ardupilot/libraries/AP_ADC/AP_ADC_ADS7844.cpp

264 lines
8.7 KiB
C++
Raw Blame History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* AP_ADC_ADS7844.cpp - ADC ADS7844 Library for Ardupilot Mega
* Code by Jordi Mu<4D>oz and Jose Julio. DIYDrones.com
*
* Modified by John Ihlein 6 / 19 / 2010 to:
* 1)Prevent overflow of adc_counter when more than 8 samples collected between reads. Probably
* only an issue on initial read of ADC at program start.
* 2)Reorder analog read order as follows:
* p, q, r, ax, ay, az
*
* This library is free software; you can redistribute it and / or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* External ADC ADS7844 is connected via Serial port 2 (in SPI mode)
* TXD2 = MOSI = pin PH1
* RXD2 = MISO = pin PH0
* XCK2 = SCK = pin PH2
* Chip Select pin is PC4 (33) [PH6 (9)]
* We are using the 16 clocks per conversion timming to increase efficiency (fast)
*
* The sampling frequency is 1kHz (Timer2 overflow interrupt)
*
* So if our loop is at 50Hz, our needed sampling freq should be 100Hz, so
* we have an 10x oversampling and averaging.
*
* Methods:
* Init() : Initialization of interrupts an Timers (Timer2 overflow interrupt)
* Ch(ch_num) : Return the ADC channel value
*
* // HJI - Input definitions. USB connector assumed to be on the left, Rx and servo
* // connector pins to the rear. IMU shield components facing up. These are board
* // referenced sensor inputs, not device referenced.
* On Ardupilot Mega Hardware, oriented as described above:
* Chennel 0 : yaw rate, r
* Channel 1 : roll rate, p
* Channel 2 : pitch rate, q
* Channel 3 : x / y gyro temperature
* Channel 4 : x acceleration, aX
* Channel 5 : y acceleration, aY
* Channel 6 : z acceleration, aZ
* Channel 7 : Differential pressure sensor port
*
*/
#include "AP_ADC_ADS7844.h"
extern "C" {
// AVR LibC Includes
#include <inttypes.h>
#include <stdint.h>
#include <avr/interrupt.h>
}
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WConstants.h"
#endif
// Commands for reading ADC channels on ADS7844
static const unsigned char adc_cmd[9] = { 0x87, 0xC7, 0x97, 0xD7, 0xA7, 0xE7, 0xB7, 0xF7, 0x00 };
// the sum of the values since last read
static volatile uint32_t _sum[8];
// how many values we've accumulated since last read
static volatile uint16_t _count[8];
// variables to calculate time period over which a group of samples were collected
static volatile uint32_t _ch6_delta_time_start_micros = 0; // time we start collecting sample (reset on update)
static volatile uint32_t _ch6_last_sample_time_micros = 0; // time latest sample was collected
// TCNT2 values for various interrupt rates,
// assuming 256 prescaler. Note that these values
// assume a zero-time ISR. The actual rate will be a
// bit lower than this
#define TCNT2_781_HZ (256-80)
#define TCNT2_1008_HZ (256-62)
#define TCNT2_1302_HZ (256-48)
static inline unsigned char ADC_SPI_transfer(unsigned char data)
{
/* Put data into buffer, sends the data */
UDR2 = data;
/* Wait for data to be received */
while ( !(UCSR2A & (1 << RXC2)) ) ;
/* Get and return received data from buffer */
return UDR2;
}
void AP_ADC_ADS7844::read(uint32_t tnow)
{
uint8_t ch;
bit_clear(PORTC, 4); // Enable Chip Select (PIN PC4)
ADC_SPI_transfer(adc_cmd[0]); // Command to read the first channel
for (ch = 0; ch < 8; ch++) {
uint16_t v;
v = ADC_SPI_transfer(0) << 8; // Read first byte
v |= ADC_SPI_transfer(adc_cmd[ch + 1]); // Read second byte and send next command
if (v & 0x8007) {
// this is a 12-bit ADC, shifted by 3 bits.
// if we get other bits set then the value is
// bogus and should be ignored
continue;
}
if (++_count[ch] == 0) {
// overflow ... shouldn't happen too often
// unless we're just not using the
// channel. Notice that we overflow the count
// to 1 here, not zero, as otherwise the
// reader below could get a division by zero
_sum[ch] = 0;
_count[ch] = 1;
}
_sum[ch] += (v >> 3);
}
bit_set(PORTC, 4); // Disable Chip Select (PIN PC4)
// record time of this sample
_ch6_last_sample_time_micros = micros();
}
// Constructors ////////////////////////////////////////////////////////////////
AP_ADC_ADS7844::AP_ADC_ADS7844()
{
}
// Public Methods //////////////////////////////////////////////////////////////
void AP_ADC_ADS7844::Init( AP_PeriodicProcess * scheduler )
{
scheduler->suspend_timer();
pinMode(ADC_CHIP_SELECT, OUTPUT);
digitalWrite(ADC_CHIP_SELECT, HIGH); // Disable device (Chip select is active low)
// Setup Serial Port2 in SPI mode
UBRR2 = 0;
DDRH |= (1 << PH2); // SPI clock XCK2 (PH2) as output. This enable SPI Master mode
// Set MSPI mode of operation and SPI data mode 0.
UCSR2C = (1 << UMSEL21) | (1 << UMSEL20); // |(0 << UCPHA2) | (0 << UCPOL2);
// Enable receiver and transmitter.
UCSR2B = (1 << RXEN2) | (1 << TXEN2);
// Set Baud rate
UBRR2 = 2; // SPI clock running at 2.6MHz
// get an initial value for each channel. This ensures
// _count[] is never zero
for (uint8_t i=0; i<8; i++) {
uint16_t adc_tmp;
adc_tmp = ADC_SPI_transfer(0) << 8;
adc_tmp |= ADC_SPI_transfer(adc_cmd[i + 1]);
_count[i] = 1;
_sum[i] = adc_tmp;
}
_ch6_last_sample_time_micros = micros();
scheduler->resume_timer();
scheduler->register_process( AP_ADC_ADS7844::read );
}
// Read one channel value
float AP_ADC_ADS7844::Ch(uint8_t ch_num)
{
uint16_t count;
uint32_t sum;
// ensure we have at least one value
while (_count[ch_num] == 0) /* noop */;
// grab the value with interrupts disabled, and clear the count
cli();
count = _count[ch_num];
sum = _sum[ch_num];
_count[ch_num] = 0;
_sum[ch_num] = 0;
sei();
return ((float)sum)/count;
}
// see if Ch6() can return new data
bool AP_ADC_ADS7844::new_data_available(const uint8_t *channel_numbers)
{
uint8_t i;
for (i=0; i<6; i++) {
if (_count[channel_numbers[i]] == 0) {
return false;
}
}
return true;
}
// Read 6 channel values
// this assumes that the counts for all of the 6 channels are
// equal. This will only be true if we always consistently access a
// sensor by either Ch6() or Ch() and never mix them. If you mix them
// then you will get very strange results
uint32_t AP_ADC_ADS7844::Ch6(const uint8_t *channel_numbers, float *result)
{
uint16_t count[6];
uint32_t sum[6];
uint8_t i;
// ensure we have at least one value
for (i=0; i<6; i++) {
while (_count[channel_numbers[i]] == 0) /* noop */;
}
// grab the values with interrupts disabled, and clear the counts
cli();
for (i=0; i<6; i++) {
count[i] = _count[channel_numbers[i]];
sum[i] = _sum[channel_numbers[i]];
_count[channel_numbers[i]] = 0;
_sum[channel_numbers[i]] = 0;
}
// calculate the delta time.
// we do this before re-enabling interrupts because another sensor read could fire immediately and change the _last_sensor_time value
uint32_t ret = _ch6_last_sample_time_micros - _ch6_delta_time_start_micros;
_ch6_delta_time_start_micros = _ch6_last_sample_time_micros;
sei();
// calculate averages. We keep this out of the cli region
// to prevent us stalling the ISR while doing the
// division. That costs us 36 bytes of stack, but I think its
// worth it.
for (i = 0; i < 6; i++) {
result[i] = sum[i] / (float)count[i];
}
// return number of microseconds since last call
return ret;
}
/// Get minimum number of samples read from the sensors
uint16_t AP_ADC_ADS7844::num_samples_available(const uint8_t *channel_numbers)
{
// get count of first channel as a base
uint16_t min_count = _count[channel_numbers[0]];
// reduce to minimum count of all other channels
for (uint8_t i=1; i<6; i++) {
if (_count[channel_numbers[i]] < min_count) {
min_count = _count[channel_numbers[i]];
}
}
return min_count;
}