const Menu::arg *argv);
static int8_t test_ins(uint8_t argc, const Menu::arg *argv);
//static int8_t test_imu(uint8_t argc, const Menu::arg *argv);
//static int8_t test_dcm_eulers(uint8_t argc, const Menu::arg *argv);
//static int8_t test_dcm(uint8_t argc, const Menu::arg *argv);
//static int8_t test_omega(uint8_t argc, const Menu::arg *argv);
//static int8_t test_stab_d(uint8_t argc, const Menu::arg *argv);
static int8_t test_battery(uint8_t argc, const Menu::arg *argv);
//static int8_t test_toy(uint8_t argc, const Menu::arg *argv);
static int8_t test_wp_nav(uint8_t argc, const Menu::arg *argv);
//static int8_t test_reverse(uint8_t argc, const Menu::arg *argv);
static int8_t test_tuning(uint8_t argc, const Menu::arg *argv);
static int8_t test_relay(uint8_t argc, const Menu::arg *argv);
static int8_t test_wp(uint8_t argc, const Menu::arg *argv);
#if HIL_MODE != HIL_MODE_ATTITUDE
static int8_t test_baro(uint8_t argc, const Menu::arg *argv);
static int8_t test_sonar(uint8_t argc, const Menu::arg *argv);
#endif
static int8_t test_mag(uint8_t argc, const Menu::arg *argv);
static int8_t test_optflow(uint8_t argc, const Menu::arg *argv);
static int8_t test_logging(uint8_t argc, const Menu::arg *argv);
//static int8_t test_xbee(uint8_t argc, const Menu::arg *argv);
static int8_t test_eedump(uint8_t argc, const Menu::arg *argv);
static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv);
//static int8_t test_mission(uint8_t argc, const Menu::arg *argv);
// this is declared here to remove compiler errors
extern void print_latlon(BetterStream *s, int32_t lat_or_lon); // in Log.pde
// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of printf that reads from flash memory
/*static int8_t help_test(uint8_t argc, const Menu::arg *argv)
* {
* Serial.printf_P(PSTR("\n"
* "Commands:\n"
* " radio\n"
* " servos\n"
* " g_gps\n"
* " imu\n"
* " battery\n"
* "\n"));
* }*/
// Creates a constant array of structs representing menu options
// and stores them in Flash memory, not RAM.
// User enters the string in the console to call the functions on the right.
// See class Menu in AP_Coommon for implementation details
const struct Menu::command test_menu_commands[] PROGMEM = {
{"pwm", test_radio_pwm},
{"radio", test_radio},
// {"failsafe", test_failsafe},
// {"stabilize", test_stabilize},
{"gps", test_gps},
// {"adc", test_adc},
{"ins", test_ins},
// {"imu", test_imu},
// {"dcm", test_dcm_eulers},
//{"omega", test_omega},
// {"stab_d", test_stab_d},
{"battery", test_battery},
{"tune", test_tuning},
//{"tri", test_tri},
{"relay", test_relay},
{"wp", test_wp},
// {"toy", test_toy},
#if HIL_MODE != HIL_MODE_ATTITUDE
{"altitude", test_baro},
{"sonar", test_sonar},
#endif
{"compass", test_mag},
{"optflow", test_optflow},
//{"xbee", test_xbee},
{"eedump", test_eedump},
{"logging", test_logging},
// {"rawgps", test_rawgps},
// {"mission", test_mission},
//{"reverse", test_reverse},
{"nav", test_wp_nav},
};
// A Macro to create the Menu
MENU(test_menu, "test", test_menu_commands);
static int8_t
test_mode(uint8_t argc, const Menu::arg *argv)
{
//Serial.printf_P(PSTR("Test Mode\n\n"));
test_menu.run();
return 0;
}
static int8_t
test_eedump(uint8_t argc, const Menu::arg *argv)
{
int i, j;
// hexdump the EEPROM
for (i = 0; i < EEPROM_MAX_ADDR; i += 16) {
Serial.printf_P(PSTR("%04x:"), i);
for (j = 0; j < 16; j++)
Serial.printf_P(PSTR(" %02x"), eeprom_read_byte((const uint8_t *)(i + j)));
Serial.println();
}
return(0);
}
static int8_t
test_radio_pwm(uint8_t argc, const Menu::arg *argv)
{
#if defined( __AVR_ATmega1280__ ) // test disabled to save code size for 1280
print_test_disabled();
return (0);
#else
print_hit_enter();
delay(1000);
while(1) {
delay(20);
// Filters radio input - adjust filters in the radio.pde file
// ----------------------------------------------------------
read_radio();
// servo Yaw
//APM_RC.OutputCh(CH_7, g.rc_4.radio_out);
Serial.printf_P(PSTR("IN: 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"),
g.rc_1.radio_in,
g.rc_2.radio_in,
g.rc_3.radio_in,
g.rc_4.radio_in,
g.rc_5.radio_in,
g.rc_6.radio_in,
g.rc_7.radio_in,
g.rc_8.radio_in);
if(Serial.available() > 0) {
return (0);
}
}
#endif
}
/*
* //static int8_t
* //test_tri(uint8_t argc, const Menu::arg *argv)
* {
* print_hit_enter();
* delay(1000);
*
* while(1){
* delay(20);
*
* // Filters radio input - adjust filters in the radio.pde file
* // ----------------------------------------------------------
* read_radio();
* g.rc_4.servo_out = g.rc_4.control_in;
* g.rc_4.calc_pwm();
*
* Serial.printf_P(PSTR("input: %d\toutput%d\n"),
* g.rc_4.control_in,
* g.rc_4.radio_out);
*
* APM_RC.OutputCh(CH_TRI_YAW, g.rc_4.radio_out);
*
* if(Serial.available() > 0){
* return (0);
* }
* }
* }*/
/*
//static int8_t
//test_toy(uint8_t argc, const Menu::arg *argv)
{
wp_distance = 0;
int16_t max_speed = 0;
for(int16_t i = 0; i < 200; i++){
int32_t temp = 2 * 100 * (wp_distance - g.waypoint_radius * 100);
max_speed = sqrt((float)temp);
max_speed = min(max_speed, g.waypoint_speed_max);
Serial.printf("Zspeed: %ld, %d, %ld\n", temp, max_speed, wp_distance);
wp_distance += 100;
}
return 0;
}
//*/
/*static int8_t
* //test_toy(uint8_t argc, const Menu::arg *argv)
* {
* int16_t yaw_rate;
* int16_t roll_rate;
* g.rc_1.control_in = -2500;
* g.rc_2.control_in = 2500;
*
* g.toy_yaw_rate = 3;
* yaw_rate = g.rc_1.control_in / g.toy_yaw_rate;
* roll_rate = ((int32_t)g.rc_2.control_in * (yaw_rate/100)) /40;
* Serial.printf("yaw_rate, %d, roll_rate, %d\n", yaw_rate, roll_rate);
*
* g.toy_yaw_rate = 2;
* yaw_rate = g.rc_1.control_in / g.toy_yaw_rate;
* roll_rate = ((int32_t)g.rc_2.control_in * (yaw_rate/100)) /40;
* Serial.printf("yaw_rate, %d, roll_rate, %d\n", yaw_rate, roll_rate);
*
* g.toy_yaw_rate = 1;
* yaw_rate = g.rc_1.control_in / g.toy_yaw_rate;
* roll_rate = ((int32_t)g.rc_2.control_in * (yaw_rate/100)) /40;
* Serial.printf("yaw_rate, %d, roll_rate, %d\n", yaw_rate, roll_rate);
* }*/
static int8_t
test_radio(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1) {
delay(20);
read_radio();
Serial.printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\n"),
g.rc_1.control_in,
g.rc_2.control_in,
g.rc_3.control_in,
g.rc_4.control_in,
g.rc_5.control_in,
g.rc_6.control_in,
g.rc_7.control_in);
//Serial.printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d\n"), (g.rc_1.servo_out / 100), (g.rc_2.servo_out / 100), g.rc_3.servo_out, (g.rc_4.servo_out / 100));
/*Serial.printf_P(PSTR( "min: %d"
* "\t in: %d"
* "\t pwm_in: %d"
* "\t sout: %d"
* "\t pwm_out %d\n"),
* g.rc_3.radio_min,
* g.rc_3.control_in,
* g.rc_3.radio_in,
* g.rc_3.servo_out,
* g.rc_3.pwm_out
* );
*/
if(Serial.available() > 0) {
return (0);
}
}
}
/*
* //static int8_t
* //test_failsafe(uint8_t argc, const Menu::arg *argv)
* {
*
* #if THROTTLE_FAILSAFE
* byte fail_test;
* print_hit_enter();
* for(int16_t i = 0; i < 50; i++){
* delay(20);
* read_radio();
* }
*
* oldSwitchPosition = readSwitch();
*
* Serial.printf_P(PSTR("Unplug battery, throttle in neutral, turn off radio.\n"));
* while(g.rc_3.control_in > 0){
* delay(20);
* read_radio();
* }
*
* while(1){
* delay(20);
* read_radio();
*
* if(g.rc_3.control_in > 0){
* Serial.printf_P(PSTR("THROTTLE CHANGED %d \n"), g.rc_3.control_in);
* fail_test++;
* }
*
* if(oldSwitchPosition != readSwitch()){
* Serial.printf_P(PSTR("CONTROL MODE CHANGED: "));
* Serial.println(flight_mode_strings[readSwitch()]);
* fail_test++;
* }
*
* if(g.throttle_fs_enabled && g.rc_3.get_failsafe()){
* Serial.printf_P(PSTR("THROTTLE FAILSAFE ACTIVATED: %d, "), g.rc_3.radio_in);
* Serial.println(flight_mode_strings[readSwitch()]);
* fail_test++;
* }
*
* if(fail_test > 0){
* return (0);
* }
* if(Serial.available() > 0){
* Serial.printf_P(PSTR("LOS caused no change in ACM.\n"));
* return (0);
* }
* }
* #else
* return (0);
* #endif
* }
*/
/*
* //static int8_t
* //test_stabilize(uint8_t argc, const Menu::arg *argv)
* {
* static byte ts_num;
*
*
* print_hit_enter();
* delay(1000);
*
* // setup the radio
* // ---------------
* init_rc_in();
*
* control_mode = STABILIZE;
* Serial.printf_P(PSTR("g.pi_stabilize_roll.kP: %4.4f\n"), g.pi_stabilize_roll.kP());
* Serial.printf_P(PSTR("max_stabilize_dampener:%d\n\n "), max_stabilize_dampener);
*
* motors.auto_armed(false);
* motors.armed(true);
*
* while(1){
* // 50 hz
* if (millis() - fast_loopTimer > 19) {
* delta_ms_fast_loop = millis() - fast_loopTimer;
* fast_loopTimer = millis();
* G_Dt = (float)delta_ms_fast_loop / 1000.f;
*
* if(g.compass_enabled){
* medium_loopCounter++;
* if(medium_loopCounter == 5){
* Matrix3f m = dcm.get_dcm_matrix();
* compass.read(); // Read magnetometer
* compass.null_offsets();
* medium_loopCounter = 0;
* }
* }
*
* // for trim features
* read_trim_switch();
*
* // Filters radio input - adjust filters in the radio.pde file
* // ----------------------------------------------------------
* read_radio();
*
* // IMU
* // ---
* read_AHRS();
*
* // allow us to zero out sensors with control switches
* if(g.rc_5.control_in < 600){
* dcm.roll_sensor = dcm.pitch_sensor = 0;
* }
*
* // custom code/exceptions for flight modes
* // ---------------------------------------
* update_current_flight_mode();
*
* // write out the servo PWM values
* // ------------------------------
* set_servos_4();
*
* ts_num++;
* if (ts_num > 10){
* ts_num = 0;
* Serial.printf_P(PSTR("r: %d, p:%d, rc1:%d, "),
* (int)(dcm.roll_sensor/100),
* (int)(dcm.pitch_sensor/100),
* g.rc_1.pwm_out);
*
* print_motor_out();
* }
* // R: 1417, L: 1453 F: 1453 B: 1417
*
* //Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100));
* //Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100));
*
* if(Serial.available() > 0){
* if(g.compass_enabled){
* compass.save_offsets();
* report_compass();
* }
* return (0);
* }
*
* }
* }
* }
*/
/*
* #if HIL_MODE != HIL_MODE_ATTITUDE && CONFIG_ADC == ENABLED
* //static int8_t
* //test_adc(uint8_t argc, const Menu::arg *argv)
* {
* print_hit_enter();
* Serial.printf_P(PSTR("ADC\n"));
* delay(1000);
*
* adc.Init(&timer_scheduler);
*
* delay(50);
*
* while(1){
* for(int16_t i = 0; i < 9; i++){
* Serial.printf_P(PSTR("%.1f,"),adc.Ch(i));
* }
* Serial.println();
* delay(20);
* if(Serial.available() > 0){
* return (0);
* }
* }
* }
* #endif
*/
/*
* static int8_t
* test_adc(uint8_t argc, const Menu::arg *argv)
* {
* ins.init(&timer_scheduler);
*
* int8_t mytimer = 0;
* startup_ground();
* Serial.println("OK");
*
* while(1){
* // We want this to execute fast
* // ----------------------------
* uint32_t timer = micros();
*
* if ((timer - fast_loopTimer) >= 10000 && imu.new_data_available()) {
* G_Dt = (float)(timer - fast_loopTimer) / 1000000.f; // used by PI Loops
* fast_loopTimer = timer;
*
* read_AHRS();
*
* //calc_inertia();
* accels_rotated = ahrs.get_dcm_matrix() * imu.get_accel();
* //accels_rotated += accels_offset; // skew accels to account for long term error using calibration
*
* mytimer++;
*
* if ((timer - fiftyhz_loopTimer) >= 20000) {
* fiftyhz_loopTimer = timer;
* //sensed_loc.lng = sensed_loc.lat = sensed_loc.alt = 0;
*
* // position fix
* //inertial_error_correction();
* }
*
* if (mytimer >= 10){
* float test = sqrt(sq(accels_rotated.x) + sq(accels_rotated.y) + sq(accels_rotated.z)) / 9.80665;
*
* Vector3f _accels = imu.get_accel();
* mytimer = 0;
*
*
* Serial.printf("%1.4f, %1.4f, %1.4f | %1.4f, %1.4f, %1.4f | %d, %1.4f, %d, %1.4f \n",
* _accels.x,
* _accels.y,
* _accels.z,
* accels_rotated.x,
* accels_rotated.y,
* accels_rotated.z,
* test);
*
*
* }
*
* if(Serial.available() > 0){
* return (0);
* }
* }
* }
* return (0);
* }
*/
static int8_t
test_ins(uint8_t argc, const Menu::arg *argv)
{
#if defined( __AVR_ATmega1280__ ) // test disabled to save code size for 1280
print_test_disabled();
return (0);
#else
float gyro[3], accel[3], temp;
print_hit_enter();
Serial.printf_P(PSTR("InertialSensor\n"));
delay(1000);
ins.init(&timer_scheduler);
delay(50);
while(1) {
ins.update();
ins.get_gyros(gyro);
ins.get_accels(accel);
temp = ins.temperature();
float test = sqrt(sq(accel[0]) + sq(accel[1]) + sq(accel[2])) / 9.80665;
Serial.printf_P(PSTR("g"));
for (int16_t i = 0; i < 3; i++) {
Serial.printf_P(PSTR(" %7.4f"), gyro[i]);
}
Serial.printf_P(PSTR(" a"));
for (int16_t i = 0; i < 3; i++) {
Serial.printf_P(PSTR(" %7.4f"),accel[i]);
}
Serial.printf_P(PSTR(" t %7.4f "), temp);
Serial.printf_P(PSTR(" | %7.4f \n"), test);
delay(40);
if(Serial.available() > 0) {
return (0);
}
}
#endif
}
/*
* test the IMU interface
*/
/*
* static int8_t
* test_imu(uint8_t argc, const Menu::arg *argv)
* {
* #if defined( __AVR_ATmega1280__ ) // test disabled to save code size for 1280
* print_test_disabled();
* return (0);
* #else
* Vector3f gyro;
* Vector3f accel;
*
* imu.init(IMU::WARM_START, delay, flash_leds, &timer_scheduler);
*
* report_imu();
* imu.init_gyro(delay, flash_leds);
* report_imu();
*
* print_hit_enter();
* delay(1000);
*
* while(1){
* delay(40);
*
* imu.update();
* gyro = imu.get_gyro();
* accel = imu.get_accel();
*
* Serial.printf_P(PSTR("g %8.4f %8.4f %8.4f"), gyro.x, gyro.y, gyro.z);
* Serial.printf_P(PSTR(" a %8.4f %8.4f %8.4f\n"), accel.x, accel.y, accel.z);
*
* if(Serial.available() > 0){
* return (0);
* }
* }
* #endif
* }
*/
/*
* static int8_t
* test_imu(uint8_t argc, const Menu::arg *argv)
* {
* print_hit_enter();
* Serial.printf_P(PSTR("ADC\n"));
* adc.Init(&timer_scheduler);
*
* delay(1000);
* Vector3f avg;
* avg.x = adc.Ch(4);
* avg.y = adc.Ch(5);
* avg.z = adc.Ch(6);
*
* //Serial.printf_P(PSTR("init %.2f, %.2f, %.2f\n"), avg.x, avg.y, avg.z);
* Vector3f low = avg;
* Vector3f high = avg;
*
* while(1){
* delay(100);
* avg.x = avg.x * .95 + adc.Ch(4) * .05;
* avg.y = avg.y * .95 + adc.Ch(5) * .05;
* avg.z = avg.z * .95 + adc.Ch(6) * .05;
*
* if(avg.x > high.x)
* high.x = ceil(high.x *.9 + avg.x * .1);
*
* if(avg.y > high.y)
* high.y = ceil(high.y *.9 + avg.y * .1);
*
* if(avg.z > high.z)
* high.z = ceil(high.z *.9 + avg.z * .1);
*
* //
* if(avg.x < low.x)
* low.x = floor(low.x *.9 + avg.x * .1);
*
* if(avg.y < low.y)
* low.y = floor(low.y *.9 + avg.y * .1);
*
* if(avg.z < low.z)
* low.z = floor(low.z *.9 + avg.z * .1);
*
* Serial.printf_P(PSTR("%.2f, %.2f, %.2f \t| %.2f, %.2f, %.2f \t| %.2f, %.2f, %.2f\n"), avg.x, avg.y, avg.z, low.x, low.y, low.z, high.x, high.y, high.z);
*
* //Serial.printf_P(PSTR("%.2f, %.2f, %.2f \t| %d, %d\n"), avg.x, avg.y, avg.z, _count[0], _sum[0]);
*
* //Serial.println();
* if(Serial.available() > 0){
* Serial.printf_P(PSTR("Y to save\n"));
* int16_t c;
* c = Serial.read();
*
* do {
* c = Serial.read();
* } while (-1 == c);
*
* if (('y' == c) || ('Y' == c)){
* ins._x_high = high.x;
* ins._x_low = low.x;
* ins._y_high = high.y;
* ins._y_low = low.y;
* ins._z_high = high.z;
* ins._z_low = low.z;
* ins._x_high.save();
* ins._x_low.save();
* ins._y_high.save();
* ins._y_low.save();
* ins._z_high.save();
* ins._z_low.save();
* Serial.printf_P(PSTR("saved\n"));
* }
*
* return (0);
* }
* }
* }
*/
/*
* test the DCM code, printing Euler angles
*/
/*static int8_t
* //test_dcm_eulers(uint8_t argc, const Menu::arg *argv)
* {
*
* //Serial.printf_P(PSTR("Calibrating."));
*
* //dcm.kp_yaw(0.02);
* //dcm.ki_yaw(0);
*
* imu.init(IMU::WARM_START, delay, flash_leds, &timer_scheduler);
*
* report_imu();
* imu.init_gyro(delay, flash_leds);
* report_imu();
*
* print_hit_enter();
* delay(1000);
*
* //float cos_roll, sin_roll, cos_pitch, sin_pitch, cos_yaw, sin_yaw;
* fast_loopTimer = millis();
*
* while(1){
* //delay(20);
* if (millis() - fast_loopTimer >=20) {
*
* // IMU
* // ---
* read_AHRS();
* medium_loopCounter++;
*
* if(medium_loopCounter == 4){
* update_trig();
* }
*
* if(medium_loopCounter == 1){
* medium_loopCounter = 0;
* Serial.printf_P(PSTR("dcm: %6.1f, %6.1f, %6.1f omega: %6.1f, %6.1f, %6.1f\n"),
* dcm.roll_sensor/100.0,
* dcm.pitch_sensor/100.0,
* dcm.yaw_sensor/100.0,
* degrees(omega.x),
* degrees(omega.y),
* degrees(omega.z));
*
* if(g.compass_enabled){
* compass.read(); // Read magnetometer
* compass.null_offsets();
* }
* }
* fast_loopTimer = millis();
* }
* if(Serial.available() > 0){
* return (0);
* }
* }
* return (0);
* }*/
static int8_t
test_gps(uint8_t argc, const Menu::arg *argv)
{
// test disabled to save code size for 1280
#if defined( __AVR_ATmega1280__ ) || HIL_MODE != HIL_MODE_DISABLED
print_test_disabled();
return (0);
#else
print_hit_enter();
delay(1000);
while(1) {
delay(333);
// Blink GPS LED if we don't have a fix
// ------------------------------------
update_GPS_light();
g_gps->update();
if (g_gps->new_data) {
Serial.printf_P(PSTR("Lat: "));
print_latlon(&Serial, g_gps->latitude);
Serial.printf_P(PSTR(", Lon "));
print_latlon(&Serial, g_gps->longitude);
Serial.printf_P(PSTR(", Alt: %ldm, #sats: %d\n"),
g_gps->altitude/100,
g_gps->num_sats);
g_gps->new_data = false;
}else{
Serial.print_P(PSTR("."));
}
if(Serial.available() > 0) {
return (0);
}
}
return 0;
#endif
}
// used to test the gain scheduler for Stab_D
/*
* static int8_t
* test_stab_d(uint8_t argc, const Menu::arg *argv)
* {
* int16_t i = 0;
* g.stabilize_d = 1;
*
* g.stabilize_d_schedule = 1
* for (i = -4600; i < 4600; i+=10) {
* new_radio_frame = true;
* g.rc_1.control_in = i;
* g.rc_2.control_in = i;
* update_roll_pitch_mode();
* Serial.printf("rin:%d, d:%1.6f \tpin:%d, d:%1.6f\n",g.rc_1.control_in, roll_scale_d, g.rc_2.control_in, pitch_scale_d);
* }
* g.stabilize_d_schedule = .5
* for (i = -4600; i < 4600; i+=10) {
* new_radio_frame = true;
* g.rc_1.control_in = i;
* g.rc_2.control_in = i;
* update_roll_pitch_mode();
* Serial.printf("rin:%d, d:%1.6f \tpin:%d, d:%1.6f\n",g.rc_1.control_in, roll_scale_d, g.rc_2.control_in, pitch_scale_d);
* }
*
* g.stabilize_d_schedule = 0
* for (i = -4600; i < 4600; i+=10) {
* new_radio_frame = true;
* g.rc_1.control_in = i;
* g.rc_2.control_in = i;
* update_roll_pitch_mode();
* Serial.printf("rin:%d, d:%1.6f \tpin:%d, d:%1.6f\n",g.rc_1.control_in, roll_scale_d, g.rc_2.control_in, pitch_scale_d);
* }
*
* }*/
/*
* //static int8_t
* //test_dcm(uint8_t argc, const Menu::arg *argv)
* {
* print_hit_enter();
* delay(1000);
* Serial.printf_P(PSTR("Gyro | Accel\n"));
* Vector3f _cam_vector;
* Vector3f _out_vector;
*
* G_Dt = .02;
*
* while(1){
* for(byte i = 0; i <= 50; i++){
* delay(20);
* // IMU
* // ---
* read_AHRS();
* }
*
* Matrix3f temp = dcm.get_dcm_matrix();
* Matrix3f temp_t = dcm.get_dcm_transposed();
*
* Serial.printf_P(PSTR("dcm\n"
* "%4.4f \t %4.4f \t %4.4f \n"
* "%4.4f \t %4.4f \t %4.4f \n"
* "%4.4f \t %4.4f \t %4.4f \n\n"),
* temp.a.x, temp.a.y, temp.a.z,
* temp.b.x, temp.b.y, temp.b.z,
* temp.c.x, temp.c.y, temp.c.z);
*
* int16_t _pitch = degrees(-asin(temp.c.x));
* int16_t _roll = degrees(atan2(temp.c.y, temp.c.z));
* int16_t _yaw = degrees(atan2(temp.b.x, temp.a.x));
* Serial.printf_P(PSTR( "angles\n"
* "%d \t %d \t %d\n\n"),
* _pitch,
* _roll,
* _yaw);
*
* //_out_vector = _cam_vector * temp;
* //Serial.printf_P(PSTR( "cam\n"
* // "%d \t %d \t %d\n\n"),
* // (int)temp.a.x * 100, (int)temp.a.y * 100, (int)temp.a.x * 100);
*
* if(Serial.available() > 0){
* return (0);
* }
* }
* }
*/
/*
* //static int8_t
* //test_dcm(uint8_t argc, const Menu::arg *argv)
* {
* print_hit_enter();
* delay(1000);
* Serial.printf_P(PSTR("Gyro | Accel\n"));
* delay(1000);
*
* while(1){
* Vector3f accels = dcm.get_accel();
* Serial.print("accels.z:");
* Serial.print(accels.z);
* Serial.print("omega.z:");
* Serial.print(omega.z);
* delay(100);
*
* if(Serial.available() > 0){
* return (0);
* }
* }
* }
*/
/*static int8_t
* //test_omega(uint8_t argc, const Menu::arg *argv)
* {
* static byte ts_num;
* float old_yaw;
*
* print_hit_enter();
* delay(1000);
* Serial.printf_P(PSTR("Omega"));
* delay(1000);
*
* G_Dt = .02;
*
* while(1){
* delay(20);
* // IMU
* // ---
* read_AHRS();
*
* float my_oz = (dcm.yaw - old_yaw) * 50;
*
* old_yaw = dcm.yaw;
*
* ts_num++;
* if (ts_num > 2){
* ts_num = 0;
* //Serial.printf_P(PSTR("R: %4.4f\tP: %4.4f\tY: %4.4f\tY: %4.4f\n"), omega.x, omega.y, omega.z, my_oz);
* Serial.printf_P(PSTR(" Yaw: %ld\tY: %4.4f\tY: %4.4f\n"), dcm.yaw_sensor, omega.z, my_oz);
* }
*
* if(Serial.available() > 0){
* return (0);
* }
* }
* return (0);
* }
* //*/
static int8_t
test_tuning(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
while(1) {
delay(200);
read_radio();
tuning();
Serial.printf_P(PSTR("tune: %1.3f\n"), tuning_value);
if(Serial.available() > 0) {
return (0);
}
}
}
static int8_t
test_battery(uint8_t argc, const Menu::arg *argv)
{
#if defined( __AVR_ATmega1280__ ) // disable this test if we are using 1280
print_test_disabled();
return (0);
#else
Serial.printf_P(PSTR("\nCareful! Motors will spin! Press Enter to start.\n"));
Serial.flush();
while(!Serial.available()) {
delay(100);
}
Serial.flush();
print_hit_enter();
// allow motors to spin
motors.enable();
motors.armed(true);
while(1) {
delay(100);
read_radio();
read_battery();
if (g.battery_monitoring == 3) {
Serial.printf_P(PSTR("V: %4.4f\n"),
battery_voltage1,
current_amps1,
current_total1);
} else {
Serial.printf_P(PSTR("V: %4.4f, A: %4.4f, Ah: %4.4f\n"),
battery_voltage1,
current_amps1,
current_total1);
}
motors.throttle_pass_through();
if(Serial.available() > 0) {
motors.armed(false);
return (0);
}
}
motors.armed(false);
return (0);
#endif
}
static int8_t test_relay(uint8_t argc, const Menu::arg *argv)
{
#if defined( __AVR_ATmega1280__ ) // test disabled to save code size for 1280
print_test_disabled();
return (0);
#else
print_hit_enter();
delay(1000);
while(1) {
Serial.printf_P(PSTR("Relay on\n"));
relay.on();
delay(3000);
if(Serial.available() > 0) {
return (0);
}
Serial.printf_P(PSTR("Relay off\n"));
relay.off();
delay(3000);
if(Serial.available() > 0) {
return (0);
}
}
#endif
}
static int8_t
test_wp(uint8_t argc, const Menu::arg *argv)
{
delay(1000);
// save the alitude above home option
Serial.printf_P(PSTR("Hold alt "));
if(g.RTL_altitude < 0) {
Serial.printf_P(PSTR("\n"));
}else{
Serial.printf_P(PSTR("of %dm\n"), (int)g.RTL_altitude / 100);
}
Serial.printf_P(PSTR("%d wp\n"), (int)g.command_total);
Serial.printf_P(PSTR("Hit rad: %dm\n"), (int)g.waypoint_radius);
//Serial.printf_P(PSTR("Loiter radius: %d\n\n"), (int)g.loiter_radius);
report_wp();
return (0);
}
//static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv) {
/*
* print_hit_enter();
* delay(1000);
* while(1){
* if (Serial3.available()){
* digitalWrite(B_LED_PIN, LED_ON); // Blink Yellow LED if we are sending data to GPS
* Serial1.write(Serial3.read());
* digitalWrite(B_LED_PIN, LED_OFF);
* }
* if (Serial1.available()){
* digitalWrite(C_LED_PIN, LED_ON); // Blink Red LED if we are receiving data from GPS
* Serial3.write(Serial1.read());
* digitalWrite(C_LED_PIN, LED_OFF);
* }
* if(Serial.available() > 0){
* return (0);
* }
* }
*/
//}
/*static int8_t
* //test_xbee(uint8_t argc, const Menu::arg *argv)
* {
* print_hit_enter();
* delay(1000);
* Serial.printf_P(PSTR("Begin XBee X-CTU Range and RSSI Test:\n"));
*
* while(1){
* if (Serial3.available())
* Serial3.write(Serial3.read());
*
* if(Serial.available() > 0){
* return (0);
* }
* }
* }
*/
#if HIL_MODE != HIL_MODE_ATTITUDE
static int8_t
test_baro(uint8_t argc, const Menu::arg *argv)
{
#if defined( __AVR_ATmega1280__ ) // test disabled to save code size for 1280
print_test_disabled();
return (0);
#else
print_hit_enter();
init_barometer();
while(1) {
delay(100);
int32_t alt = read_barometer(); // calls barometer.read()
int32_t pres = barometer.get_pressure();
int16_t temp = barometer.get_temperature();
int32_t raw_pres = barometer.get_raw_pressure();
int32_t raw_temp = barometer.get_raw_temp();
Serial.printf_P(PSTR("alt: %ldcm, pres: %ldmbar, temp: %d/100degC,"
" raw pres: %ld, raw temp: %ld\n"),
alt, pres,temp, raw_pres, raw_temp);
if(Serial.available() > 0) {
return (0);
}
}
return 0;
#endif
}
#endif
static int8_t
test_mag(uint8_t argc, const Menu::arg *argv)
{
#if defined( __AVR_ATmega1280__ ) // test disabled to save code size for 1280
print_test_disabled();
return (0);
#else
if(g.compass_enabled) {
print_hit_enter();
while(1) {
delay(100);
if (compass.read()) {
float heading = compass.calculate_heading(ahrs.get_dcm_matrix());
Serial.printf_P(PSTR("Heading: %ld, XYZ: %d, %d, %d\n"),
(wrap_360(ToDeg(heading) * 100)) /100,
compass.mag_x,
compass.mag_y,
compass.mag_z);
} else {
Serial.println_P(PSTR("not healthy"));
}
if(Serial.available() > 0) {
return (0);
}
}
} else {
Serial.printf_P(PSTR("Compass: "));
print_enabled(false);
return (0);
}
return (0);
#endif
}
/*
* //static int8_t
* //test_reverse(uint8_t argc, const Menu::arg *argv)
* {
* print_hit_enter();
* delay(1000);
*
* while(1){
* delay(20);
*
* // Filters radio input - adjust filters in the radio.pde file
* // ----------------------------------------------------------
* g.rc_4.set_reverse(0);
* g.rc_4.set_pwm(APM_RC.InputCh(CH_4));
* g.rc_4.servo_out = g.rc_4.control_in;
* g.rc_4.calc_pwm();
* Serial.printf_P(PSTR("PWM:%d input: %d\toutput%d "),
* APM_RC.InputCh(CH_4),
* g.rc_4.control_in,
* g.rc_4.radio_out);
* APM_RC.OutputCh(CH_6, g.rc_4.radio_out);
*
*
* g.rc_4.set_reverse(1);
* g.rc_4.set_pwm(APM_RC.InputCh(CH_4));
* g.rc_4.servo_out = g.rc_4.control_in;
* g.rc_4.calc_pwm();
* Serial.printf_P(PSTR("\trev input: %d\toutput%d\n"),
* g.rc_4.control_in,
* g.rc_4.radio_out);
*
* APM_RC.OutputCh(CH_7, g.rc_4.radio_out);
*
* if(Serial.available() > 0){
* g.rc_4.set_reverse(0);
* return (0);
* }
* }
* }*/
#if HIL_MODE != HIL_MODE_ATTITUDE
/*
* test the sonar
*/
static int8_t
test_sonar(uint8_t argc, const Menu::arg *argv)
{
if(g.sonar_enabled == false) {
Serial.printf_P(PSTR("Sonar disabled\n"));
return (0);
}
// make sure sonar is initialised
init_sonar();
print_hit_enter();
while(1) {
delay(100);
Serial.printf_P(PSTR("Sonar: %d cm\n"), sonar.read());
//Serial.printf_P(PSTR("Sonar, %d, %d\n"), sonar.read(), sonar.raw_value);
if(Serial.available() > 0) {
return (0);
}
}
return (0);
}
#endif
static int8_t
test_optflow(uint8_t argc, const Menu::arg *argv)
{
#ifdef OPTFLOW_ENABLED
if(g.optflow_enabled) {
Serial.printf_P(PSTR("man id: %d\t"),optflow.read_register(ADNS3080_PRODUCT_ID));
print_hit_enter();
while(1) {
delay(200);
optflow.update(millis());
Log_Write_Optflow();
Serial.printf_P(PSTR("x/dx: %d/%d\t y/dy %d/%d\t squal:%d\n"),
optflow.x,
optflow.dx,
optflow.y,
optflow.dy,
optflow.surface_quality);
if(Serial.available() > 0) {
return (0);
}
}
} else {
Serial.printf_P(PSTR("OptFlow: "));
print_enabled(false);
}
return (0);
#else
print_test_disabled();
return (0);
#endif
}
static int8_t
test_wp_nav(uint8_t argc, const Menu::arg *argv)
{
current_loc.lat = 389539260;
current_loc.lng = -1199540200;
next_WP.lat = 389538528;
next_WP.lng = -1199541248;
// got 23506;, should be 22800
navigate();
Serial.printf_P(PSTR("bear: %ld\n"), target_bearing);
return 0;
}
/*
* test the dataflash is working
*/
static int8_t
test_logging(uint8_t argc, const Menu::arg *argv)
{
#if defined( __AVR_ATmega1280__ ) // test disabled to save code size for 1280
print_test_disabled();
return (0);
#else
Serial.println_P(PSTR("Testing dataflash logging"));
if (!DataFlash.CardInserted()) {
Serial.println_P(PSTR("ERR: No dataflash inserted"));
return 0;
}
DataFlash.ReadManufacturerID();
Serial.printf_P(PSTR("Manufacturer: 0x%02x Device: 0x%04x\n"),
(unsigned)DataFlash.df_manufacturer,
(unsigned)DataFlash.df_device);
Serial.printf_P(PSTR("NumPages: %u PageSize: %u\n"),
(unsigned)DataFlash.df_NumPages+1,
(unsigned)DataFlash.df_PageSize);
DataFlash.StartRead(DataFlash.df_NumPages+1);
Serial.printf_P(PSTR("Format version: %lx Expected format version: %lx\n"),
(unsigned long)DataFlash.ReadLong(), (unsigned long)DF_LOGGING_FORMAT);
return 0;
#endif
}
/*
* static int8_t
* //test_mission(uint8_t argc, const Menu::arg *argv)
* {
* //write out a basic mission to the EEPROM
*
* //{
* // uint8_t id; ///< command id
* // uint8_t options; ///< options bitmask (1<<0 = relative altitude)
* // uint8_t p1; ///< param 1
* // int32_t alt; ///< param 2 - Altitude in centimeters (meters * 100)
* // int32_t lat; ///< param 3 - Lattitude * 10**7
* // int32_t lng; ///< param 4 - Longitude * 10**7
* //}
*
* // clear home
* {Location t = {0, 0, 0, 0, 0, 0};
* set_cmd_with_index(t,0);}
*
* // CMD opt pitch alt/cm
* {Location t = {MAV_CMD_NAV_TAKEOFF, WP_OPTION_RELATIVE, 0, 100, 0, 0};
* set_cmd_with_index(t,1);}
*
* if (!strcmp_P(argv[1].str, PSTR("wp"))) {
*
* // CMD opt
* {Location t = {MAV_CMD_NAV_WAYPOINT, WP_OPTION_RELATIVE, 15, 0, 0, 0};
* set_cmd_with_index(t,2);}
* // CMD opt
* {Location t = {MAV_CMD_NAV_RETURN_TO_LAUNCH, WP_OPTION_YAW, 0, 0, 0, 0};
* set_cmd_with_index(t,3);}
*
* // CMD opt
* {Location t = {MAV_CMD_NAV_LAND, 0, 0, 0, 0, 0};
* set_cmd_with_index(t,4);}
*
* } else {
* //2250 = 25 meteres
* // CMD opt p1 //alt //NS //WE
* {Location t = {MAV_CMD_NAV_LOITER_TIME, 0, 10, 0, 0, 0}; // 19
* set_cmd_with_index(t,2);}
*
* // CMD opt dir angle/deg deg/s relative
* {Location t = {MAV_CMD_CONDITION_YAW, 0, 1, 360, 60, 1};
* set_cmd_with_index(t,3);}
*
* // CMD opt
* {Location t = {MAV_CMD_NAV_LAND, 0, 0, 0, 0, 0};
* set_cmd_with_index(t,4);}
*
* }
*
* g.RTL_altitude.set_and_save(300);
* g.command_total.set_and_save(4);
* g.waypoint_radius.set_and_save(3);
*
* test_wp(NULL, NULL);
* return (0);
* }
*/
static void print_hit_enter()
{
Serial.printf_P(PSTR("Hit Enter to exit.\n\n"));
}
static void print_test_disabled()
{
Serial.printf_P(PSTR("Sorry, not 1280 compat.\n"));
}
/*
* //static void fake_out_gps()
* {
* static float rads;
* g_gps->new_data = true;
* g_gps->fix = true;
*
* //int length = g.rc_6.control_in;
* rads += .05;
*
* if (rads > 6.28){
* rads = 0;
* }
*
* g_gps->latitude = 377696000; // Y
* g_gps->longitude = -1224319000; // X
* g_gps->altitude = 9000; // meters * 100
*
* //next_WP.lng = home.lng - length * sin(rads); // X
* //next_WP.lat = home.lat + length * cos(rads); // Y
* }
*
*/
/*
* //static void print_motor_out(){
* Serial.printf("out: R: %d, L: %d F: %d B: %d\n",
* (motor_out[CH_1] - g.rc_3.radio_min),
* (motor_out[CH_2] - g.rc_3.radio_min),
* (motor_out[CH_3] - g.rc_3.radio_min),
* (motor_out[CH_4] - g.rc_3.radio_min));
* }
*/
#endif // CLI_ENABLED